The Stone-Weierstrass theorem

Throughout this section, X denotes a compact Hausdorff space, for example a compact metric space. In what follows, we take $C(X)$ to denote the algebra of real-valued continuous functions on X. We return to the complex valued case at the end.

Definition 12.1. We say a set of functions $\mathcal{A} \subset C(X)$ separates points if for every $x, y \in X$, there is a function $f \in \mathcal{A}$ so $f(x) \neq f(y)$.

Theorem 12.2 (Stone-Weierstrass (proved by Stone, published in 1948)).
Let \mathcal{A} be a subalgebra of $C(X)$ which

- contains the constants, and
- separates points.

Then \mathcal{A} is uniformly dense in $C(X)$.
Corollary 12.3 (Weierstrass approximation (1895)). Polynomials are uniformly dense in $C([a, b])$.

I'll give a proof here adapted from $\S 4.3$ of Pedersen's book Analysis Now.
Definition 12.4. Let \mathcal{A} be a vector subspace of $C(X)$. If \mathcal{A} contains $\max \{f, g\}$ and $\min \{f, g\}$ whenever $f, g \in \mathcal{A}$, then we call \mathcal{A} a function lattice.

Definition 12.5. A set of functions $\mathcal{A} \subset C(X)$ separates points strongly if for $x, y \in X$ and $a, b \in \mathbb{R}$, there is a function $f \in \mathcal{A}$ so $f(x)=a$ and $f(y)=b$.

Lemma 12.6. If a subspace $\mathcal{A} \subset C(X)$ separates points and contains the constants, it separates points strongly.

Lemma 12.7. If \mathcal{A} is a subalgebra of $C(X)$, then for $f, g \in \mathcal{A}, \max \{f, g\}$ and $\min \{f, g\}$ are in $\overline{\mathcal{A}}$, the uniform closure of \mathcal{A}. (That is, $\overline{\mathcal{A}}$ is a function lattice.)

Lemma 12.8. Suppose \mathcal{A} is a function lattice which separates points strongly. Then \mathcal{A} is uniformly dense in $C(X)$.

Proof of the Stone-Weierstrass theorem:
The algebra \mathcal{A} separates points strongly, by Lemma 12.6. Clearly $\overline{\mathcal{A}}$ also separates points strongly, and by Lemma 12.7 it is also a function lattice. Finally, by Lemma 12.8 we have that $\overline{\mathcal{A}}$ is uniformly dense in $C(X)$, so $\overline{\mathcal{A}}=C(X)$, as desired.

Proof of Lemma 12.6: Given $x, y \in X$, find $f^{\prime} \in \mathcal{A}$ so $f^{\prime}(x)=a^{\prime}$ and $f^{\prime}(y)=b^{\prime}$, for some $a^{\prime} \neq b^{\prime}$. Then the function $f^{\prime \prime}=\frac{f^{\prime}-a^{\prime}}{b^{\prime}-a^{\prime}}$ satisfies $f^{\prime \prime}(x)=0$, and $f^{\prime \prime}(y)=1$, so the function $f=(b-a) f^{\prime \prime}+a$ has the desired property.

Proof of Lemma 12.7: Let $\epsilon>0$. The function $t \mapsto\left(\epsilon^{2}+t\right)^{1 / 2}$ has a power series expansion that converges uniformly on $[0,1]$ (e.g., the Taylor series at $t=1 / 2$).

We can thus find a polynomial p so $\left|\left(\epsilon^{2}+t\right)^{1 / 2}-p(t)\right|<\epsilon$ for all $t \in[0,1]$.
Observe that at $t=0$ this gives $|p(0)|<2 \epsilon$, and define $q(t)=p(t)-p(0)$ (still a polynomial). Certainly $q(f) \in \mathcal{A}$ for any $f \in \mathcal{A}$, as \mathcal{A} is an algebra. If $f \in \mathcal{A}$ with $\|f\|_{\infty} \leq 1$, we have

$$
\begin{aligned}
\left\|q\left(f^{2}\right)-|f|\right\|_{\infty} & =\sup _{x \in X}\left|q\left(f^{2}(x)\right)-f^{2}(x)^{1 / 2}\right| \\
& \leq \sup _{t \in[0,1]}\left|p(t)-p(0)-t^{1 / 2}\right| \\
& \leq 2 \epsilon+\sup _{t \in[0,1]}\left|p(t)-t^{1 / 2}\right| \\
& \leq 3 \epsilon+\sup _{t \in[0,1]}\left|\left(\epsilon^{2}+t\right)^{1 / 2}-t^{1 / 2}\right| \\
& \leq 4 \epsilon .
\end{aligned}
$$

Since $q\left(f^{2}\right) \in \mathcal{A}$, we have shown that $|f| \in \overline{\mathcal{A}}$.
Now

$$
\max \{f, g\}=\frac{1}{2}(f+g+|f-g|)
$$

and

$$
\min \{f, g\}=\frac{1}{2}(f+g-|f-g|)
$$

so we are finished.
Proof of Lemma 12.8: Fix $\epsilon>0$ and $f \in C(X)$. We will find $f_{\epsilon} \in \mathcal{A}$ with $\left\|f-f_{\epsilon}\right\|_{\infty}<\epsilon$.
For each $x, y \in X$, choose $f_{x y} \in \mathcal{A}$ with

$$
f_{x y}(x)=f(x) \quad \text { and } \quad f_{x y}(y)=f(y)
$$

(this is possible because \mathcal{A} separates points strongly). Define the open sets

$$
\begin{aligned}
U_{x y} & =\left\{z \in X \mid f(z)<f_{x y}(z)+\epsilon\right\} \\
V_{x y} & =\left\{z \in X \mid f_{x y}(z)<f(z)+\epsilon\right\} .
\end{aligned}
$$

Observe $x, y \in U_{x y} \cap V_{x y}$.
Fix x for a moment. As y varies, the sets $U_{x y}$ cover X. Since X is compact, we can find y_{1}, \ldots, y_{n} so $X=\bigcup U_{x y_{i}}$. Define $f_{x}=\max \left\{f_{x y_{i}}\right\}$. Since \mathcal{A} is a function lattice, $f_{x} \in \mathcal{A}$. Moreover, $f(z)<f_{x}(z)+\epsilon$ for every $z \in X$. Also, if we define $W_{x}=\bigcap V_{x y_{i}}$, we see W_{x} is an open neighbourhood of x, and $f_{x}(z)<f(z)+\epsilon$ for every $z \in W_{x}$.

The sets $\left\{W_{x}\right\}_{x \in X}$ cover X, so applying compactness again we find x_{1}, \ldots, x_{m} so $X=$ $\cup W_{x_{i}}$. Finally we define $f_{\epsilon}=\min \left\{f_{x_{i}}\right\}$, which is again in \mathcal{A} as it is a function lattice. Observe that we still have

$$
f(z)<f_{\epsilon}(z)+\epsilon,
$$

and now

$$
f_{\epsilon}(z)<f(z)+\epsilon
$$

for every $z \in X$, giving the desired result.
Finally, what about $C(X, \mathbb{C})$, the complex valued continuous functions? We give a slightly revised version of the main theorem:

Theorem 12.9. Let \mathcal{A} be a (complex) subalgebra of $C(X, \mathbb{C})$ which

- is self-adjoint, i.e. for every $f \in \mathcal{A}$, the complex conjugate $\bar{f} \in \mathcal{A}$ also,
- contains the complex constants, and
- separates points.

Then $\bar{A}=C(X, \mathbb{C})$.
Proof: We can bootstrap from the real-valued theorem.
Since \mathcal{A} is self-adjoint, if $f \in \mathcal{A}$ then $\mathfrak{R} f \in \mathcal{A}$ and $\mathfrak{J} f \in \mathcal{A}$, since $\mathfrak{R} f=\frac{1}{2}(f+\bar{f})$.
Let

$$
A_{\mathfrak{R}}=\{f \in \mathcal{A} \mid f \text { is real-valued }\} .
$$

Easily, A_{\Re} contains \mathbb{R}. We see that it still separates points, as follows. Suppose we have $x, y \in X$, and a complex valued function $f \in \mathcal{A}$ so $f(x) \neq f(y)$. Then for some constant c, $|f(x)+c| \neq|f(y)+c|$. Thus the real-valued function

$$
z \mapsto(f(z)+c) \overline{(f(z)+c)}
$$

which is still in \mathcal{A} also separates x and y.
Thus by the real-valued version of the theorem we have that $\overline{A_{\Re}}=C(X, \mathbb{R})$. Finally, given $f \in C(X, \mathbb{C})$, we can write $f=\mathfrak{R} f+i \mathfrak{I} f$, and approximate separately the real and imaginary parts using $\mathcal{A}_{\mathfrak{R}}$.

- Trigonometric polynomials are uniformly dense in $C([0,1])$ even though the Fourier series need not converge uniformly.
- The hypothesis that $\mathcal{A} \subset C(X, \mathbb{C})$ be self-adjoint is essential. Consider, for example, the holomorphic functions on X the unit disc.

