The Stone-Weierstrass theorem

Throughout this section, X denotes a compact Hausdorff space, for example a compact metric space. In what follows, we take C(X) to denote the algebra of real-valued continuous functions on X. We return to the complex valued case at the end.

Definition 12.1. We say a set of functions $\mathcal{A} \subset C(X)$ *separates points* if for every $x, y \in X$, there is a function $f \in \mathcal{A}$ so $f(x) \neq f(y)$.

Theorem 12.2 (Stone-Weierstrass (proved by Stone, published in 1948)).

Let \mathcal{A} be a subalgebra of C(X) which

- contains the constants, and
- separates points.

Then \mathcal{A} is uniformly dense in C(X).

Corollary 12.3 (Weierstrass approximation (1895)). Polynomials are uniformly dense in C([a, b]).

I'll give a proof here adapted from §4.3 of Pedersen's book Analysis Now.

Definition 12.4. Let \mathcal{A} be a vector subspace of C(X). If \mathcal{A} contains max{f, g} and min{f, g} whenever $f, g \in \mathcal{A}$, then we call \mathcal{A} a *function lattice*.

Definition 12.5. A set of functions $\mathcal{A} \subset C(X)$ separates points strongly if for $x, y \in X$ and $a, b \in \mathbb{R}$, there is a function $f \in \mathcal{A}$ so f(x) = a and f(y) = b.

Lemma 12.6. If a subspace $\mathcal{A} \subset C(X)$ separates points and contains the constants, it separates points strongly.

Lemma 12.7. If \mathcal{A} is a subalgebra of C(X), then for $f, g \in \mathcal{A}$, max{f, g} and min{f, g} are in $\overline{\mathcal{A}}$, the uniform closure of \mathcal{A} . (That is, $\overline{\mathcal{A}}$ is a function lattice.)

Lemma 12.8. Suppose \mathcal{A} is a function lattice which separates points strongly. Then \mathcal{A} is uniformly dense in C(X).

Proof of the Stone-Weierstrass theorem:

The algebra \mathcal{A} separates points strongly, by Lemma 12.6. Clearly $\overline{\mathcal{A}}$ also separates points strongly, and by Lemma 12.7 it is also a function lattice. Finally, by Lemma 12.8 we have that $\overline{\mathcal{A}}$ is uniformly dense in C(X), so $\overline{\mathcal{A}} = C(X)$, as desired.

Proof of Lemma 12.6: Given $x, y \in X$, find $f' \in \mathcal{A}$ so f'(x) = a' and f'(y) = b', for some $a' \neq b'$. Then the function $f'' = \frac{f'-a'}{b'-a'}$ satisfies f''(x) = 0, and f''(y) = 1, so the function f = (b-a)f'' + a has the desired property.

Proof of Lemma 12.7: Let $\epsilon > 0$. The function $t \mapsto (\epsilon^2 + t)^{1/2}$ has a power series expansion that converges uniformly on [0, 1] (e.g., the Taylor series at t = 1/2).

We can thus find a polynomial p so $|(\epsilon^2 + t)^{1/2} - p(t)| < \epsilon$ for all $t \in [0, 1]$.

Observe that at t = 0 this gives $|p(0)| < 2\epsilon$, and define q(t) = p(t) - p(0) (still a polynomial). Certainly $q(f) \in \mathcal{A}$ for any $f \in \mathcal{A}$, as \mathcal{A} is an algebra. If $f \in \mathcal{A}$ with $||f||_{\infty} \leq 1$, we have

$$\begin{split} ||q(f^{2}) - |f|||_{\infty} &= \sup_{x \in X} |q(f^{2}(x)) - f^{2}(x)^{1/2}| \\ &\leq \sup_{t \in [0,1]} |p(t) - p(0) - t^{1/2}| \\ &\leq 2\epsilon + \sup_{t \in [0,1]} |p(t) - t^{1/2}| \\ &\leq 3\epsilon + \sup_{t \in [0,1]} |(\epsilon^{2} + t)^{1/2} - t^{1/2}| \\ &\leq 4\epsilon. \end{split}$$

Since $q(f^2) \in \mathcal{A}$, we have shown that $|f| \in \overline{\mathcal{A}}$.

(j) = (j)

Now

$$\max\{f,g\} = \frac{1}{2}(f+g+|f-g|)$$

and

$$\min\{f,g\} = \frac{1}{2}(f+g-|f-g|)$$

so we are finished.

Proof of Lemma 12.8: Fix $\epsilon > 0$ and $f \in C(X)$. We will find $f_{\epsilon} \in \mathcal{A}$ with $||f - f_{\epsilon}||_{\infty} < \epsilon$. For each $x, y \in X$, choose $f_{xy} \in \mathcal{A}$ with

$$f_{xy}(x) = f(x)$$
 and $f_{xy}(y) = f(y)$

(this is possible because $\mathcal A$ separates points strongly). Define the open sets

$$U_{xy} = \{z \in X | f(z) < f_{xy}(z) + \epsilon\}$$
$$V_{xy} = \{z \in X | f_{xy}(z) < f(z) + \epsilon\}.$$

Observe $x, y \in U_{xy} \cap V_{xy}$.

Fix *x* for a moment. As *y* varies, the sets U_{xy} cover *X*. Since *X* is compact, we can find y_1, \ldots, y_n so $X = \bigcup U_{xy_i}$. Define $f_x = \max\{f_{xy_i}\}$. Since \mathcal{A} is a function lattice, $f_x \in \mathcal{A}$. Moreover, $f(z) < f_x(z) + \epsilon$ for every $z \in X$. Also, if we define $W_x = \bigcap V_{xy_i}$, we see W_x is an open neighbourhood of *x*, and $f_x(z) < f(z) + \epsilon$ for every $z \in W_x$. The sets $\{W_x\}_{x \in X}$ cover X, so applying compactness again we find x_1, \ldots, x_m so $X = \bigcup W_{x_i}$. Finally we define $f_{\epsilon} = \min\{f_{x_i}\}$, which is again in \mathcal{A} as it is a function lattice. Observe that we still have

$$f(z) < f_{\epsilon}(z) + \epsilon,$$

and now

$$f_{\epsilon}(z) < f(z) + \epsilon$$

for every $z \in X$, giving the desired result.

Finally, what about $C(X, \mathbb{C})$, the complex valued continuous functions? We give a slightly revised version of the main theorem:

Theorem 12.9. Let \mathcal{A} be a (complex) subalgebra of $C(X, \mathbb{C})$ which

- is *self-adjoint*, i.e. for every $f \in \mathcal{A}$, the complex conjugate $f \in \mathcal{A}$ also,
- contains the complex constants, and
- separates points.

Then $\overline{A} = C(X, \mathbb{C})$.

Proof: We can bootstrap from the real-valued theorem.

Since \mathcal{A} is self-adjoint, if $f \in \mathcal{A}$ then $\mathfrak{R}f \in \mathcal{A}$ and $\mathfrak{I}f \in \mathcal{A}$, since $\mathfrak{R}f = \frac{1}{2}(f + \overline{f})$. Let

 $A_{\mathfrak{R}} = \{ f \in \mathcal{A} | f \text{ is real-valued} \}.$

Easily, A_{\Re} contains \mathbb{R} . We see that it still separates points, as follows. Suppose we have $x, y \in X$, and a complex valued function $f \in \mathcal{A}$ so $f(x) \neq f(y)$. Then for some constant c, $|f(x) + c| \neq |f(y) + c|$. Thus the real-valued function

$$z \mapsto (f(z) + c)(f(z) + c)$$

which is still in \mathcal{A} also separates *x* and *y*.

Thus by the real-valued version of the theorem we have that $\overline{A_{\mathfrak{R}}} = C(X, \mathbb{R})$. Finally, given $f \in C(X, \mathbb{C})$, we can write $f = \mathfrak{R}f + i\mathfrak{I}f$, and approximate separately the real and imaginary parts using $\mathcal{A}_{\mathfrak{R}}$.

- Trigonometric polynomials are uniformly dense in *C*([0, 1]) even though the Fourier series need not converge uniformly.
- The hypothesis that $\mathcal{A} \subset C(X, \mathbb{C})$ be self-adjoint is essential. Consider, for example, the holomorphic functions on X the unit disc.