Math 3325, 2017

Problem Set 2

Discuss in tutorial on August 7 and 14

These questions are all about the problem of finding the closest point in $L^{p}([0,1])$, in the subspace

$$
S_{p}=\left\{f \in L^{p}([0,1]) \mid \int_{0}^{1} x f(x) d x=0\right\},
$$

to the function $g(x)=1$.

1. Show that S_{p} is a closed subspace of $L^{p}([0,1])$, for all $p \in[1, \infty)$.
2. For $p=2$, find the closest point in S_{2} to g (in the L^{2} metric).
3. For $p=1$, show that for every $\epsilon>0$ there is an $f \in S_{1}$ such that $\|g-f\|_{1} \leq 1 / 2+\epsilon$, but that there is no $f \in S_{1}$ such that $\|g-f\|_{1} \leq 1 / 2$. In particular, there is no closest point to g in S_{1} in the L^{1} metric.
4. What happens in L^{p} for $1<p<2$? Hint: if $g=f+h$, where $f \in S_{p}$, use Hölder's inequality

$$
\left|\int_{0}^{1} u(x) v(x) d x\right| \leq\|u\|_{L^{p}([0,1])}\|v\|_{L^{q}([0,1])}, \quad p^{-1}+q^{-1}=1,
$$

to get a lower bound on $\|h\|_{p}$. Then use the fact that equality in Hölder's inequality will occur if $u, v \geq 0$ and $u=c v^{q-1}$.

