
The Stone-Weierstrass theorem

Throughout this section, X denotes a compact Hausdorff space, for example a compact
metric space. In what follows, we takeC(X ) to denote the algebra of real-valued continuous
functions on X . We return to the complex valued case at the end.

Definition 12.1. We say a set of functionsA ⊂ C(X ) separates points if for every x ,y ∈ X ,
there is a function f ∈ A so f (x) , f (y).

Theorem 12.2 (Stone-Weierstrass (proved by Stone, published in 1948)).
Let A be a subalgebra of C(X ) which

• contains the constants, and
• separates points.

Then A is uniformly dense in C(X ).

Corollary 12.3 (Weierstrass approximation (1895)). Polynomials are uniformly dense in
C([a,b]).

I’ll give a proof here adapted from §4.3 of Pedersen’s book Analysis Now.

Definition 12.4. LetA be a vector subspace ofC(X ). IfA containsmax{ f ,д} andmin{ f ,д}
whenever f ,д ∈ A, then we call A a function lattice.

Definition 12.5. A set of functionsA ⊂ C(X ) separates points strongly if for x ,y ∈ X and
a,b ∈ R, there is a function f ∈ A so f (x) = a and f (y) = b.

Lemma 12.6. If a subspace A ⊂ C(X ) separates points and contains the constants, it
separates points strongly.

Lemma 12.7. IfA is a subalgebra ofC(X ), then for f ,д ∈ A, max{ f ,д} and min{ f ,д} are
in A, the uniform closure of A. (That is, A is a function lattice.)

Lemma 12.8. Suppose A is a function lattice which separates points strongly. Then A is
uniformly dense in C(X ).

Proof of the Stone-Weierstrass theorem:
The algebra A separates points strongly, by Lemma 12.6. Clearly A also separates points
strongly, and by Lemma 12.7 it is also a function lattice. Finally, by Lemma 12.8 we have
that A is uniformly dense in C(X ), so A = C(X ), as desired. □

Proof of Lemma 12.6: Given x ,y ∈ X , find f ′ ∈ A so f ′(x) = a′ and f ′(y) = b′, for some
a′ , b′. Then the function f ′′ = f ′−a′

b ′−a′ satisfies f ′′(x) = 0, and f ′′(y) = 1, so the function
f = (b − a)f ′′ + a has the desired property. □
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Proof of Lemma 12.7: Let ϵ > 0. The function t 7→ (ϵ2+t)1/2 has a power series expansion
that converges uniformly on [0, 1] (e.g., the Taylor series at t = 1/2).

We can thus find a polynomial p so |(ϵ2 + t)1/2 − p(t)| < ϵ for all t ∈ [0, 1].
Observe that at t = 0 this gives |p(0)| < 2ϵ , and define q(t) = p(t) − p(0) (still a

polynomial). Certainly q(f ) ∈ A for any f ∈ A, as A is an algebra. If f ∈ A with
| | f | |∞ ≤ 1, we have

| |q(f 2) − | f | | |∞ = sup
x∈X
|q(f 2(x)) − f 2(x)1/2 |

≤ sup
t∈[0,1]

|p(t) − p(0) − t1/2 |

≤ 2ϵ + sup
t∈[0,1]

|p(t) − t1/2 |

≤ 3ϵ + sup
t∈[0,1]

|(ϵ2 + t)1/2 − t1/2 |

≤ 4ϵ .

Since q(f 2) ∈ A, we have shown that | f | ∈ A.
Now

max{ f ,д} = 1

2
(f + д + | f − д |)

and

min{ f ,д} = 1

2
(f + д − | f − д |)

so we are finished. □

Proof of Lemma 12.8: Fix ϵ > 0 and f ∈ C(X ). We will find fϵ ∈ A with | | f − fϵ | |∞ < ϵ .
For each x ,y ∈ X , choose fxy ∈ A with

fxy(x) = f (x) and fxy(y) = f (y)

(this is possible because A separates points strongly). Define the open sets

Uxy = {z ∈ X | f (z) < fxy(z) + ϵ }
Vxy = {z ∈ X | fxy(z) < f (z) + ϵ }.

Observe x ,y ∈ Uxy ∩Vxy .
Fix x for a moment. As y varies, the sets Uxy cover X . Since X is compact, we can find

y1, . . . ,yn so X =
∪
Uxyi . Define fx = max{ fxyi }. Since A is a function lattice, fx ∈ A.

Moreover, f (z) < fx(z) + ϵ for every z ∈ X . Also, if we defineWx =
∩
Vxyi , we seeWx is

an open neighbourhood of x , and fx(z) < f (z) + ϵ for every z ∈Wx .
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The sets {Wx }x∈X cover X , so applying compactness again we find x1, . . . ,xm so X =∪
Wxi . Finally we define fϵ = min{ fxi }, which is again in A as it is a function lattice.

Observe that we still have
f (z) < fϵ(z) + ϵ,

and now
fϵ(z) < f (z) + ϵ

for every z ∈ X , giving the desired result. □

Finally, what aboutC(X ,C), the complex valued continuous functions? We give a slightly
revised version of the main theorem:

Theorem 12.9. Let A be a (complex) subalgebra of C(X ,C) which
• is self-adjoint, i.e. for every f ∈ A, the complex conjugate f ∈ A also,
• contains the complex constants, and
• separates points.

Then A = C(X ,C).

Proof: We can bootstrap from the real-valued theorem.
Since A is self-adjoint, if f ∈ A thenℜf ∈ A and ℑf ∈ A, sinceℜf = 1

2(f + f ).
Let

Aℜ = { f ∈ A| f is real-valued}.
Easily, Aℜ contains R. We see that it still separates points, as follows. Suppose we have
x ,y ∈ X , and a complex valued function f ∈ A so f (x) , f (y). Then for some constant c ,
| f (x) + c | , | f (y) + c |. Thus the real-valued function

z 7→ (f (z) + c)(f (z) + c)

which is still in A also separates x and y.
Thus by the real-valued version of the theorem we have that Aℜ = C(X ,R). Finally,

given f ∈ C(X ,C), we can write f = ℜf + iℑf , and approximate separately the real and
imaginary parts using Aℜ. □

• Trigonometric polynomials are uniformly dense inC([0, 1]) even though the Fourier
series need not converge uniformly.
• The hypothesis thatA ⊂ C(X ,C) be self-adjoint is essential. Consider, for example,

the holomorphic functions on X the unit disc.
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