
14 Banach spaces

“Banach didn’t just develop Banach spaces for the sake of it. He wanted to put many
spaces under one heading. Without knowing the examples, the whole thing is point-
less. It is a mistake to focus on the techniques without constantly, not only at the be-
ginning, knowing what the good examples are, where they came from, why they’re
done. The abstractions and the examples have to go hand in hand.

You can’t just do particularity. You can’t just pile one theorem on top of another and
call it mathematics. You have to have some architecture, some structure. Poincaré
said science is not just a collection of facts any more than a house is a collection of
bricks. You have to put it together the right way. You can’t just list 101 theorems and
say this is mathematics. That is not mathematics.”

(SirMichael Atiyah, fromhttp://www.johndcook.com/blog/2013/09/24/interview-with-sir-michael-atiyah/.)

Definition 14.1. A Banach space is a complete normed space.

Examples
• Cn with the lp norm.
We will mostly, but not exclusively, be interested in infinite dimensional spaces.
• Any Hilbert space.
• C(X ) for any compact metric or topological space X , with the sup norm.
• Lp(X , µ) for any measure space (X , µ).
•M(X ) for any measurable space (X ,M).
•The space of BLTs on a Hilbert space H .
• Sobolev spaces.
• Hölder spaces.

14.1 Basic Concepts

• Let X be a Banach space with norm ∥·∥X . We say that the norm ∥·∥′ on X is equivalent to ∥·∥X
if there exists C > 0 such that

C−1 ∥·∥X ≤ ∥·∥′ ≤ C ∥·∥X .

Theorem 14.2. Let V be a finite dimensional vector space. Then any two norms are equivalent.
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Proof: Choose any basis v1, . . . ,vn of V and define a norm by

∥
n∑

i=1

aivi ∥1 =
n∑

i=1

|ai |.

It is straightforward to check that this is a complete norm.
Now given any other norm ∥v ∥, we have

∥
n∑

i=1

aivi ∥ ≤
n∑

i=1

|ai | ∥vi ∥ ≤ M ∥
n∑

i=1

aivi ∥1,

where M = max ∥vi ∥. Thus the function v 7→ ∥v ∥ is continuous with respect to the norm ∥·∥1.
Therefore it is bounded. It’s also bounded away from zero on the unit ‘sphere’ S of vectors with
∥v ∥1 = 1, simply because it is nonzero at each point on S and S is compact with respect to ∥ · ∥1.
Thus there exists C such that

v ∈ S =⇒ C−1 ≤ ∥v ∥ ≤ C .

Homogeneity then implies that ∥·∥ is equivalent to ∥·∥1. But then, any two norms are equivalent,
since they are both equivalent to ∥·∥1. □

There is a converse: if X is infinite dimensional, then there exists inequivalent norms on X .
• We say that X is separable if X has a countable dense subset. (Note that while amongst

Hilbert spaces, the separable ones are the most common and the most useful, when we study
Banach spaces we often encounter interesting non-separable examples, such as ℓ∞.)
•We define linear transformations, and bounded linear transformations (BLTs) just as in the

Hilbert space case. We denote by B(X ,Y ) the set of BLTs from the Banach space X to the Banach
space Y . As before, for linear transformations, boundedness and continuity are equivalent. Also
as in the Hilbert space setting, we define the operator norm for T ∈ B(X ,Y )

∥T ∥ = sup
∥x ∥X=1

∥Tx ∥Y

and this endows B(X ,Y ) itself with a Banach space structure. In the case that Y = C, we call
B(X ,C) the dual space of X , and denote it X ∗. Elements of X ∗ are called continuous linear func-
tionals. Note that, a priori, for an abstract Banach space X it is not obvious that X ∗ contains any
nonzero elements (that it does so is the content of the Hahn-Banach theorem).

If T : X → Y is a BLT with a two-sided inverse which is a BLT from Y to X , then we say
that T is an isomorphism between X and Y , and that X is isomorphic to Y . We say that T is an
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isometric isomorphism if it is an isomorphism which is norm preserving, i.e. if ∥Tx ∥Y = ∥x ∥X
for all x ∈ X .
• Given two Banach spaces X and Y , we define the product Banach space X × Y to be the

vector space X × Y with norm ∥(x ,y)∥ = ∥x ∥X + ∥y∥Y .
• Let Z ⊂ X be a closed subspace. Then it is a Banach space in its own right with the same

norm (restricted to Z ). This is simply because any closed subset of a complete metric space is also
complete. We can also define a quotient Banach space, on the vector space X/Z , via the norm

∥Z + x ∥ = inf
z∈Z
∥x + z∥X .

It is true, but not obvious, that this norm is complete on X/Z . Note that the quotient map X →
X/Z is bounded with norm 1.
•There is in a general Banach space no notion of ‘orthogonal complement’ of a closed sub-

space Z , in the sense of a canonical choice of closed subspaceW such that X is isomorphic to
Z ⊕W .
•We say that a closed subspace Z ⊂ X is complemented if there exists a closed subspaceW

such that every x ∈ X has a unique representation x = z + w , with z ∈ Z and w ∈ W . This
condition on Z andW turns out to be equivalent to the apparently stronger one of asking that X
be isomorphic to Z ⊕W via the natural map (z,w) → z +w . the natural mapW → X/Z being
an isomorphism (see example below).
• In general, closed subspaces of Banach spaces are not complemented (unlike for Hilbert

spaces). A concrete example is X = L1(S1), Z the subspace of functions with zero Fourier coeffi-
cients fn for n < 0 (see Rudin, Functional Analysis).

14.2 Baire category and its consequences

There is a group of major theorems that use the Baire ‘category’ theorem. First recall that a subset
of a metric space is nowhere dense if its closure has empty interior.

(E.g. R ⊂ R2 is nowhere dense. The complement of a dense open set is nowhere dense.)

Theorem 14.3 (Baire). LetX be a complete metric space. Then the complement of a countable union
of nowhere dense sets is dense.

Proof: LetAn be sequence of nowhere dense sets,U an arbitrary open set inX . It suffices to show
thatU intersects (∪iAi)

c .
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Since A1 has no interior, (A1)
c intersects U . So we can choose x1 ∈ U \ A1 and an ϵ1 > 0

such that B1 = B(x1, ϵ1) ⊂ (U \ A1). Let U2 = B(x1, ϵ1/2). Now inductively, given an open set
Ui , choose1 an open ball Bi with closure inUi but disjoint from Ai , and letUi+1 be the concentric
open ball of half the radius. Then we have constructed a sequence of balls (Bn) such that

Bn ∩
n∪
1

Ai = ∅

with radii converging to 0. Then ∩
i Bi is a singleton which is in none of the An. ThusU \∪An ,

∅. □

The Baire category theorem has a number of useful corollaries.

Corollary 14.4. The intersection of a sequence of dense open sets in a complete metric space is dense.

Corollary 14.5. If a complete metric space is the union of an increasing family of closed sets, then
one of them must have nonempty interior.

Corollary 14.6. In particular, an infinite dimensional Banach space cannot have countable (alge-
braic) dimension. For given (xn) linearly dependent, Xn = span{x1, . . . ,xn} is closed for each n and
has empty interior. Thus

∪
Xn ⊊ X is a proper subset.

Definition 14.7. A set S in a topological space X is meagre, or of the first category if S lies in
the union of countable many nowhere dense sets. Otherwise S is non-meagre or of the second
category.

So meagre sets are ‘small’ in a certain sense, non-meagre ones ‘large’. Beware: one can de-
compose R = A ∪ B where A is meagre and of full measure, B is non-meagre and of measure
zero!

Theorem 14.8 (Principle of uniform boundedness). Let X ,Y be Banach spaces, and let {Tα } ⊂
B(X ,Y ) be a family of BLTs which is pointwise bounded, that is, for each x ∈ X ,

sup
α
∥Tαx ∥ < ∞.

Then {∥Tα ∥} is bounded, that is,
sup
α
∥Tα ∥ < ∞ .

1Observe the axiom of choice being used!
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Proof: Define
Sk = {x ∈ X : ∥Tα (x)∥ ≤ k for all α } .

The pointwise boundedness hypothesis is exactly that ∪k Sk = X . By continuity of the Tα , each
Sk is closed. Baire category implies that some Sk has interior. (Since Sk = kS1 in this particular
case, in fact they all do). So there is x0 ∈ Sk and δ > 0 such that B(x0,δ) ⊂ Sk . Now for any
x ∈ B(0,δ),

∥Tαx ∥ ≤ ∥Tαx0∥ + ∥Tα(x − x0)∥ ≤ 2k .

This gives ∥Tα ∥ ≤ 2kδ−1 for all α . □

Corollary 14.9. Let X ,Y be Banach spaces, (Tn) ⊂ B(X ,Y ) a sequence which converges pointwise,
that is Tx = limTnx exists for each x ∈ X . Then T ∈ B(X ,Y ). □

Proof: It is straightforward to check that T is linear. Since the Tn converge pointwise, they are
pointwise bounded. By the UBP, they are uniformly bounded in norm. But ∥Tx ∥ ≤ sup ∥Tnx ∥,
hence ∥T ∥ ≤ sup ∥Tn∥ so this implies that T is bounded. □

Example. Suppose that X ,Y ,Z are Banach spaces, and that T : X × Y → Z is a bilinear map
which is bounded as a function of each variable separately (with the other held fixed). Then T is
bounded, i.e.

∥T (x ,y)∥Z ≤ M ∥x ∥X ∥y∥Y .

(For example, if X = Y = Z = L1(R), then (f ,д) 7→ f + д is a bounded linear transformation,
while (f ,д) 7→ f ∗ д is a bounded bilinear transformation.)

Proof: the hypothesis is that there exist constants C1(x), C2(y) such that

∥T (x ,y)∥ ≤ C1(x)∥y∥, ∥T (x ,y)∥ ≤ C2(y)∥x ∥.

Now define maps Tx(y) = T (x ,y) : Y → Z and Ty(x) = T (x ,y) : X → Z . Regard Tx as a family
of maps parametrized by x such that ∥x ∥ ≤ 1. Then ∥T (x ,y)∥ ≤ C2(y)∥x ∥ implies that the family
Tx is pointwise bounded for all y ∈ Y . We conclude that ∥Tx ∥ ≤ M for all ∥x ∥ ≤ 1. By scaling we
obtain ∥T (x ,y)∥ ≤ M ∥x ∥∥y∥ as required. □

Example. There exists a continuous function whose Fourier series diverges at zero.

Proof: Consider the map Φn that takes f ∈ C([0, 2π ]) to its nth partial Fourier sum, i.e.

Φn(f ) =
1

2π

∑
|j |≤n

einθ ⟨f , einθ ⟩.
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Φn is an integral operator with kernel (‘Dirichlet kernel’)

K(θ ,θ ′) =
1

2π

∑
|j |≤n

ein(θ−θ
′)

=
1

2π

ei(n+1/2)(θ−θ ′) − e−i(n+1/2)(θ−θ ′)

ei/2(θ−θ ′) − e−i/2(θ−θ ′)

=
1

2π

sin((n + 1/2)(θ − θ ′)
sin(1/2)(θ − θ ′) .

In particular, if we let φn be the linear functional φn(f ) = (Φn(f ))(0), then

φn(f ) =
1

2π

∫ 2π

0

sin((n + 1/2)y

sin(1/2)y f (y)dy.

Now, here are two facts which are not too hard to verify:
• For any linear functional

f 7→
∫ 2π

0
K(y)f (y)dy

acting on C([0, 2π ]), the norm is precisely∫ 2π

0
|K(y)| dy.

•We have ∫ 2π

0

����sin(n + 1/2)y

sin(1/2)y
����dy ≥ C logn

for large n.
It follows that the φn are not uniformly bounded. By UBP, there exists an f ∈ C([0, 2π ]) on

which the φn are not uniformly bounded. But that says that the Fourier series of f diverge at
0. □

You might appreciate how difficult it is to make this proof constructive!

14.3 Closed GraphTheorem

Suppose that X ,Y are topological spaces, f : X → Y is continuous. Then Gr(f ) = {(x , f (x)) :
x ∈ X } is necessarily a closed subset of the product X × Y . Is the converse true? The answer is
yes, provided that the graph is the graph of a function defined on the whole of X .

Example. Consider Y = C[0, 1], X the subspace of continuously differentiable functions,
both under the uniform norm, and D : X → Y : f 7→ f ′. Suppose (fn, f

′
n) → (д,h) in X × Y .
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Thus fn → д, f ′n → h both uniformly on [0, 1]. It is a classical result that this means д′ = h. Thus
Gr(D) is closed. But since D(tn) = ntn−1, D is not continuous.

Definition 14.10. LetX ,Y be normed spaces,A ⊂ X a subspace andT : A→ Y a linear mapping.
Then T is closed if (xn) ⊂ A, xn → x and Txn → y implies x ∈ A and Tx = y. That is, T is closed
iff its graph is a closed subspace of X × Y .

The example above shows that D : (C1[0, 1], ∥ · ∥∞) → (C[0, 1], ∥ · ∥∞) is closed yet not
continuous.

Theorem 14.11 (Closed Graph Theorem). Let X ,Y be Banach spaces, T : X → Y a closed linear
transformation. Then T is continuous.

The following result is an ingredient of the proof, as well as being useful for other applications.

Lemma 14.12. Let X be Banach space, and λ > 1 fixed. Supose that A ⊂ X has the property that
for any x ∈ X , ∥x ∥ ≤ 1, there exists y ∈ A such that ∥x − y∥ ≤ λ−1. Then for ∥x ∥ ≤ 1 there is a
sequence (yn) ⊂ A such that x =

∑
λ−nyn.

Proof: Take ∥x ∥ ≤ 1, so there is y0 ∈ A with ∥x − y0∥ ≤ λ−1. Then ∥λ(x − y0)∥ ≤ 1 so there is
y1 ∈ A such that ∥λ(x − y0) − y1∥ ≤ λ−1, that is, ∥(x − y0) − λ−1y1∥ ≤ λ−2. Inductively, there is
(yn) ⊂ A with ∥x −∑n

r=0 λ
−ryr ∥ ≤ λ−n−1 → 0. □

Proof of the Closed Graph Theorem: For each k define

Ak = {x ∈ X : ∥Tx ∥ ≤ k } .

Then ∪
Ak = X , so some Aj has interior. Therefore there is an x ∈ X and δ > 0 such that

B(x ,δ) ⊂ Aj . Then also B(−x ,δ) ⊂ Aj . In other words, any element of B(x ,δ) or of B(−x ,δ)
can be approximated (to arbitrary accuracy) by elements of Aj . Since x1,x2 ∈ Aj implies that
x1 + x2 ∈ A2j , this means that any element of B(0,δ) can be approximated by elements of A2j .
Therefore, taking M ≥ 2j/δ , the closure of AM contains B(0, 1).

We apply Lemma 14.12 with A = AM , λ = 2. Thus for any x , ∥x ∥ ≤ 1, we can write x =∑
2−nyn with yn ∈ A (and hence ∥Tyn∥ ≤ M). Then

∥T *,
n∑

r=m

2−ryr+- ∥ ≤ M
n∑

r=m

2−r → 0 ,
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so that T
(

n∑
r=0

2−ryr

)
converges to some limit as n → ∞. But T is closed, so

Tx = lim
n
T *,

n∑
r=0

2−ryr+- =
∞∑

r=0

2−rTyr ,

so ∥Tx ∥ ≤ ∑
M2−r = 2M . □

Corollary 14.13 (Bounded Inverse Theorem). Let X ,Y be Banach spaces,T : X → Y a continuous
linear bijection. Then T −1 is continuous.

Proof: T is closed , so T −1 is closed. □

Example. Suppose X contains two closed subspaces Y and Z , such that every x ∈ X has a
unique representation x = y + z with y ∈ Y and z ∈ Z . Then ∥x ∥ is comparable to ∥y∥ + ∥z∥
as a norm on X . Indeed, ∥x ∥ ≤ ∥y∥ + ∥z∥ by the triangle inequality. To get the other inequality,
consider the map from Y ⊕ Z to X given by (y, z) 7→ y + z. This is a continuous bijection, so by
the BIT the inverse is continuous. Hence ∥x ∥ ≥ c(∥y∥ + ∥z∥).

An open map is an map A such that A(U ) is open whenever U is open. In a metric space,
this is equivalent to the statement that for any open ball B(x ,δ), there is some open ball Tx ∈
B(Tx , ϵ) ⊂ T (B(x ,δ)).

Corollary 14.14 (Open Mapping Theorem, or ‘Banach-Schauder’ Theorem). Let X ,Y be Banach
spaces, T : X → Y a continuous linear surjection. Then T is open.

Proof: Since T is continuous, kerT is closed, and so X/ kerT is a Banach space under the quo-
tient norm. The induced map T̃ : X/ kerT → Y is a continuous bijection, and therefore has a
continuous inverse by the bounded inverse theorem (Theorem 14.13). Therefore it is an open map.
But the quotient map X → X/ kerT is also open. Hence T is open. □

See also http://www.math.sc.edu/~schep/Openmapping.pdf for another
discussion of the open mapping theorem.

Exercise. Show that the open mapping theorem fails if either X or Y is not complete.

14.4 Hahn-Banach theorem

The content of the Hahn-Banach theorem is essentially that there are a lot of continuous linear
functionals on any Banach space. It is normally stated in a slightly more general form. A ‘gauge
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function’ on a real vector space X is a function p : X → R such that

p(x + y) ≤ p(x) + p(y) and p(αx) = αp(x)

for all x ,y ∈ X and α ≥ 0. Any norm on X is a gauge function. However, gauge functions need
not be nonnegative. For example, any linear function is a gauge function; also, the sum of any
gauge function and a linear function is another gauge function.

Theorem 14.15 (Hahn-Banach Theorem, version 1). Let p be a gauge function on a real vector
space X , Y a subspace of X and φ : Y → R linear and satisfying φ(x) ≤ p(x) for x ∈ Y . Then there
is a linear functional φ̃ : X → R such that φ̃ |Y = φ and φ(x) ≤ p(x) for x ∈ X .

Proof: We first show that if Y ′ is the subspace spanned by Y and a single element z0 ∈ X \ Y ,
then we can extend φ to Y ′ such that φ ≤ p on Y ′. It is convenient to subtract the linear function
z + tz0 → φ(z) (defined on Y ′) from both p and φ. Thus, we may assume wlog that φ = 0 and
p ≥ 0 on Y .

Then since p is a gauge function, for any z′, z′′ ∈ Y , we have

p(z′′ + z0) + p(z′ − z0) ≥ p(z′′ + z′) ≥ 0.

Therefore, for arbitrary z′, z′′ ∈ Y we have

p(z′′ + z0) ≥ −p(z′ − z0). (14.1)

Define β = infz ′′∈Y p(z′′ + z0). This is finite since by (14.1), −p(z′ − z0) is a lower bound for any
z′ ∈ Y , and moreover, β ≥ −p(z′ − z0) for any z′ ∈ Y . Now define φ(z + tz0) = tβ . Then for any
t > 0, we have

φ(z + tz0) = tβ ≤ tp(z/t + z0) = p(z + tz0).

On the other hand, for t > 0 we have

φ(z − tz0) = −tβ ≤ tp(z/t − z0) = p(z − tz0).

Thus we have extended φ from Y to Y ′ with the subgauge property.
The result now follows by Zorn’s Lemma. LetP be the set of pairs (Z ,ψ )whereZ is a subspace

of X containing Y , andψ : Z → R extends φ and satisfiesψ ≤ p on Z . Partially order P by

(Z1,ψ1) ≤ (Z2,ψ2) := Z1 ⊆ Z2 andψ2 |Z1 = ψ1 .

Any chain (Zα ,ψα ) in P has upper bound (
∪
Zα ,ψ ) where ψ |Zα = ψα . Thus P has a maximal

element (Z ,ψ ). Necessarily Z = X or else we can extend as above. □
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Next we need a version for complex Banach spaces.

Theorem 14.16 (Hahn-Banach theorem, version 2). Let X be a complex Banach space, Y ⊂ X a
subspace and φ : Y → C a bounded (complex)-linear functional on Y . Then φ extends to a bounded
linear functional φ′ on X with ∥φ′∥ = ∥φ∥.

Proof: The real part φr of φ is a real-linear functional on X , regarded as a real vector space. Let
p be ∥φ∥ times the norm on X . Then p is a gauge function and φr ≤ p on Y . Extend φr to X

using Hahn-Banach version 1. Then define φi(x) = φr (−ix) and define φ′ = φr + iφi . Then φ′ is
complex linear, agrees with φ on Y and has the same norm as φ, since if argφ′(x) = θ then

|φ′(x)| = |φ′(e−iθx)| = | Reφ′(e−iθx)| = |φr (e−iθx)|
≤ ∥φ∥∥e−iθx ∥ = ∥φ∥∥x ∥.

□

We denote by X ∗ the space of bounded linear functionals on X . It is a Banach space in its
own right under the operator norm. (Completeness follows as in the proof of completeness of
B(H1,H2) on assignment 1.)

Corollary 14.17. Let X be a normed space. Then

(i) X ∗ is ‘total’, that is, it separates points;

(ii) ∥x ∥ = sup{|φ(x)| : φ ∈ X ∗, ∥φ∥ = 1};

(iii) forY a subspace ofX andd(x ,Y ) = d > 0, there isφ ∈ X ∗ such thatφ |Y = 0, ∥φ∥ = 1,φ(x) = d .

(iv) a point x lies in the closed linear span of A ⊂ X if and only if φ(x) = 0 for all φ ∈ X ∗ with
φ |A = 0.

14.5 Examples of dual spaces

• Every Hilbert space is its own dual.
•The dual of Lp(M, µ). Observe that Hölder’s inequality,����

∫
M
f дdµ

���� ≤ ∥ f ∥p ∥д∥q,
shows that every д ∈ Lq , p−1 + q−1 = 1, acts as a bounded linear functional on Lp by integration.
Does every bounded linear functional arises in this way? You already know that the answer is
yes when p = 2.
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Theorem 14.18. Let (M, µ) be σ -finite and suppose 1 < p < ∞. Then the dual space of Lp(M, µ) is
Lq(M, µ), where p−1 + q−1 = 1.

Proof: Let us prove this first in the case where µ is finite. Let l be a bounded linear functional.
Define a function ν :M → C by

ν(E) = l(1E).

(Since µ is a finite measure, 1E is in Lp for every measurable E.) I claim that ν is a complex
measure. Clearly ν is finitely additive. To show countable additivity, suppose that Ei are disjoint
measurable sets with union E. Let Fn = ∪Ni=1Ei . Then

1Fn → 1E in Lp(M).

Hence, l(1Fn) → l(1E). It follows that ν(Fn) → ν(E), so ν is countably additive and hence a
measure.

If E has measure zero, then 1E is zero a.e. and hence ν(E) = 0. It follows that ν is absolutely
continuous with respect to µ. By the Radon-Nikodym theorem, there exists an integrable function
д such that

l(1E) = ν(E) =

∫
E
дdµ .

It follows that
l(f ) =

∫
E
f дdµ .

Finally we need to show that д ∈ Lq(M, µ). To do this, define fN = |д |q−1e−i argд1|д |≤N . Then
fN ∈ Lp and we have

l(f ) =

∫
|д |≤N

|д |q dµ ≤ ∥l ∥∥ f ∥p .

But
∥ f ∥p =

( ∫
|д |≤N

|д |(q−1)p dµ
)1/p

=
( ∫
|д |≤N

|д |q dµ
)1/p

=
( ∫
|д |≤N

|д |q dµ
)1−1/q

Rearranging, we get ( ∫
|д |≤N

|д |q dµ
)1/q
≤ ∥l ∥.
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By the monotone convergence theorem we get

∥д∥q = lim
N→∞

( ∫
|д |≤N

|д |q dµ
)1/q
≤ ∥l ∥,

showing that l is given by integration against someLq function. Moreover, putting f = |д |q−1e−i argд

we see that f ∈ Lp and l(f ) = ∥д∥q ∥ f ∥p , so we have ∥l ∥ = ∥д∥q .
In the case that µ is σ -finite, we take an increasing sequence of sets Ei of finite measure with

union M , and apply the argument to l restricted to functions supported in Ei . We get a sequence
of functions дi supported in Ei , with ∥дi ∥q ≤ ∥l ∥. It is not hard to show that дi and дj agree a.e.
on Ei ∩ Ej and so this determines a function д ∈ Lq on M (a.e.) that implements l . □

Example. Suppose that f ∈ Lq(Rn) and k ∈ Lr (Rn). Let q−1 + r−1 = 1 + p−1. Then
f ∗ k ∈ Lp(Rn), and

∥ f ∗ k ∥p ≤ ∥ f ∥q ∥k ∥r .

To show this, in view of the theorem above, it suffices to show that f ∗ k is a bounded linear
functional on Ls(Rn), where s−1 + p−1 = 1, with norm at most ∥ f ∥q ∥k ∥r . So integrate against a
function д ∈ Ls : we need to show that∫

д(x)f (x − y)k(y)dx dy ≤ ∥ f ∥q ∥k ∥r ∥д∥s . (14.2)

To do this, we need the generalized Hölder’s inequality:∫
h1h2h3 ≤ ∥h1∥a1 ∥h2∥a2 ∥h3∥a3

provided that a−11 + a−12 + a−13 = 1. Now, since q−1 + r−1 + s−1 = 2, we can find ai as above
satisfying

1

q
=

1

a1
+

1

a3
1

r
=

1

a2
+

1

a3
1

s
=

1

a1
+

1

a2

Now write the LHS of (14.2) in the form∫ (
д

a2
a1+a2 f

a3
a1+a3

) (
д

a1
a1+a2k

a3
a2+a3

) (
k

a2
a2+a3 f

a1
a1+a3

)
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and apply generalized Hölder with exponents ai . We get,( ∫
|д(x)|s | f (x − y)|q dx dy

)1/a1
×( ∫

|д(x)|s |k(y)|r dx dy
)1/a2

×( ∫
| f (x − y)|q |k(y)|r dx dy

)1/a3
= ∥ f ∥q ∥k ∥r ∥д∥s

as required.
Another important case is X = C(S), the continuous functions on a compact metric space S

(or more generally, a compact Hausdorff topological space S) with the sup norm.

Theorem 14.19 (Riesz representation theorem). The dual space of C(S) is M(S,B), the space of
complex Borel measures on S .

• M(S) = M(S,B) acts on C(S) by integration: if ν is a complex Borel measure, then any
f ∈ C(S) is integrable w.r.t. ν and ∫

S
f dν ≤ ∥ f ∥∞∥ν ∥.

According to the theorem, every bounded linear functional on C(S) is of this form.
The proof of this theorem is fairly long. We’ll break these into lemmas (each of which has a

somewhat technical, not but difficult, proof). We first note that it is enough to treat real linear
functionals (those that take real values on real functions), since every linear functional is of the
form J1 + i J2 where Ji are real linear functionals.

The first is about positive linear functionals. We say that l ∈ C(S)∗ is positive if l(f ) ≥ 0

whenever f ≥ 0.

Lemma 14.20. Every real bounded linear functional F on C(S) can be written as the difference of
two positive linear functionals F+ − F−, with the property that ∥F ∥ = ∥F+∥ + ∥F−∥.

Given this result, it is enough to show that every positive linear functional can be represented
by a finite Borel (positive) measure.

Lemma 14.21. Every positive linear functional J on C(S) determines a metric exterior measure µ∗

according to the formula
µ∗(E) = inf

O
sup
f
J(f )

13



where we sup over all f ∈ C(S) such that 0 ≤ f ≤ 1 with support in O , and then inf over all open
sets O containing E.

By a theorem from lectures several weeks ago (SS Theorem 1.2 chapter 6), µ∗ determines a
unique Borel measure µ.

Lemma 14.22. The measure µ implements J and is such that the total variation of µ is equal to ∥ J ∥.

The proofs of these Lemmas were omitted in class, but are included here if you are interested
in reading them.

Proof of Lemma 14.21: It is obvious that µ∗(∅) = 0 and that E1 ⊂ E2 implies that µ∗(E1) ≤ µ∗(E2).
It remains to show countable subadditivity. To streamline the notation, we write ‘f ∼ O’ to mean
‘f ∈ C(S), supp f ⊂ O and 0 ≤ f ≤ 1’.

First we show that µ∗(E1 ∪ E2) ≤ µ∗(E1) + µ∗(E2). It is enough to show that µ∗(E1 ∪ E2) ≤
µ∗(E1) + µ∗(E2) + 2ϵ for arbitrary ϵ > 0. To do this, we need to find some open setO containing
E = E1 ∪ E2, such that J(f ) ≤ µ∗(E1) + µ∗(E2) + 2ϵ for all f ∼ O . Choose Oi ⊃ Ei such that

sup
f ∼Oi

J(f ) ≤ µ∗(Ei) + ϵ .

LetO = O1∪O2 and let f ∼ O . It is enough to show that f can be decomposed f = f1+ f2, where
fi ∼ Oi . To do this we use Urysohn’s Lemma which says that if C1, C2 are two disjoint closed
subsets of a compact metric space, then there exists a continuous function д such that 0 ≤ д ≤ 1,
д = 0 on C1, д = 1 on C2. We apply this with C1 = (supp f ∩Oc

1)δ/3 and C2 = (supp f ∩Oc
2)δ/3

where δ > 0 is the distance between the disjoint closed subsets supp f ∩Oc
i , and (·)δ/3 is the δ/3

enlargement. Then f2 = f (1 − д) and f1 = f д is such a decomposition, establishing that µ∗ is
finitely subadditive.

To check countable subadditivity, consider a sequence E1,E2, . . . of Borel subsets with union
E. It is sufficient to check, in view of the previous result, that µ∗(E) ≤ limn→∞ µ

∗(∪ni=1Ei). Wlog,
suppose that En is an increasing sequence; then we need to show that µ∗(E) ≤ limn→∞ µ

∗(En). So
choose, for given ϵ > 0, an open set On ⊃ En such that

sup
f ∼On

J(f ) ≤ µ∗(En) + ϵ . (14.3)

Moreover, we can do this so that the On are increasing. To do this we first choose O′j ⊃ Ej \ Ej−1
so that (14.3) is satisfied with Ej replaced by Ej \ Ej−1 and ϵ replaced by ϵ2−j , and then take
On = ∪nj=1O

′
j .
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Now take O = ∪Oi . Consider any f ∼ O . Then since On is an open cover of supp f which
is compact, some finite number of the On cover supp f . Since the On are increasing, in fact one
ON covers supp f . But then, we have J(f ) ≤ µ∗(EN ) + ϵ ≤ limn→∞ µ

∗(En) + ϵ . Taking the sup
over f ∼ O gives µ∗(E) ≤ limn→∞ µ

∗(En) + ϵ , and since ϵ is arbitrary we finally get µ∗(E) ≤
limn→∞ µ

∗(En). Hence µ∗ is countably subadditive.
Finally we show that µ∗ is a metric exterior measure. This means that we just show that

µ∗(E1)+ µ∗(E2) = µ∗(E1 ∪E2) whenever d(E1,E2) > 0. To do this we consider disjoint open sets
Oi with Oi ⊃ Ei . Then, for any set O ⊃ (E1 ∪ E2), we have

sup
f ∼O

J(f ) ≥ sup
f ∼O∩(O1∪O2)

J(f )

= sup
f1∼O∩O1

J(f1) + sup
f2∼O∩O2

J(f2)

≥ µ∗(E1) + µ∗(E2).

The equality in the second line is because an f ∼ O1 ∪ O2 is precisely a pair of fi ∼ Oi . Taking
the inf over all such open sets O , we obtain µ∗(E1 ∪ E2) ≥ µ∗(E1) + µ∗(E2), and the opposite
inequality is just subadditivity. This establishes that µ∗ is a metric exterior measure and completes
the proof. □

Proof of Lemma 14.22: First, consider a nonnegative function f . We will show that

J(f ) =

∫
X
f dµ .

This is clear for the function f ≡ 1, since
∫
X
1dµ = µ(X ) = µ∗(X ) = sup

0≤ f ≤1 J(f ) = J(1) by
the positivity of J . Now consider an arbitrary nonnegative continuous function f . We show that∫
f ≤ J(f ). To do this, we define the simple function

fn = 2−n
∞∑
j=0

1Ej,n , Ej,n = {x ∈ S | f (x) < (j + 1)2−n}.

This is a nonnegative simple function with fn ≤ f and fn ↑ f . Therefore,∫
f dµ = lim

n

∫
fn dµ .

15



But ∫
fn dµ = 2−n

∑
j

µ(Ej,n)

= 2−n
∑
j

sup
дj,n∼Ej,n

J(дj,n)

= sup
дj,n∼Ej,n

J(
∑
j

2−nдj,n)

≤ J(f )

since the function ∑
j 2
−nдj,n is a continuous function that is ≤ f pointwise. (Also note that we

used the fact that Ej,n are open to eliminate the inf over open sets.) Thus we have proved that∫
f ≤ J(f ). But also, choosing M sufficiently large that M ≥ f , we have

∫
(M − f ) ≤ J(M − f ).

Since
∫
M = J(M) as observed above, we deduce that

∫
(−f ) ≤ J(−f ). Therefore,

∫
f = J(f )

for all nonnegative functions f . By linearity, this is true for all complex-valued f .
To prove that the ∥µ∥M(S) = ∥ J ∥, we note that ∥µ∥M(S) =

∫
1dµ = J(1) = ∥ J ∥ using the

positivity of J . This completes the proof. □

Proof of Lemma 14.20: Let F be a real functional on C(S). Define, for f ≥ 0 ∈ C(S),

F+(f ) = sup
0≤д≤ f

F (д).

Then F+(f ) ≥ F (f ), F+(f ) ≥ 0.
It is true, but not obvious, that F+ is linear. To show this, first note F+(c f ) = cF+(f ) (f ≥ 0).

If fi ≥ 0, then F+(f1+ f2) ≥ F+(f1)+F+(f2) since if 0 ≤ дi ≤ fi then 0 ≤ д1+д2 ≤ f1+ f2. On the
other hand, if 0 ≤ ψ ≤ f1+ f2, thenψ = ψ1+ψ2 whereψ1 = min(f1,ψ ) andψ2 = ψ −min(f1,ψ )
are between 0 and f1, resp. f2, which gives us F+(f1 + f2) ≤ F+(f1) + F+(f2), so F+ is linear on
nonnegative functions.

To extend to all real functions, we define F+(f ) = F+(M + f ) − F+(M) for sufficiently large
M . This is well-defined since

F+(M + f ) + F+(N ) = F+(N + f ) + F+(M)

=⇒ F+(M + f ) − F+(M) = F+(N + f ) − F+(N )

for sufficiently large M,N . It is not hard to check that this function is linear. Then F− = F+ − F
is also linear and nonnegative.

Finally, to show that ∥F ∥ = ∥F+∥+ ∥F−∥, it suffices to show that ∥F ∥ ≥ ∥F+∥+ ∥F−∥ since the
reverse inequality is just the triangle inequality. To prove this, take any functionдwith 0 ≤ д ≤ 1,
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and compute
∥F ∥ ≥ F (2д − 1) = 2F (д) − F (1).

Taking the sup over all д, we find that

∥F ∥ ≥ 2F+(1) − F (1) = F+(1) + F−(1) = ∥F+∥ + ∥F−∥.

□

14.6 Weak topologies

To motivate the study of weak topologies, let us begin with

Theorem 14.23. A normed space X has a compact unit ball if and only if X is finite dimensional.

To prove this we need the Riesz lemma:

Lemma 14.24 (Riesz). Let M be a proper closed subspace of a normed space X . Then for each
0 < α < 1 there is x ∈ X , ∥x ∥ = 1 such that d(x ,M) > α .

Proof: Take y ∈ X\M , so that d(y,M) = δ > 0. Since α < 1 there is z ∈ M with ∥z − y∥ < δ/α .
Then x = (z − y)/∥z − y∥ suffices. □

Proof of Theorem 14.23: IfX has finite dimension the result is clear. Otherwise, define a (linearly
independent) sequence (xn) as follows. Having chosen x1, . . . ,xn, let Mn = span{x1, . . . ,xn} and
by Lemma 14.24 take xn+1 ∈ X \Mn of norm one and such that d(xn+1,Mn) ≥ 1/2. Then (xn) has
no convergent subsequence. □

This makes life difficult for solving analytic problems, because a very common strategy for
finding solutions to PDEs or other problems where we are looking for a function is to obtain the
solution as the limit of approximate solutions. In some good cases we can obtain the limit from
a convergent sequence, but in many cases we need to use compactness and extract a convergent
subsequence. The above result says that the norm topology is no good for this, when we are work-
ing in an infinite-dimensional Banach space (the usual situation). We need to consider weaker
topologies.

What do weaker topologies gain for us? These have fewer open sets, and hence there are fewer
open covers of a given set K , and hence it is more likely that we can find a finite subcover, and
hence there are more compact sets. Moreover there are more convergent sequences! To pay for
all this, we find that fewer functions are continuous, when we change to a weaker topology.
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Where do weaker topologies come from? From dual spaces! We define the σ (X ,X ∗)-topology
on X to be the weakest topology that makes all the linear functionals φ ∈ X ∗ continuous. This is
a much weaker topology than the norm topology.

We say xn
weakly
−−−−−→ x to mean φ(xn) → φ(x) for all φ ∈ X ∗. (Unfortunately, because the weak

topology is not metrizable, this does not completely characterize it.) The sets φ−1(U ), where
φ ∈ X ∗ and U ⊂ C is open, form a sub-base for the topology. This means that V ⊂ X is open in
the σ (X ,X ∗) topology precisely if it is a (possibly infinite) union of finite intersections of sets of
the form φ−1(U ).

Unfortunately we do not have time for a detailed study of the σ (X ,X ∗) topology. The follow-
ing exercises outline many of the important properties. You can findmost of these, and more, cov-
ered in the notes athttp://perso.crans.org/lecomte/Math/WeakTopologies.
pdf.

Exercise. Show that if X is infinite dimensional, all open sets in the σ (X ,X ∗)-topology are
unbounded.

Exercise. The weak topology is Hausdorff (that is, given x , y, we can find non-intersecting
open setsU ∋ x andV ∋ y), and hence limits of sequences are unique. (Hint: use Hahn-Banach.)

Exercise. Show that in an infinite-dimensional Hilbert space, an orthonormal basis e1, e2, . . .
converges to 0 weakly.

Exercise. Show that a sequence (xn) in a Banach space X converges to x weakly iff x∗(xn)

converges to x∗(x) for every x∗ ∈ X ∗.
Exercise. Show that a sequence (xn) in a Banach space X converges to x weakly iff x∗(xn)

converges to x∗(x) for every x∗ in a dense subset of the unit ball in X ∗.
Exercise. Show that the closed unit ball in X is also closed in the weak topology.
Exercise. Show that a bounded linear transformationT : X → Y is continuous if both X and

Y are given the weak topology.
Exercise. The weak topology and the norm topology coincide iff X is finite dimensional.
Is the closed unit ball compact in this topology? Sometimes! For example, it is true for Hilbert

spaces. But it is not true for L1(R). There is a closely related topology that is compact for the unit
ball; however, it only applies to dual spaces.

Exercise. Find a sequence in the unit ball of L1([0, 1]) that has no convergent subsequence
in the weak topology.
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14.7 The second dual, and the weak−∗ topology
Since the dual X ∗ of a Banach space X is itself a Banach space, we can form its dual space (X ∗)∗,
which we write X ∗∗ and call the second dual or the bidual space of X . In fact, X ∗∗ is somewhat
more closely related to X than X ∗ is. To see this, note that any element x of X acts as a bounded
linear functional on X ∗, by defining

x(x∗) = x∗(x), x ∈ X , x∗ ∈ X ∗.

Notice that |x(x∗)| ≤ ∥x ∥∥x∗∥. So the norm of x as an element ofX ∗∗ is at most its norm inX . By
the Hahn-Banach theorem, we can choose for any x ∈ X an x∗ ∈ X ∗ such that |x(x∗)| = ∥x ∥∥x∗∥,
which implies that the norm of x as an element of X ∗∗ is precisely the norm of x in X . Therefore,
there is a continuous injection J : X → X ∗∗ which is an isometry onto its image (which is
therefore a closed subspace of X ∗∗).

It is now irresistible to ask whether J(X ) = X ∗∗. The answer is sometimes. For example, it is
true for any Hilbert space. But it is not true ifX = C([0, 1]). To see this, recall that the dual space
of C([0, 1]) is the space of bounded Borel measures on [0, 1] with the total variation norm. It is
not hard to see that the function 1[0,1/2] acts as a bounded linear functional on this space. Indeed,
every bounded Borel-measurable function is included in the second dual of C([0, 1]). Another
example is the usual suspect L1(R); the second dual of this space is strictly larger than itself.

We call X reflexive if J(X ) = X ∗∗.
In general, given a family of functions F = { fα : X → Yα }α (here Yα are topological spaces),

we write σ (X ,F ) for the weakest topology on X so every fα is continuous. (Explicitly, this is∩
α f −1α (Oα), where Oα is the collection of open sets of Yα .)
On the dual space X ∗ of a Banach space X , we have the weak topology σ (X ∗,X ∗∗). But we

can define another topology, namely σ (X ∗, J(X ) ⊂ X ∗∗), called the weak-∗ topology that is the
weakest topology such that all the linear functionals x ∈ J(X ) ⊂ X ∗∗ are continuous. It is usually
written simply as σ (X ∗,X ). This is weaker (that is, not stronger) than the weak topology (i.e.
fewer open sets, more convergent sequences, more compacts sets, fewer continuous functions).
We shall shortly prove the very important result that the closed unit ball in X ∗ is compact in the
weak-∗ topology.

Exercise. Show that the weak-∗ topology is Hausdorff. (No Hahn-Banach theorem required:
if φ , ψ , there is some x and r so φ(x) < r < ψ (x). Use this to write down disjoint weak-∗ open
neighbourhoods.)
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14.8 Banach-Alaoglu theorem

There are various versions of the Banach-Alaoglu theorem.

Theorem 14.25 (Banach-Alaoglu, separable version). Suppose that X is separable. Then the unit
ball of X ∗ is sequentially compact in the weak-∗ topology.

Theorem 14.26 (Banach-Alaoglu, general version). The unit ball of X ∗ is compact in the weak-∗
topology.

Corollary 14.27. If X is reflexive, the closed unit ball of X is weakly compact.

Proof: It’s standard, whenX is reflexive, do simply identify X withX ∗∗, in which case this is fairly
obvious: The unit ball in X is thus the unit ball in X ∗∗, which by Banach-Alaoglu is compacts in
the σ (X ∗∗,X ∗) topology, which of course is just the σ (X ,X ∗) topology, that is, the weak topology
on X . 2 □

(Kakutani’s theorem states the converse is also true.)
Note that separability is required for sequential compactness: ℓ∞ is not separable, and the

sequence of functionals a 7→ a(n) does not have a weak-∗ convergent subsequence.

Proof of Banach-Alaoglu, separable version: Take a sequence xn in X which is dense in the unit
ball. Given a sequenceφj in B(0, 1) ⊂ X ∗, we extract a subsequenceφ1j such thatφ1j (x1) converges.
Then we extract a subsequence φ2j of this subsequence such that φ2j (x2) converges, and so on. The
diagonal subsequence φ j

j has the property that φ j
j(xn) converges for all n. (This is because φ j

j is a
eventually a subsequence of φnj .) We then need to show that φ j

j(x) converges for all x ∈ B(0, 1) ⊂
X . Take {ym} ⊂ {xn} converging to x ∈ B(0, 1). We have limj φ

j
j(ym) = zm for some zm ∈ C,

and moreover limm zm = z for some z ∈ C (since |φ j
j(ym − ym′)| ≤ ∥ym − ym′∥). Now we show

limj φ
j
j(x) = z. Choosem large enough so ∥ym − x ∥ < ϵ and |zm − z | < ϵ . Then choose j large

2If you’d prefer to keep track of the identification ofX withX ∗∗ via J , the argument looks a little more complicated.
(But arguably, is a little more correct.)

Now, if Y is a reflexive Banach space, Banach-Alaoglu applied to X = Y ∗ says that B(0, 1) ⊂ Y ∗∗ is compact with
respect to σ(Y ∗∗, J(Y ∗) ⊂ Y ∗∗∗). Pulling back by the homeomorphism J : Y → Y ∗∗, we have J−1(B(0, 1) ⊂ Y ∗∗) =

B(0, 1) ⊂ Y . Moreover, this preimage is compact with respect to the topology J−1(σ(Y ∗∗, J(Y ∗) ⊂ Y ∗∗∗)).
To understand this topology, note that in general if Φ : X → X ′ is a homeomorphism, and F is a family of maps

out of X ′, then Φ−1(σ(X ′,F )) = σ(X , { fα ◦ Φ : X → Yα }α ). Thus J−1(σ(Y ∗∗, J(Y ∗) ⊂ Y ∗∗∗)) = σ(Y , {φ ◦ J : Y →
C}φ∈Y ∗∗∗). However, as J is a isomorphism of Banach spaces, we can see that the set {φ ◦ J : Y → C}φ∈Y ∗∗∗ is just Y ∗,
giving the claim that B(0, 1) is compact in the σ(Y ,Y ∗) topology, i.e. the weak topology on Y .

(You should decide for yourself which argument makes you happier.)

20



enough so |φ j
j(ym) − zm | < ϵ . Then we have |φ j

j(x) − z | < 3ϵ . Now define φ(x) to be limj φ
j
j(x).

Since this is given as a pointwise limit of a sequence of bounded linear functionals of norm at
most 1, φ is linear with ∥φ∥ ≤ 1. Then φ j

j → φ in the weak-∗ topology. □

To prove the general version, we’ll need the Tychonoff theorem. Recall that the product
topology on ∏

Xα is the weak topology determined by the projection maps πβ :
∏

Xα → Xβ , so
basic open sets are of the form ∏

Uα where each Uα ⊆ Xα is open, and for all but finitely many
α ,Uα = Xα .

Theorem 14.28 (Tychonoff). The product of a family of compact topological spaces is compact.

Definition 14.29. A collection of sets has the finite intersection property (FIP) if every finite sub-
collection has non-empty intersection.

Recall that a set is compact if and only every every collection of closed sets with the FIP itself
has non-empty intersection.

Proof: Let X =
∏

Xα , where each Xα is compact. Let F be a family of closed subsets of X with
the finite intersection property. A Zorn’s lemma argument gives a maximal family H containing
F and having the FIP (though sets in H are not necessarily closed). Note that by maximality H is
necessarily closed under finite intersections, and any set which meets every set in H must also
be in H .

For a given index α , {πα (A) : A ∈ H } has the FIP in Xα . By compactness, the closures of
these sets must thus have non-empty intersection, let f (α) be a point in the intersection. Then
f = (f (α)) ∈ X . For an index β , neighbourhood Uβ of f (β), and A ∈ H , Uβ ∩ πβ(A) , ∅, that is,
π−1
β
(Uβ) ∩A , ∅. But then π−1β (Uβ) ∈ H . But then any finite intersection of such sets also lies in

H , and so must meet every element of H since H has the FIP. These sets, the finite intersections
of sets π−1

β
(Uβ), give a neighbourhood base for f : that is, given any open set containing f , no

matter how small, there is one of these sets properly contained in it, still containing f . It follows
that f lies in the closure of every element of H , and so in particular lies in each member of F . □

Proof of Banach-Alaoglu: For x ∈ X , set Dx = {z ∈ C : |z | ≤ ∥x ∥}. Then D =
∏

Dx is compact.
Define the injective map F : B(0, 1) ⊂ X ∗ → D by F (φ) = (φ(x))x∈X . Consider the topology
induced on B(0, 1) by F . Open sets for pull-back of the product topology have as a sub-basis sets
of the form

π−1x (G), G ⊂ C open.
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Here x is an arbitrary fixed element of X . This corresponds on B(0, 1) to sets of the form

{φ | φ(x) ∈ G}.

But this is precisely the weak∗-topology on B(0, 1). Thus, with this topology on B(0, 1), the map
F is a homeomorphism onto its image. Its image consists of the ‘linear’ elements of D. To check
that the image is closed, take a point (yx)x∈X in D that is not in the image of F . Then this point is
not ‘linear’, so there must be a linear relation x = ax1+bx2 in X (a,b ∈ C) with yx , ayx1 +byx2 .
Let ϵ = |yx − ayx1 − byx2 |. Now consider the open set U of points (zx)x∈X such that

|zx − yx | <
ϵ

3
, |a | |zx1 − yx1 | <

ϵ

3
, |b | |zx2 − yx2 | <

ϵ

3
.

Then U is disjoint from the image of F . Thus, the image of F is closed, and therefore compact.
Since B(0, 1) with the weak topology is homeomorphic to the image of F , it is also compact. □

14.9 Applications of Banach-Alaoglu

14.10 Minimizing functionals on a Banach space

Let X be a Banach space (for simplicity, we shall consider only real Banach spaces from now on).
Consider the problem of minimizing some nonlinear function F : X → R, which we assume to
be bounded below.

In general, this will not be possible. This can be for many different reasons. Here are some
examples that illustrate different ways in which minimizers fail to exist:
• X = R, F (x) = ex .
• X = R, F (x) = |x | for x , 0, F (0) = a > 0.
• X = L2([0, 1]), and

F (f ) =

∫ 1

0
x f (x)2 dx + (∥ f ∥2 − 1)2.

It is easy to see that inf F = 0. However, there is no function f ∈ L2([0, 1]) such that F (f ) = 0.
We will need some conditions on F . What should they be?

Recall the theorem that says that a continuous function on a compact space always attains its
minimum. If X is reflexive, e.g. X = Lp(M, µ) for 1 < p < ∞), which we shall assume from now
on, we have just seen that the closed unit ball on X is compact for the weak topology. So if F is
continuous in the weak topology, and if F (x) → ∞ as ∥x ∥ → ∞, we would know that F attains
its minimum.
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This is true, and sounds good, but the class of functions continuous in the weak topology is
too small to be of genuine interest.

Example. The function x 7→ ∥x ∥ on a Hilbert space H is not weakly continuous. For if it were,
then the set S = {x | ∥x ∥ = 1} would be a weakly closed set. But we can find a sequence
of elements of S , such as an orthonormal sequence, that converges weakly to zero. So S is not
weakly closed.

However, in order to minimize functionals, continuity is an unnecessarily restrictive condi-
tion: lower semicontinuity is enough. We say that a function F on a topological space is (se-
quentially) lower semicontinuous iff, for any sequence xn → x , we have F (x) ≤ lim inf F (xn).
(The correct definition on lower semicontinuity should be that for any net xα → x , we have
F (x) ≤ lim inf F (xα). In fact, the difference between sequential lower semicontinuity and lower
semicontinuity won’t be important in what follows, so we’ll ignore the difference.)

For example, the function д(t) : R → R which is 0 for t ≤ 0 and 1 for t > 0 is lower
semicontinuous. The function F in the second example above is upper semicontinuous; if a < 0

it would be lower semicontinuous and then there is no problem finding a minimizer.

Lemma 14.30. Let Z be a sequentially compact topological space and F a lower semicontinuous
real function. Then F is bounded below and attains its minimum.

Proof: Take a minimizing sequence, i.e. a sequence of points xn such that F (xn)→ inf F (tending
to −∞ if inf F = −∞). Let x be a limit point of a subsequence of the xn, which we continue to
denote (xn). Then F (x) ≤ lim inf F (xn) = inf F . So the inf is finite, and attained at any limit point
of the xn. □

Lemma 14.31. Let Z be a compact topological space and F a lower semicontinuous real function.
Then F is bounded below and attains its minimum.

Proof: First, suppose for contradiction that inf F = −∞. Define closed sets Cn = {x |F (x) ≤ −n}.
These sets have the finite intersection property, and since Z is compact the complete intersection
is non-empty, which is impossible.

Now that we know inf F is finite, define closed sets Dn = {x |F (x) ≤ inf F + 1/n}. Again,
these sets have the finite intersection property and since Z is compact the complete intersection
is non-empty. Any point in this complete intersection realizes the infimum. □

So now the question is, which functions on X are lower semicontinuous? It turns out that
convex functions (with a couple of other additional assumptions) have this property. We say
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that a function F mapping a real vector space V to (−∞,∞] is convex if for every x ,y ∈ V and
0 ≤ λ ≤ 1 we have

F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y).

Note that we allow +∞ as a value of F here.
For example, the function

F (u) =

∫
Rn

u(x)2 + u(x)4 dx

is convex on the (real) Banach space L2(Rn). This follows from the fact that t 7→ t2+ t4 is convex
on R.

Theorem 14.32. Suppose that F is a convex function on a Banach space X , such that F is norm
lower semicontinuous. Then F is weakly lower semicontinuous.

To prove this, we first need the following lemma about convex functions:

Lemma 14.33. Let F be a convex function on a real vector space X . Then for all x ∈ X such that
F (x) < ∞, there is an affine function φ (i.e. linear plus constant) such that φ(x) = F (x) and φ ≤ F

on X .

The proof is almost identical to version 1 of the Hahn-Banach theorem.

Proof: First, translate x to the origin and add a constant to F so that F (0) = 0. We now look
for a linear function which is ≤ F . Suppose that we have found a linear function on a subspace
Y satisfying the conditions. We first show that if Y ′ is the subspace spanned by Y and a single
element z0 ∈ X \Y , then we can extend φ to Y ′ such that φ ≤ F on Y ′. It is convenient to subtract
the linear function z+ tz0 → φ(z) (defined on Y ′) from both F and φ. Thus, we may assume wlog
that φ = 0 and F ≥ 0 on Y .

Then since F is convex, for any z′, z′′ ∈ Y , and any t1, t2 > 0, we have

t2F (z
′′ + t1z0) + t1F (z

′ − t2z0) ≥ 0.

Therefore, for arbitrary z′, z′′ ∈ Y we have

F (z′′ + t1z0)

t1
≥ −F (z

′ − t2z0)
t2

. (14.4)
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Define β to be any finite number between the inf of the LHS and the sup of the RHS in the above
expression. Now define φ(z + tz0) = tβ . Then for any t > 0, we have

φ(z + tz0) = tβ ≤ t
F (z + tz0)

t
= F (z + tz0).

On the other hand, for t > 0 we have

φ(z − tz0) = −tβ ≤ t
F (z − tz0)

t
= F (z − tz0).

Thus we have extended φ from Y to Y ′ so as to be ≤ F .
The result now follows by Zorn’s Lemma as in the proof of Hahn-Banach. □

Corollary 14.34 (Separating Hyperplane theorem). Let C be a closed convex set in a real Banach
space X , and x a point in X \C . Then there is a continuous affine functional φ : X → R such that
φ ≤ 1 on C , and φ(x) > 1.

Proof: First translateC so that it contains the origin. Then we replace it by its ϵ-enlargementCϵ ,
where

Cϵ = {z ∈ X | ∃c ∈ C such that ∥z − c∥ ≤ ϵ }

for 0 < ϵ < d(C,x). Then Cϵ is also closed and convex and contains a ball of radius ϵ around
the origin. Define φ(y) = sup{λ ≥ 0 | y < λCϵ } for y , 0, and φ(0) = 0. Then φ is convex and
bounded by ϵ−1 times the norm. Also, φ ≤ 1 on C , and φ(x) > 1. The result then follows from
the previous lemma. □

Proof of Theorem: Consider a sequence xn in X converging weakly to x . We must show that
F (x) ≤ lim inf F (xn). Let a = lim inf F (xn). It suffices to show that F (x) ≤ a + ϵ for every ϵ > 0.

By passing to a subsequence, we may assume that F (xn) converges to a, and hence that
F (xn) ≤ a + ϵ for all n large enough. Consider the set C = {z ∈ X | F (z) ≤ a + ϵ }. This is
a convex set, and is norm closed due to the norm lower semicontinuity of F . I claim that the limit
point x lies in C . For if not, then by the Separating Hyperplane theorem, there exists an affine
linear functional such that φ ≤ 1 on C and φ(x) > 1. But this is a contradiction, since weak
convergence requires that φ(xn)→ φ(x). Therefore, x lies in C . That means that F (x) ≤ a + ϵ as
claimed. This finishes the proof. □

Putting our results together, we have
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Theorem 14.35. Suppose that F is a convex function on a reflexive Banach space X , such that
F (x)→ ∞ as |x | → ∞, and such that F is norm lower semicontinuous. Then F attains its minimum
value. Moreover, if F is strictly convex, then the minimum point is unique.

Proof: We take a minimizing sequence as before. Since F → ∞ as |x | → ∞, this minimizing
sequence lies in a fixed closed ball in X , which is weakly compact by Banach-Alaoglu. Existence
of a minimum point then follows from Lemma 14.31 and Theorem 14.32. Moreover, if F is strictly
convex, suppose that there are two distinct minimizers x and y. Then F ((x + y)/2) < (F (x) +

F (y))/2 which is a contradiction. Hence the minimum is unique in this case. □

Example.
Now we apply this theorem in a concrete situation. Let Ω ⊂ Rn be a bounded domain, and let

H1
0 (Ω) be the (real) Hilbert space that we studied in the context of solving the Dirichlet problem

(there we called it S): that is, we take the real C1 functions on Ω vanishing at the boundary, and
complete in the L2 norm derived from the inner product

⟨U ,V ⟩ =
∫
Ω
∇U (x) · ∇V (x)dx .

This is the Sobolev space of order 1 consisting of functions defined on Ω with one derivative in
L2 and vanishing at the boundary. Recall that we proved the Poincaré inequality

∥v ∥2 ≤ (diamΩ)∥v ∥H1
0 (Ω)

for v ∈ H1
0 (Ω).

Now consider the nonlinear functional

F (v) =

∫
Ω
|∇v(x)|2/2 + f (x)v(x)dx

where f ∈ L2(Ω). This is convex since t 7→ t2 and t 7→ at are both convex functions on R. It is
continuous on H1

0 (Ω) since

|F (v) − F (w)| ≤ 1

2

����∥v ∥2H1
0 (Ω)
− ∥w ∥2

H1
0 (Ω)

����+ ∥ f ∥2∥v −w ∥2
≤ 1

2
∥v −w ∥H1

0 (Ω)(∥v ∥H1
0 (Ω) + ∥w ∥H1

0 (Ω)) +C∥ f ∥2∥v −w ∥H1
0 (Ω)

Finally, we have F (v)→ ∞ as ∥v ∥H1
0 (Ω) → ∞, since

|F (v)| ≥ 1

2
∥v ∥2

H1
0 (Ω)
−C∥ f ∥2∥v ∥H1

0 (Ω)

≥ 1

2
∥v ∥2

H1
0 (Ω)
− C

2

(
ϵ ∥v ∥2

H1
0 (Ω)

+ ϵ−1∥ f ∥22
)
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for any ϵ > 0. So we can choose ϵ = 1/2C , say.
The point of considering this function F is that a minimizer u of F is a weak solution of the

PDE
∆u = f on Ω, u = 0 at ∂Ω. (14.5)

Indeed, by differentiating F at the minimum point, we find that for any v ∈ H1
0 (Ω),

d

dt
F (u + tv) = 0 =⇒

∫
Ω

(
∇u(x) · ∇v(x) + f (x)v(x)

)
dx = 0.

Theorem 14.35 then says that F attains its minimum. Moreover, it is not hard to see that F
is strictly convex, so the minimum is unique. Therefore, the equation (14.5) has a unique weak
solution for every f ∈ L2(Ω).

Example. The previous example gave the (weak) solution to a linear PDE. However, one
great strength of this approach is that we can also solve some nonlinear PDEs with almost equal
ease. As an example, we can take instead of the F above,

G(v) =

∫
Ω
|∇v(x)|2/2 +v(x)4/4 +v(x)f (x)dx .

A minimizer of this function is a weak solution to the PDE

∆u = u3 + f .

The function G is convex, but it may take the value +∞ so cannot be continuous. However,
G is norm lower semicontinuous. To see this, suppose that we have a sequence of functions
fn ∈ H1

0 (Ω) converging in norm to f . We need to show that G(f ) ≤ lim infG(fn). Define
a = lim infG(fn). By passing to a subsequence, we can assume that G(fn)→ a.

Then ∫
Ω
|∇fn(x)|2 dx →

∫
Ω
|∇f (x)|2 dx (14.6)

by convergence in norm. As for the quartic term, we note that ∥ fn − f ∥H1
0 (Ω) → 0 implies that

∥ fn − f ∥2 → 0. By again passing to a subsequence, we can assume that fn → f a.e.. Therefore,
f 4n → f 4 a.e.. Under this assumption, Fatou’s lemma implies that∫

f 4 ≤ lim inf
∫

f 4n .

Combining this with (14.6) shows that G(f ) ≤ a, as required.
Theorem 14.35 shows thatG has a uniqueminimizer. Therefore there is a uniqueweak solution

to the equation ∆u = u3 + f with u ∈ H1
0 (Ω).

Example. Before we do the next example, we need the following classical result.
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Theorem 14.36 (Rellich Compactness theorem). The inclusion map from H1
0 (Ω) to L

2(Ω) is com-
pact.

Now, as a variation of the examples above, consider the problem of minimizing the function
F above, with f ≡ 0,

F (v) =

∫
Ω
|∇v(x)|2/2 + f (x)v(x)dx ,

on the subset S of H1
0 (Ω) consisting of vectors with L2 norm equal to 1.

Take a minimizing sequence un ∈ S , that is such that lim F (un) = infv∈S F (v). By passing to
a subsequence, we may assume that un converge weakly to an element u ∈ H1

0 (Ω), and we will
have F (u) ≤ lim F (un) = infv∈S F (v).

There is an apparent flaw in this argument, namely that u might not lie in S , in which case we
have not found a minimizer in S . But in fact, I claim that u does lie in S .

Lemma 14.37. If un converge weakly in H1
0 (Ω), and T : H1

0 (Ω) → L2(Ω) is a compact operator,
then Tun converge strongly in L2(Ω).

Since T is the inclusion map, Tun all have L2 norm 1, and therefore z must have L2 norm 1.
Therefore, u has L2 norm 1, so is an element of S , as claimed.

The minimizer u satisfies
d

dt
F (u + tv)

����t=0
= 0 for all v ∈ S such that u ⊥ v in L2(Ω).

This means that
u ⊥ v in L2(Ω) =⇒

∫
Ω
∇u(x) · ∇v(x)dx = 0.

Thus, for arbitrary v , v − ⟨v,u⟩u is perpendicular to u, so∫
Ω
∇u(x) · ∇

(
v(x) − ⟨v,u⟩u

)
dx = 0.

Thus, u solves the equation
∆u = −λu

(weakly) where λ =
∫
|∇u |2 > 0. This is a way of finding an eigenfunction of ∆ corresponding

to its smallest eigenvalue.
As a final application, we can apply the same to the functional G(v) =

∫
|∇v |2/2 + v4/4

restricted to the set ofv ∈ H1
0 (Ω)where ∥v ∥2 = 1. We find a minimizer which solves a ‘nonlinear

eigenvalue problem’
∆u + u3 = −λu .
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