
This thesis provides a partial answer to a question posed by Greg Kuperberg
in [13] and again by Justin Roberts as problem 12.18 in Problems on invariants of
knots and 3-manifolds [16], essentially:

Can one describe the category of representations of the quantum
group Uq(sln) (thought of as a spherical category) via generators
and relations?

An obvious generalisation of the question replaces Uq(sln) with an arbitrary quan-
tum group.

Spherical categories (essentially tensor categories with duals) permit a dia-
grammatic calculus, in which we can modify diagrams by arbitrary planar iso-
topies. Understanding such a category in terms of generators and relations en-
sures that all identities are ‘local’. The original motivation for wanting such a
local diagrammatic calculus came from the skein theories for quantum knot in-
variants; it turns out that many of the examples of tensor categories with duals
(and all those coming from quantum groups) are also braided categories, and so
naturally provide invariants of knots and tangles. Local rules for simplifying di-
agrams allow ‘divide and conquer’ style calculations of these invariants — we
can simplify small subtangles of a larger tangle before gluing the pieces together.
More recently, a new motivation has been discovered, coming from physics and
topological quantum computing, which I’ll discuss later.

Answers to special cases of the generators and relations question are known.
The Temperley-Lieb category gives a generators and relations description of the
representation theory of Uq(sl2). Kuperberg’s results in [13] give a diagram-
matic presentation of the representations theories of the three rank 2 complex
Lie algebras sl3, so5 and g2, and their corresponding quantum groups. In fact, a
computer implementation of the ‘divide and conquer’ method of calculating the
quantum knot invariants for the rank 2 quantum groups is available as part of
the KnotTheory‘ package available at [2].

For each n ≥ 0, I define a certain tensor category of trivalent graphs, modulo
isotopy, and construct a functor from this category onto the category of represen-
tations of the quantum group Uq(sln). (Actually, the functor will only be onto
the full subcategory of tensor products of fundamental representations, which is
still ‘big enough’ in the sense that every irreducible representation appears as a
subobject of such a tensor product.) One would like to describe completely the
kernel of this functor, by providing generators. The resulting quotient of the di-
agrammatic category would then be a category equivalent to the representation
category of Uq(sln).

I make significant progress towards this, describing certain elements of the
kernel, and some obstructions to further elements. It remains a conjecture that
these elements really generate the kernel. The argument is essentially the follow-
ing. Take some trivalent graph in the diagrammatic category for some value of
n, and consider the morphism of Uq(sln) representations it is sent to. Forgetting
the full action of Uq(sln), keeping only a Uq(sln−1) action, the source and target
representations branch into direct sums, and the morphism becomes a matrix of
maps of Uq(sln−1) representations. Arguing inductively now, we attempt to write
each such matrix entry as a linear combination of diagrams for n−1. This gives a
functor dGT between diagrammatic categories, realising the forgetful functor at
the representation theory level. Now, if a certain linear combination of diagrams
for n is to be in the kernel of the representation functor, each matrix entry of dGT
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applied to that linear combination must already be in the kernel of the represen-
tation functor one level down. This allows us to perform inductive calculations,
both establishing families of elements of the kernel, and finding obstructions to
other linear combinations being in the kernel.

The results here recover the relations proposed to n = 4 in [11], and provide
some further evidence for a conjecture there that there are no further relations in
this case. One of the two interesting families of relations I describe have appeared
previously; proposed without proof in [15], and proved to be relations in [6]. My
results providing obstructions actually contradict a conjecture appearing in [6].

Inspired by the ‘topological states’ apparently explaining the fractional quan-
tum Hall effect (in high magnetic field, low temperature, two-dimensional elec-
tron gases), various people [3, 12, 17] have proposed building real systems based
on lattice models whose physics are described by the tensor category D of repre-
sentations of some quantum group at a root of unity. More precisely, the quantum
states of the system should form a representation of the category D; objects in D
should specify ‘boundary conditions’, so there is a Hilbert space for each object,
and we should be able to act on the system via morphisms in D. The ground
states with boundary conditions O should be identifiable with HomD(1,O). In
such a system, one would have an underlying microscopic medium, generally
a 2-dimensional lattice, with each site having some finite dimensional space of
quantum states. Then some rule allows you to interpret a basis state for the en-
tire medium as a diagram. The simplest example might a square lattice, with
the space of states for each edge being C2. The obvious basis is then in bijection
with the set of collections of open paths and closed loops on the lattice. These
diagrams generally won’t look like the allowable diagrams in the tensor category
D we’re trying to engineer — for example Schur’s lemma guarantees that, in the
category of representations of a quantum group, we should never see diagrams
with univalent vertices, because there are no maps from the trivial representation
to any other irreducible. We might imagine then turning on some Hamiltonian
which adds an energy penalty to basis states corresponding to disallowed dia-
grams. The (highly degenerate) ground states of such a system are then arbitrary
complex linear combinations of particular lattice-embeddings of diagrams from
D. We then imagine turning on further terms in our Hamiltonian, which firstly
enforce isotopy invariance (that is, which add an energy penalty to states which
give different coefficients to isotopic diagrams) and secondly enforce any identi-
ties in our category D.

Actually implementing such a device promises to be extremely difficult. Any
physically practicable Hamiltonian must act locally; for example by nearest neigh-
bour or next-to-nearest neighbour interactions. However those Hamiltonians
which have been studied so far and are thought to result in ‘topological phases’,
that is, systems as described above, result in uninteresting ones (such as Z/2Z
gauge theory) in which the braiding is trivial. On the other hand, there are
rigourous statements to the effect that certain local (although extraordinarily dif-
ficult to engineer) Hamiltonians do result in interesting topological phases [4, 5].
This situation makes it extremely desirable to obtain local descriptions of the
small examples of braided tensor categories; the locality of the description is es-
sential, because the Hamiltonian which implements the relations must itself be
local. (It’s perhaps worth saying that nothing in my thesis addresses braidings or
roots of unity phenomena, both of which are essential for the physical picture.)
This thesis can then be thought of as the beginning of this sort of description of
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the braided tensor categories coming from Uq(sln) for all n. Of course, only the
small values of n are at all likely to be interesting to physicists! So far their interest
has concentrated on simple cases such as Uq(sl2) at 4th and 5th roots of unity.

This thesis is certainly only an intermediate step. It remains to find an argu-
ment that the proposed relations really are all of them. Formulas for the braided
structure essentially appear in the work of [15], but need translating into my con-
ventions. Diagrammatic formulas for the inclusions of arbitrary irreducibles into
tensor products of fundamental representations are known at n = 3, thanks to
[11], but need to be worked out beyond that. These are essential to describing
the quotients of the category at roots of unity. Finally, one might try to categorify
everything in sight, following [7, 1] for n = 2, and [8] and my work with Ari Nieh
[14] for n = 3, hoping to find a topological alternative to the matrix factorization
model [9, 10] of Khovanov-Rozansky homology.
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