Math 3325, 2017

Problem Set 2

Discuss in tutorial on August 7 and 14

These questions are all about the problem of finding the closest point in $L^p([0, 1])$, in the subspace

$$S_p = \{ f \in L^p([0,1]) \mid \int_0^1 x f(x) \, dx = 0 \},\$$

to the function g(x) = 1.

1. Show that S_p is a closed subspace of $L^p([0, 1])$, for all $p \in [1, \infty)$.

2. For p = 2, find the closest point in S_2 to g (in the L^2 metric).

3. For p = 1, show that for every $\epsilon > 0$ there is an $f \in S_1$ such that $||g - f||_1 \le 1/2 + \epsilon$, but that there is no $f \in S_1$ such that $||g - f||_1 \le 1/2$. In particular, there is no closest point to g in S_1 in the L^1 metric.

4. What happens in L^p for 1 ? Hint: if <math>g = f + h, where $f \in S_p$, use Hölder's inequality

$$\left|\int_{0}^{1} u(x)v(x) \, dx\right| \le \|u\|_{L^{p}([0,1])} \|v\|_{L^{q}([0,1])}, \quad p^{-1} + q^{-1} = 1.$$

to get a lower bound on $||h||_p$. Then use the fact that equality in Hölder's inequality will occur if $u, v \ge 0$ and $u = cv^{q-1}$.