Monoidal categories enriched in braided monoidal categories

Scott Morrison - ANU - 2016-12-06 (joint work with David Penneys - Ohio State)

- What are these things?
- What do they lock like?
- What are they for?

In a monoidal category, we have objects and morphisms, and we can form tensor products of odojeets and of morphsms.

The important axiom is the exchange relation

or in symbols:

$$
(f \otimes g) \cdot(h \otimes k)=(f \circ h) \otimes(g \circ k) .
$$

We could also express this as a commatature diagram:

$$
\text { (fog). }(h a k)=(f \cdot r) \otimes(g \cdot k) .
$$

$$
e(a \rightarrow b) \times e(c \rightarrow d) \times e(b \rightarrow e) \times e(d \rightarrow f) \xrightarrow{(-\infty-)+(-\theta-)} e(a c \rightarrow b d) \times e(b d \rightarrow e f)
$$

$$
\downarrow \begin{aligned}
& \text { suited the } 2 \text { and and 3 nd } \\
& \text { factors }
\end{aligned}
$$

$$
e(a \rightarrow b) \times e(b \rightarrow e) \times e(c \rightarrow d) \times e(d \rightarrow f)
$$

Were now gong to enrich our monoidal categories in some other category V.
We no longer have morphisms, or even a set of morphisms. Instead, for each pair of objects a, b,

$$
e(a \rightarrow b) \text { is an object of } V \text {, }
$$

and we ask that composition

$$
e(a \rightarrow b) \times e(b \rightarrow c) \rightarrow e(a \rightarrow c)
$$

and tensor product

$$
e(x \rightarrow y) \times e(w \rightarrow z) \rightarrow e(x w \rightarrow y z)
$$

are both morphims in V.
What sort of categories can we use as D?

Certainly 2 will need to be a monoidal category, to make sense of these products.

$$
\begin{aligned}
& e(a \rightarrow b) \times e(b \rightarrow c) \xrightarrow{-0} e(a \rightarrow c) \\
& e(x \rightarrow y) \times e(w \rightarrow z) \xrightarrow{e} e(x \omega \rightarrow y z)
\end{aligned}
$$

Well also need a way to implement the 'switch' in the exchange relation:

$$
(f \otimes g) \cdot(h \otimes k)=(f \circ h) \otimes(g \circ k)
$$

Usually one studies the situation where ν is a symmetric monoidal category.

We've realised that mach, but not all, of the theory can be developed for
V a braided monoidal category.
and even better there are interesting and useful examples.
The exchange relation is

We call such a gadget a V-monoidal category.

One can detine monoidal functors between V-monoidal categones, and natural transtormations befween these.
(In grod stinations, these form a 2-category enriched in V.)
Curiously, products of ν-monoidal categovies don't seem to work.

We can classify V-monoidal categories in terms of classical data.
Define e^{v}, an honest monoidal category, with

$$
e^{2}(a \rightarrow b)=V\left(1_{2} \rightarrow e(a \rightarrow b)\right)
$$

There 15 a functor

$$
\begin{aligned}
\operatorname{tr}: e^{\nu} & \longrightarrow \nu \\
x & \longrightarrow e(1 \rightarrow x) .
\end{aligned}
$$

Theorem (Morsson-Pennegs 2016)

This gives a generalisation of de-equivariantisation: when we have $\operatorname{Rep} G \subset Z(T)$, T moncidal, there is another monoidal category T / G. 'the quotient by G '.
We can thur of this via our theorem -

- first use the bijection to produce a RepG-enidued category
- second use the lax functor Rep $G \rightarrow$ Vec to obtain the honest monoidal category $T / / G$.

Examples $A d E_{g}$ is an interesting fusion category with four simple dejects

In $Z\left(A d E_{s}\right)$, we find a copy of the Fibonacci category, so we can 'quotient' by it, producing a Fib-enriched monoidal category $A d E_{8} / /$ Fib, with two simple objects $1, X$, and

$$
x^{2} \cong 1 \oplus x \oplus x \quad \text { (something that cold not happen mo }
$$

sompllymg wart of fusion categories)
but where one of the mops $X^{2} \rightarrow X$ is ' τ-graded': $\quad A d E_{8} / / F_{i b}\left(X^{2} \rightarrow X\right)=1 \oplus \tau$

What next?

- more examples ('genuinely oplax?')
- simpler constructions of exotic tensor categories
- V -complete \Longleftrightarrow strong monoidal functor
- coherence theoreins, strictificatron
- semisimplicity
- idempotent completion
- Drinteld centres
- Limodule categories, Brauer-Picard groupoids
- fusion ring, principal graphs connections
- classification

