Math 3325, 2017

Problem Set 3

Discuss in tutorial on August 21 and 28

1. (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an even, integrable function. Show that \hat{f} is an even, real-valued function.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an odd, integrable function. Show that \hat{f} is an odd, purely imaginary function.
2. Let T be the operator $(2 \pi)^{-n / 2} \mathcal{F}$.
(i) Show that, for $k=0,1,2,3$, there exists a polynomial $p_{k}(x)$ of degree k and a complex number c_{k} such that

$$
T\left(p_{k}(x) e^{-x^{2} / 2}\right)=c_{k} p_{k}(\xi) e^{-\xi^{2} / 2}
$$

What is the value of c_{k} ?
(ii) Let b be a complex number of norm 1, but not a fourth root of unity. Show that there is no Schwartz function g such that $T g=b g$. Hint: what is the operator T^{4} ?
3. Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be nonnegative with integral 1 . Let

$$
\phi_{\delta}(x)=\delta^{-n} \phi\left(\frac{x}{\delta}\right)
$$

Show that for every $f \in L^{1}(\mathbb{R}), f * \phi_{\delta}$ converges to f in L^{1} as $\delta \rightarrow 0$.
4. Pick a real number randomly (according to the uniform measure) in the interval [0, 2]. Do this one million times and let S be the sum of all the numbers. What, approximately, is the probability that $S \geq 1,001,000$? Express as a definite integral of the function $e^{-x^{2} / 2}$.

