
A Measure theory and integration

In these notes we give an alternative approach to measure theory and integration, emphasising
the duality between a measure (a way of measuring the size of subsets of a space) and an integral
(a rule for integrating some class of functions on the space).

A.1 Motivation from the Lebesgue integral

Let’s think about Lebesgue measure for a moment, and try to abstract out what “integration”
means.

Certainly, we can integrate any continuous compactly supported function f ∈ Cc(R
n), and

this is a linear functional, which we write as∫
: Cc(R

n)→ R

f 7→
∫
Rn

f (x)dx .

We can also integrate many other functions, but for now let’s just concentrate on these — it
will eventually turn out that everything else is determined by how the integral behaves here.

Remark. Is this a bounded linear functional?
Unfortunately no, as Rn is too big. It’s easy to see that if we restrict to some finite volume

A ⊂ Rn, then
∫

: Cc(A)→ R is a bounded linear functional, as∫
A
f (x)dx ≤ (volA)(sup

x∈A
f (x))

= (volA) f ∞ .
In fact, the operator norm

∫
is ∫  = volA.

What other properties does integration have? The obvious one is that it is positive: if f (x) ≥ 0

everywhere (or even almost everywhere) then
∫
A
f (x)dx ≥ 0. It turns out that these properties

are all that ‘essentially’ matters about Lebesgue integration, so let’s pull them out as a definition.

Definition A.1. A Radon integral on a ‘nice’ space X is a positive linear functional Cc(X )→ R.

What should ‘nice’ mean? We have a few options. One can set up the theory at the most
general level, allowing any locally compact Hausdorff space X . To make life easier in what follows,
we’ll also freely assume second countability (so that we don’t need to futz about with nets, and
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can just use sequences). In fact, in places we’ll even just restrict to the case of a metric space (or
even a separable metric space). If you need a reminder about these adjectives, see the appendix
on point set topology below.

Our goal for the next while will be to prove a theorem that looks something like this:

Theorem A.2. Let X be a nice space. There is a bijective correspondence between
1. Radon integrals on X , and
2. Radon measures on the Borel σ -algebra of X.

This is the theorem that says that we can take either of two points of view, taking as the
fundamental mathematical objects:

1. the integrals of compactly supported continuous functions, or
2. the measures of Borel sets.

(Of course measures of Borel sets are the same thing as integrals of characteristic functions of
Borel sets.)

A.2 Basic measure theory

First we need to develop some of the basics of measure theory. I think Terry Tao’s book “An in-
troduction to measure theory” is an excellent source for this; this section is essentially a selection
from §1.4 of that book.

A.2.1 Algebras of sets

Let X be some set (typically a topological space or metric space, but for now we don’t need any
structure at all).

Definition A.3. A Boolean algebra (of subsets of X ) is a collectionM of subsets of X such that
• ∅ ∈ M,
• if E ∈ M, then X \ E ∈ M, and
• if E, F ∈ M, then E ∪ F ∈ M.

When it is completely clear that we are talking about an algebra of sets (and not an algebra in
the sense of an associative algebra or a Lie algebra, for example), we may drop the word ‘Boolean’.

One easily sees that E ∩ F , E \ F , F \E, and the symmetric difference E∆F are all inM as long
as E and F are, by combining the last two axioms. Moreover, by induction, any finite union (or
finite intersection) of sets inM is inM.
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We can talk about a Boolean algebraM being finer than a Boolean algebraM′ — this just
meansM′ ⊂ M. One should think about this as the finer algebra ‘making finer distinctions’. In
the other direction, ifM is finer thatM′ we sayM′ is coarser thanM.

In probability, one often thinks of the elements of the setX as ‘states’ of an underlying system
(either at a moment, or representing an entire history), and an algebra of subsets of X describes
the possible ways to partition up these states according to some observations we might make.
When we consider further observations (perhaps just by ‘time passing’) we should expect to pass
to a finer algebra.

Certainly on any set there is a finest algebra (the discrete algebraM = 2X , also known as the
power set of X ) and a coarsest algebra (justM = {∅,X }).

The intersection of two Boolean algebras is always a Boolean algebra (coarser than either of
them), and in fact the intersection of an arbitrary family of Boolean algebras is again a Boolean
algebra.

DefinitionA.4. Given an arbitrary collection F of subsets ofX , we can form the Boolean algebra
generated F , which we denote ⟨F ⟩bool, as the intersection of all Boolean algebras containing F .

(This is an intersection of a nonempty collection, since the power set contains any collection
of subsets.) One can see that the Boolean algebra generated by F is the unique coarsest Boolean
algebra containing F , and often this characterisation is useful.

Definition A.5. A σ -algebra is a Boolean algebra which moreover is closed under taking count-
able unions of sets in the algebra.

While we really want to be able to talk about σ -algebras, unfortunately they are much harder
to deal with that Boolean algebras. While all the discussion above (finer, coarser, generation)
passes over immediately to the corresponding notions for σ -algebras, we find that σ -algebras are
somewhat slippery:

Exercise. Given a collection of subsets F of X , define a family {Fn}n≥0 inductively by:
• F0 = F
• Fn+1 = {finite unions of set in Fn, or the complement of such a finite union}

and similarly define {F σ
n } replacing ‘finite’ everywhere with ‘countable’.

1. Show that the Boolean algebra generated by F is exactly ∪
n≥0 Fn. (Hint: it is clear that

every set in ∪
n≥0 Fn lies in ⟨F ⟩bool. After that, you just need to show that it really is a

Boolean algebra. 2nd hint: given E, F ∈ ∪
n≥0 Fn, we may say E ∈ Fn1 and F ∈ Fn2 for

some n1,n2 ≥ 0.)
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2. Explain why this argument fails when we try to show that the σ -algebra generated by F is
exactly ∪

n≥0 F σ
n . (Hint: what happens if we try to take a countable union of sets En, where

En ∈ F σ
n ?)

3. Can you produce a family F where in fact ⟨F ⟩σ ,
∪

n≥0 F σ
n ?

4. Learn about transfinite induction, and see if you’re satisfied by the resulting ‘explicit’ de-
scription of ⟨F ⟩σ .

How then doweworkwithσ -algebras? The following lemma provides an ‘induction principle’
for σ -algebras.

Lemma A.6. Suppose P(E) is a property of subsets E ⊂ X such that
• P(∅) is true,
• if P(E) is true, then P(X \ E) is true, and
• if {Ei }i≥0 are subsets of X , and P(Ei) is true for all i , then P (

∪
i≥0 Ei) is true also.

Now suppose that P(E) is true for all E ∈ F , where F is some family of subsets of X . Then P(E) is
true for all E ∈ ⟨F ⟩σ .

Proof: The collection {E | P(E)} is a σ -algebra containing F , so ⟨F ⟩σ ⊂ {E | P(E)}. □

Before we continue on to measures, we have to discuss the most important examples of σ -
algebras.

Definition A.7. If X is a topological space, the Borel σ -algebra is the σ -algebra generated by the
open sets of X .

We’ll write this asB[X ]— the square brackets rather than parentheses are just a local notation
to make sure we don’t mistake the Borel σ -algebra for the set of bounded linear transformations
on something.

To make sure you understand what we’ve been doing, make sure you try these:

Exercise.
1. Equivalenty, the Borel σ -algebra is generated by the closed sets of X .
2. If X is a separable metric space, the Borel σ -algebra is generated by the open balls of X . (Is

there any hope of dropping the hypothesis ‘separable’ here?)
3. If you enjoy point set topology, repeat the previous exercise merely assumingX is a second

countable, locally compact, Hausdorff space. (Can you drop any of those assumptions?)
4. When X = Rn, the Borel σ -algebra is generated by boxes. (Or by boxes with rational

coordinates, or by boxes with dyadic coordinates.)
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5. What condition on a topological space X is needed so that the σ -algebra generated by
compact sets agrees with the Borel σ -algebra?

Note that to prove ⟨F ⟩σ = ⟨G⟩σ , it suffices to show you can write every set in F using a
finite sequence of the operations of ‘take a set from G’, complementation, and countable union
of sets previously constructed, and vice versa switching F and G.
Exercise. If E and F are Borel in Ra and Rb respectively, show that E × F is Borel in Ra+b . (Hint:
this is not trivial; assume F is a box, first.)

Exercise. Suppose E is Borel in Ra+b . Show that the slice Ex1 = {x2 ∈ Rb | (x1,x2) ∈ E} is Borel
for each x1 ∈ Ra .

Now show that this statement is not true if we replace both instances of ‘Borel’ with ‘Lebesgue’.
(Hint, take a set C that isn’t Lebesgue in R (ha!), and consider C × {0}. Why is this Lebesgue?)

(You might interpret this exercise as telling you that Borel sets are better than Lebesgue sets.)

A.2.2 The definition of a measure

Definition A.8. IfM is a Boolean algebra of subsets of X , a finitely additive measure forM is
a function µ :M → [0,∞] such that

• µ(∅) = 0

• if E, F ∈ M are disjoint, then µ(E ∪ F ) = µ(E) + µ(F ).

Lemma A.9.
• E ⊂ F implies µ(E) ≤ µ(F )

• if E1, . . . ,En are inM, and are disjoint, µ
(∪n

i=1 Ei
)
=

∑n
i=1 µ(Ei).

• without the disjointness assumption, µ
(∪n

i=1 Ei
)
≤ ∑n

i=1 µ(Ei).
• µ(E ∪ F ) + µ(E ∩ F ) = µ(E) + µ(F )

Exercise. Explain why one shouldn’t write the last fact as µ(E ∪ F ) = µ(E) + µ(F ) − µ(E ∩ F ).

Definition A.10. IfM is a σ -algebra on X , a measure forM is a finitely additive measure for
M which further satisfies the condition

• If {Ei }i≥0 is a countable family of disjoint sets, each inM, then

µ *,
∪
i≥0

Ei+- =
∑
i≥0

µ(Ei).

The triple (X ,M, µ) is called a measure space. Sometimes the pair (X ,M) is called a measur-
able space.
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Exercise.
• µ (

∪
i≥0 Ei) ≤

∑
i≥0 µ(Ei)

• If E1 ⊂ E2 ⊂ · · · are all inM,

µ *,
∪
i≥0

Ei+- = lim
i
µ(Ei) = sup

i
µ(Ei).

• If E1 ⊃ E2 ⊃ · · · are all inM, and eventually µ(Ei) is finite

µ *,
∩
i≥0

Ei+- = lim
i
µ(Ei) = inf

i
µ(Ei).

• Explain why the finiteness condition is required in the previous exercise.

Definition A.11. A Borel measure is just a measure defined on the σ -algebra of Borel sets. (Or
sometimes, on a bigger σ -algebra containing all the Borel sets.)

A.2.3 Completeness

Definition A.12. A measure is complete if every subset of a measure zero set is measurable (and
hence also has measure zero).

Sometimes completeness is a desirable property.

Definition A.13. Given a measure µ on a σ -algebraM, we can complete the measure by defining
a new σ -algebraM′ whose sets are of the form E ⊂ X , such that there exists E′ ∈ M so that
E∆E′ is contained in a null set with respect to µ. We define the measure µ′ :M′ → [0,∞] simply
by µ′(E) = µ(E′).

Exercise. • Check thatM′ as defined really is a σ -algebra.
• Check that µ′ is well-defined (that is, it does not depend on the choice of E′ for each E —
clearly there are many different choices).

• Check that µ′ is still countably additive.

Exercise. Observe that in the construction of Lebesgue measure in Analysis 2, we effectively built
Lebesgue measure on the Borel σ -algebra, and then completed it.
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A.2.4 Radon measures

Definition A.14. A Borel measure is inner regular if

µ(A) = sup{µ(K) | K is a compact subset of A}.

Definition A.15. A Radon measure is a Borel measure which
• is inner regular, and
• µ(K) < ∞ for every compact set K .

Exercise. Lebesgue measure on Rn is inner regular, and so easily a Radon measure.

A.3 Extending integrals to all integrable functions

Throughout this section X is a locally compact Hausdorff space. We will assume X is second
countable, although with some extra work this condition can be omitted.

This section closely follows the presentation in §6.1 of Pedersen’s Analysis Now; I’ve tried to
unpack it a bit and make it a little friendlier.

We now set out to extend a Radon integral, from beingmerely defined on compactly supported
continuous functions to a much bigger class of functions. This has two purposes:

• to include the characteristic functions of ‘many’ sets in the class of integrals we can inte-
grate, to extract a measure from the integral

• to provide a setting where we can prove the monotone and dominated convergence theo-
rems.

A.3.1 Monotone limits of Cc(X )

To begin, we define two new classes of functions,

Cc(X )m =
{
f : X → R ∪ {+∞} | ∃fn ∈ Cc(X ) so fn ↗ f

}
Cc(X )m =

{
f : X → R ∪ {−∞} | ∃fn ∈ Cc(X ) so fn ↘ f

}
where fn ↗ f expresses that fn is an increasing sequence, converging pointwise to f , and simi-
larly for fn ↘ f .

We’re going to spend some time understanding these classes.

Example A.16. WhenX = R, χ(a,b) is inCc(X )m, but not inCc(X )m. Conversely, χ[a,b]is inCc(X )m,
but not in Cc(X )m.
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Some notation: if F is some collection of functions X → R, we write F+ for the subset of
non-negative functions.

Lemma A.17.
• Both Cc(X )m and Cc(X )m are closed under addition, and multiplication by positive scalars.
• When f ∈ Cc(X )m, we have −f ∈ Cc(X )m and vice versa.

Lemma A.18.
• The function −1 is in Cc(X )m iff X is compact.
• The function 1 is in Cc(X )m iff X is a countable union of compact sets.

Proof: The first fact is easy: we have some compactly supported function less than −1, so outside
of a compact set 0 ≤ −1, so the whole space must be compact.

Taking Kn = supp fn, for some sequence { fn} ⊂ Cc(X ) such that fn ↗ f , we see every point
if eventually in some Kn, i.e. X =

∪
Kn. In the other direction, if X =

∪
Kn, for each n choose

some fn ∈ Cc(X ) which is identically 1 on Kn, and then take maximums as дn = max(f1, . . . , fn).
We see that дn ∈ Cc(X ) still, and дn ↗ 1. □

Lemma A.19. If X is a locally compact metric space, χK ∈ Cc(X )m for every compact set K .

Proof: Define

fn(x) =


1 if x ∈ K
0 if d(x ,K) ≥ 1

n

1 − nd(x ,K) otherwise.

Observe that d(x ,K) = inf{d(x ,y) | y ∈ K } = max{d(x ,y) | y ∈ K } since K is compact, and use
this to show d(x ,K) is continuous, and hence that fn is continuous.

One has to be quite careful checking that eventually fn is compactly supported! The problem
is that even though K is compact, the set {x | d(x ,K) ≤ 1

n } could be noncompact. We need to use
the hypothesis that X is locally compact, and Lemma A.51 from the appendix, which ensures this
set is eventually compact. □

One can also prove the following facts, although we won’t need them here:

Lemma A.20.
• If f ,д ∈ Cc(X )m+, then f д ∈ Cc(X )m+.
• Every non-negative lower semicontinous function is in Cc(X )m.
• Cc(X )m ∩Cc(X )m = Cc(X ).
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A.3.2 Upper and lower integrals

We next define linear functionals∫ ∗
: Cc(X )m → R ∪ {+∞}

: f 7→ sup
{∫

д | f ≥ д ∈ Cc(X )

}
∫
∗
: Cc(X )m → R ∪ {−∞}

: f 7→ inf
{∫

д | f ≤ д ∈ Cc(X )

}
Remember thatCc(X )m andCc(X )m are cones, not vector spaces, so whenwe say linear functional
we mean functions that commute with multiplication by non-negative scalars and with addition.
It’s not actually obvious that these are linear; we address this in Lemma A.24.

Observe that of course if f ∈ Cc(X ), then
∫ ∗

f =
∫
∗ f =

∫
f . Moreover if f ∈ Cc(X )m∫ ∗

f = −
∫
∗
(−f ). (A.1)

We then define the class of integrable functions L1(X ) (of course relative to the particular
Radon measure, which we consider fixed throughout this section) to be those functions f : R→
R∪±∞ such that for every ϵ > 0, we can find a larger function д ∈ Cc(X )m and a smaller function
h ∈ Cc(X )m, such that

∫ ∗
д −

∫
∗ h < ϵ .

Another way to express this same idea is to define upper and lower integrals for arbitrary
functions R→ R ∪ ±∞ by ∫ ∗∗

f = inf
{∫ ∗

д | f ≤ д ∈ Cc(X )m
}

∫
∗∗

f = sup
{∫
∗

д | f ≥ д ∈ Cc(X )m

}
and then to say that f ∈ L1(X ) if and only if

∫ ∗∗
f =

∫
∗∗ f and this number is in R (that is, not

±∞. We define
∫

: L1(X ) → R ∪ {±∞} by
∫
f =

∫ ∗∗
f =

∫
∗∗ f . It’s only a little work to show

Cc(X ) ⊂ L1(X ), and our newly defined
∫

agrees with the original one where it should. Moreover∫
on L1(X ) is a positive linear functional.

Exercise. Verify that these definitions of L1(X ) really are the same!
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Figure 1: We calculate
∫ ∗∗

f as an infimum over slightly larger functions д in the classCc(X )m of
the supremum over compactly supported continuous functions h ≤ д of

∫
h.

Lemma A.21. A function f ∈ Cc(X )m is integrable if and only if
∫ ∗

f < ∞, in which case
∫
f =∫ ∗

f . Similarly a function f ∈ Cc(X )m is integrable if and only if
∫
∗ f > −∞.

Proof: If
∫ ∗

f < ∞, for any ϵ > 0 we can find some h ∈ Cc(X ) so h ≤ f and
∫ ∗

f −
∫
h < ϵ .

(That is, in the definition of being integrable we observe we can take д = f , and h ∈ Cc(X ).) □

In not too long we’ll discover that the characteristic functions of compact Borel sets are au-
tomatically in L1(X ), and that we can define a Borel measure from a Radon integral using the
integrals of these characteristic functions. Indeed, we’ll also see that L1(X ) as we’ve just defined
it agrees with the L1(X ) that one might more conventionally define starting from that measure.

First, however, we need to prove a number of technical statements about Cc(X )m, Cc(X )m,
the upper and lower integrals, and the class L1(X ). In the next section, we’ll establish the basic
convergence theorems (the monotone convergence theorem, Fatou’s lemma, and the dominated
convergence theorem).

Lemma A.22. Given an increasing sequence { fn} ⊂ Cc(X )m, sup{ fn} is in Cc(X )m too.

Proof: Choose {дnm} ⊂ Cc(X )withдnm ↗ fn. By replacing eachдnm withд′nm = max(д1m,д2m, . . .дnm)
(notice we still have д′nm ∈ Cc(C), and д′nm ↗ fn) we may assume that дnm is increasing with re-
spect to n as well. We claim дnn ↗ sup{ fn}. □

Lemma A.23. If { fn} ⊂ Cc(X ) and fn ↗ f for some f ∈ Cc(X )m, then
∫
fn ↗

∫ ∗
f .
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We defer the proof to Appendix A.8.

Lemma A.24. The linear functionals
∫ ∗

and
∫
∗ are actually linear!

Proof: Homogeneity, that is, the condition that
∫ ∗

c f = c
∫ ∗

f for all c ≥ 0, is straightforward.
Unfortunately additivity is a bit tricky. It’s clear that

∫ ∗
(f + д) ≥

∫ ∗
f +

∫ ∗
д, as if we have

functions f ′,д′ ∈ Cc(X ) whose integrals are very close to
∫ ∗

f and
∫ ∗

д respectively, we can use
f ′ + д′ to produce a lower bound for

∫ ∗
(f + д).

To go the other way we need Lemma A.23: pick sequences { fn}, {дn} ⊂ Cc(X ) so fn ↗ f and
дn ↗ д. One see that fn +дn ↗ f +д. Then

∫
fn ↗

∫ ∗
f ,

∫
дn ↗

∫ ∗
д,

∫
(fn +дn)↗

∫ ∗
(f +д),

and the linearity of
∫

on Cc(X ) itself allows us to conclude that
∫
(fn + дn) =

∫
fn +

∫
дn ↗∫ ∗

f +
∫ ∗

д. Uniqueness of limits in R gives the result. □

That’s a relief.

Corollary A.25. On L1(X ),
∫
is linear.

Lemma A.26. If { fn} ⊂ Cc(X )m and fn ↗ f , by Lemma A.22 f ∈ Cc(X )m and we have∫ ∗
fn ↗

∫ ∗
f .

Again we defer the proof to Appendix A.8.

Lemma A.27. If f ∈ Cc(X )m and д ∈ Cc(X )m, and f ≤ д, then
∫
∗ f ≤

∫ ∗
д.

Proof: Since д − f ≥ 0,

0 ≤
∫ ∗

д − f

=

∫ ∗
д +

∫ ∗
(−f )

=

∫ ∗
д −

∫
∗
f . □

Corollary A.28. For any f ,
∫
∗∗ f ≤

∫ ∗∗
f , since for any д in the set

∫
∗∗ is a supremum over, and

any д′ in the set
∫ ∗∗

is an infimum over, we have д ≤ f ≤ д′, so the previous lemma applies.

Lemma A.29. The class L1(X ) forms a vector space.

Proof: This is pretty easy using the definition and the fact that
∫ ∗ and

∫
∗ are linear (Lemma

A.24). □
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Lemma A.30. The class L1(X ) is closed under max and min.

Proof: If fi ∈ L1(X ) for i = 1, 2, we can find fi ∈ Cc(X )m and fi ∈ Cc(X )m so∫ ∗
fi −

∫
∗
fi < ϵ/2.

Now
max(f1, f2) −max(f1, f2) ≤ (f1 − f1) + (f2 − f2)

(prove this by checking all four cases in the left hand side), and both sides of this inequality are
in Cc(X )m. Thus we have∫ ∗

max(f1, f2) −max(f1, f2) ≤
∫ ∗

(f1 − f1) + (f2 − f2)

and using linearity and Equation (A.1)∫ ∗
max(f1, f2) −

∫
∗
max(f1, f2) ≤

∫ ∗
f1 +

∫ ∗
f2 −

∫
∗
f1 −

∫
∗
f1

< ϵ

and so the pair of functions max(f1, f2) and max(f1, f2) provide the necessary witnesses to show
max(f1, f2) ∈ L1(X ). A similar argument handles the minimum. □

TheoremA.31 (The monotone convergence theorem). If { fn} ⊂ L1(X ) and fn ↗ f , and moreover
sup

∫
fn < ∞, then f ∈ L1(X ) and

∫
f = lim

∫
fn.

Proof: Since L1(X ) is a vector space, by subtracting off f0 from f and fn we may assume that
f0 = 0. Define дn = fn+1 − fn ∈ L1(X ). By definition, for any ϵ > 0 we may pick hn ∈ Cc(X )m

with hn ≥ дn, but still
∫ ∗

hn <
(∫

дn
)
+ 2−nϵ . With h =

∑
hn, we can apply Lemma A.26 to see

h ∈ Cc(X )m and h ≥ ∑n−1
i=0 дi = fn, so h ≥ f . Now we calculate∫

fm =

∫
∗∗
fm

≤
∫
∗∗
f

≤
∫ ∗∗

f (by Corollary A.28)

≤
∫ ∗∗

h
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=

∫ ∗
h

= lim
N

∫ ∗ N∑
n=0

hn (by Lemma A.26)

=
∑∫ ∗

hn (by linearity of
∫ ∗

, Lemma A.24)

≤
∑∫

дn + 2−nϵ (by the discussion above)

= lim
∫

fn + ϵ (making use of Corollary A.25)

This hold for everym, so takingm → ∞ we obtain lim
∫
fm ≤

∫
∗∗ f ≤

∫ ∗∗
f ≤ lim

∫
fn, showing

that f all these numbers are equal and f is integrable. □

Theorem A.32 (The dominated convergence theorem). If { fn} ⊂ L1(X ), and fn → f pointwise
(not necessarily monotonically!), and if | fn | ≤ д for some д ∈ L1(X ), then f ∈ L1(X ) and

∫
f =

lim
∫
fn.

Proof: Define hn = inf(fn, fn+1, . . .). We see hn ↗ f , and using the bound | fn | ≤ д, we have∫
hn ≤

∫
fn ≤

∫
| fn | ≤

∫
д, so sup

∫
hn < ∞ and we can apply the monotone convergence

theorem to show f ∈ L1(X ).
Next we look at the sequence an = 2д− | f − fn |. Again, let bn = inf(an,an+1, . . .), so bn ↗ 2д

and since 0 ≤ an ≤ 2д and 0 ≤ bn ≤ 2д, we have sup
∫
bn < ∞. We can thus apply the monotone

convergence theorem a second time, obtaining

2

∫
д = lim

∫
bn ≤ lim

∫
an = 2

∫
д − lim

∫ ��f − fn��
This gives lim

∫
| f − fn | ≤ 0, and the positivity of the integral gives us lim

∫ ��f − fn�� = 0. As���∫ f −
∫
fn
��� ≤ ∫ ��f − fn��, we obtain the result. □

I’ve intentionally left out a proof of Fatou’s lemma here (essentially rolling the idea into the
proof of the dominated convergence theorem) for the sake of an assignment question. (When
you do that assignment question, I’m happy for you to prove Fatou’s lemma in the context of
measures or integrals. There’s a proof of a weak version of Fatou’s lemma in the measure theory
notes.)
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A.4 Radon integrals from measures

We let F denote the Borel measurable functions on a space X , that is, those functions f : X → R
such that f −1(t ,∞) is Borel for every t ∈ R. As usual F+ denotes the cone of non-negative
elements in F .

Theorem A.33. Suppose µ is a Borel measure on X . There is a unique positive linear functional

Φ : F+ → [0,∞]

such that
• Φ(χA) = µ(A) for every Borel set A, and
• Φ(fn)↗ Φ(f ) whenever fn ↗ f in F+.

Proof: Let Fs denote the simple functions in F+,{∑
αnχAn | αn ≥ 0,An ∈ B

}
.

We first define Φ in Fs by Φ(αnχAn) =
∑
αnµ(An). It’s pretty straightforward (mucking about

with linear combinations of characteristic functions) to show this is a positive linear functional
on Fs .

We now establish a few preparatory results, whose proofs we postpose for a moment.

Lemma A.34. If fn ↗ f in Fs , then Φ(fn)↗ Φ(f ).

Lemma A.35. If { fn}, {дn} ⊂ Fs , and fn ↗ f , дn ↗ f for some f ∈ F+, then limΦ(fn) =

limΦ(дn).

Lemma A.36. If f ∈ F+, then there exists a sequence { fn} ⊂ Fs so fn ↗ f .

Using these facts, we define Φ on all of F+ by Φ(f ) = limΦ(fn), using some approximating
sequence provided by Lemma A.36. Using the uniqueness result from Lemma A.35 is is straight-
forward to show that Φ is a positive linear functional. Certainly Φ(χA) = µ(A), because we can
approximate χA with a constant sequence.

We still need to show that Φ(fn) ↗ Φ(f ) whenever fn ↗ f in F+. Pick approximating
sequences {дnm} ⊂ Fs , so дnm ↗ fn. We’d like to construct from this two parameter family some
functions hn ∈ Fs , with that property that hn ↗ f , and still hn ≤ fn. If we can do this, we see
limΦ(fn) ≤ Φ(f ) = limΦ(hn) ≤ limΦ(fn), giving the result. You might hope to use a diagonal
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argument, and try hn = дnn, but the problem here is that there’s no guarantee1 that дnn ↗ f .
Unfortunately while дnm is increasing inm, it is not necessarily increasing with n. To get around
this, we take

hn = max(д1n,д2n, . . . ,дnn).

Now, certainly hn is increasing

hn+1 = max(д1,n+1,д2,n+1, . . . ,дn,n+1,дn+1,n+1)

≥ max(д1,n,д2,n, . . . ,дn,n,дn+1,n+1)

≥ max(д1,n,д2,n, . . . ,дn,n)
= hn .

To see that hn ↗ f , for any x ∈ X and ϵ > 0, we see that we can find some n′ so | f (x)− fn′(x)| <
ϵ/2. We can then find somem, which we may assume to be at least n′, so | fn′(x)−дn′m(x)| < ϵ/2.
Now taking n =m, we have hn(x) ≥ дnm, and so f (x) − hn(x)| < ϵ .

We’re now all done, except for the proofs of the lemmas!

Proof of Lemma A.34: We need to show that if fn ↗ f in Fs , then Φ(fn)↗ Φ(f ).
We first consider the case f = χA for some Borel set A. The general case is an easy conse-

quence. Pick ϵ > 0, and let Bn = { fn ≥ 1−ϵ }. Observe (1−ϵ)χBn ≤ fn. Since fn ↗ χA,
∪

Bn = A,
and so µ(Bn)↗ µ(A) by countable additivity of the measure.

For each n, fn is a linear combination, with coefficients in [0, 1], of characteristic functions of
disjoint sets all contained inside A. Thus Φ(fn) ≤ µ(A).

Now we have

µ(A) ≥ limΦ(fn)

≥ (1 − ϵ) limΦ(χBn)

= (1 − ϵ) lim µ(Bn)

= (1 − ϵ)µ(A).

Taking ϵ → 0 gives the result. □

Proof of Lemma A.35: We need to show that limΦ(fn) = limΦ(дn). Since min(fn,дn) ↗ fn,
limΦ(дm) ≥ limn Φ(min(fn,дn)) = Φ(fn) by Lemma A.34. Thus limΦ(дm) ≥ limΦ(fn), and by
symmetry we’re done. □

1(The problem is that at each point x , we can find some n so | f (x)− fn(x)| < ϵ/2, but then the sequence {дnm(x)}
might take too long — in particular untilm > n to come within ϵ/2 of fn(x).)
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Proof of Lemma A.36: We need to constructing an approximating sequence { fn} ⊂ Fs so fn ↗ f

for any f ∈ F+.
Define

Ank = {(k − 1)2−n < f ≤ k2−n}

and let

fn =
∑
k≥1

(k − 1)2−nχAnk . □

That concludes the proof of Theorem A.33. □

Definition A.37. Suppose µ is a Radon measure on X .
Suppose f ∈ Cc(X ). We can write f = f+ + f−, where f+ = max(f , 0) ∈ Cc(X )+ and

f− = min(f , 0), with −f− ∈ Cc(X )+. We have some α ≥ 0 and a compact set K so that f+ ≤ α χK .
Since µ is a Radon measure, µ(K) < ∞, so Φ(f+) < ∞. (Here Φ is the positive linear functional
defined in Theorem A.33 from µ.) Similarly Φ(−f−) < ∞.

We then check that if we had picked some other д+ in Cc(X ) and д− with −д− ∈ Cc(X ) so
f = д++д−, then Φ(f+)−Φ(−f−) = Φ(д+)−Φ(−д−). This follows easily from the observations
that in this case д+ = f+ + k and д− = f− − k for some k ∈ Cc(X )+.

We define the integral
∫
µ
by

∫
µ
f = Φ(f+) − Φ(−f−). We easily see

∫
µ
is a Radon integral:

positivity and linearity follow from the same conditions for Φ, and the invariance condition of
the last paragraph.

A.5 Measures from Radon integrals

We first define

M′ =
{
B ⊂ X | χB ∈ L1(X )

}
and then

M =
{
A ⊂ X | A ∩ K ∈ M′ for all compact K }

Lemma A.38. If K is a compact set, χK is integrable.

Proof: If K is compact, χK ∈ Cc(X )m by Lemma A.19. Clearly
∫
∗ χK ≥ 0, so by Lemma A.21 χK is

integrable. □
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It is immediate from the definitions that we then have every compact set inM′, and hence
also inM.

Lemma A.39. The collection of subsetsM is a σ -algebra.

Proof: Certainly the zero function is integrable, so ∅ ∈ M.
If A ∈ M, for any compact set K we have

χ(X\A)∩K = χK − χA∩K

which is in L1(X ) since by Lemma A.38 χK is integrable, and A ∈ M ensures χA∩K is integrable.
(Of course here we’re using that L1(X ) is a vector space, per Lemma A.29.) This shows that X \A
is also inM, so we seeM is closed under taking complements.

We showed in Lemma A.30 that L1(X ) is closed under max and min, soM′ is closed under
finite unions and intersections. By the monotone convergence theoremM′ is also closed under
countable unions: max{χEi }ni=0 ↗ χ∪

Ei . □

Lemma A.40. The σ -algebraM contains all Borel sets.

Proof: Given any closed set C , we see C ∩ K is compact if K is compact, so Lemma A.38 ensures
C ∈ M. □

Theorem A.41. If we define µ(A) =
∫
∗∗ χA for every A ∈ M, then µ is a Radon measure.

Proof: We first prove that µ is inner regular, that is,∫
∗∗
χA = sup

{∫
χK | K a compact subset of A

}
.

Consider h ∈ Cc(X )m, with h ≤ χA. As h is upper semicontinuous, the sets Cn = {h ≥ n−1}
are closed, and in fact compact, as h is dominated by some function with compact support. Since
h ≤ 1, in fact h ≤ χ∪

Cn , and so
∫
h ≤ sup

∫
χCn . By definition

∫
∗∗ χA is the supremum of such∫

h, so ∫
∗∗
χA ≤ sup

∫
χCn ≤ sup

{∫
χK | K a compact subset of A

}
.

The other inequality is easy, so we have proved inner regularity.
Next we check countable additivity of µ. Suppose we have a countable collection {An} of

disjoint sets inM. Consider K a compact subset of ∪An. Then

µ(K) =

∫
∗∗
χK

=

∫
χK (since K is integrable)
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=

∫ ∑
χK∩An

=
∑∫

χK∩An (by the MCT)

=
∑∫

∗∗
χK∩An (as An ∈ M, χK∩An is integrable)

=
∑

µ(K ∩An). (A.2)

We now prove that µ (∪An) ≤
∑
µ(An) and then that µ (∪An) ≥

∑
µ(An).

Easily from Equation (A.2) we have µ(K) ≤ ∑
µ(An). Since this holds for any compact K

inside ∪
An, it holds for the supremum too, and inner regularity gives

µ
(∪

An

)
= sup

{
µ(K) | K a compact subset of

∪
An

}
≤

∑
µ(An).

In the other direction, we write

µ
(∪

An

)
= sup

cpct K ⊂ ∪
An

µ(K)

= sup
cpct K ⊂ ∪

An

∑
µ(K ∩An)

and interchanging supremums and sums,

=
∑

sup
cpct K ⊂ ∪

An

µ(K ∩An)

≥
∑

sup
cpct K ⊂ An

µ(K ∩An)

(as this is a supremum over a more restrictive family)

=
∑

sup
cpct K ⊂ An

µ(K)

=
∑

µ(An)

by inner regularity again. □

A.6 These constructions are inverses!

We start with a Radon integral
∫
, define a Radon measure µ following §A.5, and then define a

new Radon integral
∫
µ
following §A.4. First, if f =

∑N
n=0 αnχAn , with αn ≥ 0 and An Borel and
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compact, we see ∫
µ
f =

∑
αnµ(An) =

∑
αn

∫
∗∗
χAn =

∫
∗∗
f =

∫
f .

(We used the assumption that f had compact support in the last step.)
Next we can approximate any f ∈ Cc(X )+ by such functions, with fn ↗ f . Then∫

µ
f = Φ(f )

= limΦ(fn) by the second condition in Theorem A.33

= lim
∫
µ
fn

= lim
∫

fn by the previous paragraph

=

∫
f by the monotone convergence theorem

Easily this gives the result that
∫
µ
=

∫
.

In the other direction, we start with a Radon measure µ, construct a Radon integral
∫
µ
ac-

cording to §A.4, and then construct another Radon µ̂ following §A.5. As both measures are inner
regular, it’s enough to show that µ(K) = µ̂(K) for every compact set K .

Approximate χK using Lemma A.19, obtaining fn ∈ Cc(X ) with fn ↘ χK . Then µ̂(K) =∫
∗∗ χK = lim

∫
fn by Lemma A.23, and each of these is at least µ(K), so we have µ̂(K) ≥ µ(K). In

fact, by inner regularity we now know that µ̂(B) ≥ µ(B) for any Borel set B.
To obtain the other inequality, we consider some f ∈ Cc(X ), with 0 ≤ f ≤ 1, and f ≥ χK .

Observe that f n ↘ χL, where L = { f = 1}. Now,

µ̂(L) =

∫
µ∗∗

χL = lim
∫
µ
f n

and since f − f n ↗ f − χL, we can apply the second condition in Theorem A.33 to obtain

lim
∫
µ
f n =

∫
µ
χL = µ(L).

Finally, if we had µ(K) < µ̂(K) we would obtain a contradiction from µ̂(L) = µ̂(K) + µ̂(L \ K) >
µ(K) + µ(L \ K) = µ(L).

Phew! That completes the proof of Riesz’ representation theorem:
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TheoremA.42. On a nice2 spaceX , there is a bijection between Radonmeasures and Radon integrals,
given by the constructions of §A.4 and §A.5.

A.7 Stieltjes integrals

We now construct all Radon integrals on R. (This is very specific to R, using the order structure
on R is an essential manner; it’s much harder to describe all Radon integrals on anything bigger!)

Letm be a monotone non-decreasing function on R.
We’ll now construct a Radon integral

∫
m
fromm. For each f ∈ Cc(R), pick some interval [a,b]

containing its support. Given a partition λ = {a = λ0 < λ1 < · · · < λn = b}, define upper and
lower Riemann-Stieltjes sums by

∗∑
λ

f =
n−1∑
k=0

*, sup
x∈[λk ,λk+1)

f (x)+- (m(λk+1) −m(λk))

∑
λ∗

f =
n−1∑
k=0

(
inf

x∈[λk ,λk+1)
f (x)

)
(m(λk+1) −m(λk)) .

(These are all Riemann-Stieltjes sums because whenm(x) = x these are just the Riemann sums
for a partition.)

Clearly ∑∗
λ is decreasing as the partition λ becomes finer, and similarly ∑

λ∗ is increasing.
Clearly ∑∗

λ −
∑

λ∗ f ≥ 0, and we next show that this difference converges to zero. With that, we
define the Stieltjes integral

∫
m
f = limλ

∑∗
λ = limλ

∑
λ∗.

As f is uniformly continuous on [a,b], for any ϵ > 0 we have a δ > 0 so sup
x∈[λk ,λk+1]

f (x) −
infx∈[λk ,λk+1] f (x) < ϵ as long as λk+1 − λk < δ . Thus for any partition in which every interval is
of length at most δ , with have ∑∗

λ −
∑

λ∗ f < ϵ(m(b) −m(a)).
Exercise. Show the the Stieltjes integral is actually linear.

It’s immediate that the Stieltjes integral is positive, so we have constructed a Radon integral.
Before we show that all Radon integrals are of this form, we make some observations about

monotone functions. One can see that such a function has at most countably many points of
discontinuity. If m is not already lower semicontinuous (for a monotone increasing function
this is the same as continuous from the left), we can modify its values at those discontinuities
so that it becomes lower semicontinuous. Explicitly, we can define a new function m′(x) =

sup
y<x

m(y), which is still monotone increasing, is lower semicontinuous, and agrees with m

except at countable many points.
2(locally compact, Hausdorff, second countable)
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Exercise. Check that the Stieltjes integral is not affected by this modification: that is
∫
m
=

∫
m′

as
positive linear functionals on Cc(X ).

In fact, every Radon integral of R is a Stieltjes integral, for some lower semicontinuous mono-
tone functionm : R → R. Fix some Radon integral

∫
, and construct the corresponding class of

integrable functions L1(X ). Define

m(x) =

∫
χ[0,x) if x ≥ 0

−
∫
χ[x ,0) if x < 0.

The monotone convergence theorem ensures thatm is lower semicontinuous (and it’s easy to see
it’s monotone non-decreasing, from the positivity of

∫
).

We need to show
∫

=
∫
m
. Easily, f ≤ ∑n−1

k=0

(
sup

x∈[λk ,λk+1)
f (x)

)
χ[λk ,λk+1) for any partition

λ, so ∫
f ≤

n−1∑
k=0

∫ *, sup
x∈[λk ,λk+1]

f (x)+- χ[λk ,λk+1]

=
n−1∑
k=0

∫ *, sup
x∈[λk ,λk+1]

f (x)+- (m(λk+1) −m(λk)

=
∗∑
λ

f

and similarly
∫
f ≥ ∑

λ∗ f . Since these quantities converge to
∫
m
f , we have the desired result.

Exercise. Ifm : R → R is monotone non-decreasing, and absolutely continuous, so in particular
m′ exists and is integrable, show that ∫

m
χE =

∫
E
F ′(x)dx

where the right hand side is Lebesgue integration, and more generally∫
m
f =

∫
f (x)m′(x)dx .

Exercise. If

m =

0 if x < 0

1 if x ≥ 0

what is
∫
m
?

Exercise. Show that µ({x }) = 0 for all x ∈ R if and only ifm is continuous.
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A.8 Appendix: some technical details

Definition A.43. A function f : X → R ∪ {+∞} is lower semicontinuous if f −1(t ,∞] is open for
every real t .

Exercise. A function is lower semicontinuous if and only if for every convergent sequence xn → x ,
f (x) ≤ lim inf f (xn).

Exercise. The supremum of an arbitrary family of lower semicontinuous functions is still lower
semicontinuous.

Lemma A.44. Every function f ∈ Cc(X )m is lower semicontinuous.

Proof: Such a function is the supremum of a sequence of continuous functions. □

Lemma A.45. If fn ↘ 0, and each fn is upper semicontinuous, positive, and compactly supported,
then | | fn | |∞ ↘ 0.

Proof: For any ϵ , the set { fn ≥ ϵ } is closed (this is direct from fn being upper semicontinous).
Since { fn ≥ ϵ } is contained in the support of fn, which has been assumed to be compact, these
sets are compact as well.

Now ∩
n≥0{ fn ≥ ϵ } = ∅, and by a standard compactness argument this means only finitely

many of { fn ≥ ϵ } (as n varies) are non-empty. That is, eventually | | fn | |∞ ≤ ϵ , and since this
argument held for any ϵ , we have the result. □

Lemma A.46. If { fn} ⊂ Cc(X )m, and fn ↘ 0, then
∫
∗ fn ↘ 0.

Proof: We first check that we can apply Lemma A.45. The functions fn are upper semicontinuous
by Lemma A.44. Since each fn ≥ 0, it has compact support. Thus Lemma A.45 shows that
| | fn | |∞ ↘ 0.

Note that lim
∫
∗ fn exists, since this is a sequence of decreasing non-negative numbers. We

now pass to a subsequence { fnk } so that | | fnk | | < 2−k , and for each k pick дk ∈ Cc(X ) with
fnk ≤ дk ≤ 2−k . Since the fn are decreasing, we can further assume the supports of дk are
decreasing (by replacing дk with min(д1, . . .дk), say). Then define д =

∑
дn, which is in Cc(X )+,

and we have ∑∫
дn ≤

∫
д < ∞.

Finally ∑∫
∗ fn ≤

∑∫
дn < ∞, and so we must have

∫
∗ fn ↘ 0. □

Proof of Lemma A.23: Recall we want to show that if { fn} ⊂ Cc(X ) and fn ↗ f for some f ∈
Cc(X )m, then

∫
fn ↗

∫ ∗
f .

22



For any compactly supported continuous д with д ≤ f , we have д − min(fn,д) ↘ 0, so by
Lemma A.46 ∫

∗
д −min(fn,д)↘ 0

which we can re-express as ∫
д = lim

∫
min(fn,д)

which in turn is less that
∫
fn. Since this held for any such д ≤ f , we also have

∫ ∗
f ≤ lim

∫
fn.

Since fn ≤ f , the other direction is trivial, and we have the result. □

Proof of Lemma A.26: Recall that we want to show that if { fn} ⊂ Cc(X )m and fn ↗ f , then∫ ∗
fn ↗

∫ ∗
f .

By the monotonicity of
∫ ∗, we have lim

∫ ∗
fn ≤

∫ ∗
f .

Now suppose д ∈ Cc(X ) and д ≤ f . We have д −min(fn,д)↘ 0, so∫
∗
(д −min(f − n,д))↘ 0

by Lemma A.46. However by linearity we can write∫
∗
(д −min(f − n,д)) = −

∫ ∗
−д +min(fn,д)

=

∫
д −

∫ ∗
min(fn,д)

≥
∫

д −
∫ ∗

fn

Putting these facts together, lim
∫
д−

∫ ∗
fn ≤ 0, so

∫
д ≤

∫ ∗
fn. As this holds for every continuous

compactly supported д ≤ f ,
∫ ∗

f ≤
∫ ∗

fn, completely the claim.
□

A.9 Appendix: Some point set topology

Definition A.47. A topological space X is Hausdorff if for every two points x ,y, there exist
disjoint open sets U ,V with x ∈ U and y ∈ V .

Definition A.48. A topological space X is locally compact if every point has a compact neigh-
bourhood, i.e. for every x ∈ X , there exists an open setU and a compact set K so that x ∈ U ⊂ K .
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When X is Hausdorff, an equivalent formulation of local compactness is that “every neigh-
bourhood contains a compact neighbourhood”.

Definition A.49. A topological space X is separable if it contains a countable dense set.

Definition A.50. A topological space X is second countable if there is a countable collection (Ui)

of open sets, such that every open set is the union of some of the Ui .

Every second countable space is separable, but not vice versa! In one important way second
countable spaces behave like metric spaces — convergence of sequences (rather than of nets)
determines all the topological information. It is a consequence of this that in second countable
spaces (just as in metric spaces) sequential compactness and compactness are equivalent.

We collect here a few useful facts.

Lemma A.51. If X is a locally compact metric space, and K is a compact set, there is an ϵ > 0 so
the set {

x | d(x ,K) ≤ ϵ
}

is still compact.

Proof: Using local compactness choose rk > 0 and Kk ⊂ X for each k ∈ K so that B(k, rk) ⊂ Kk

and Kk is compact. The balls {B(k, rk/2)}k∈K form an open cover of K , so there is a finite sub-
cover indexed by I ⊂ K . Let r = mini∈I ri . Now, if d(x ,K) ≤ r/2, then d(x ,y) ≤ r/2 for some
y ∈ K , and that y is in turn inside B(i, ri/2) for some i ∈ I . Thus x ∈ B(i, ri) ⊂

∪
i∈I Ki . Since

the set {x | d(x ,K) ≤ r/2} is closed, and a subset of the compact set ∪
i∈I Ki , we see that it is

compact. □
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