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' sub factor
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Modular data consists of such that :
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⇐
• Verhnde's formula :

• Txexe = Txx
µ,gZ=§Sxw5€Ew EZ >,o

•

q(SxD=
Ed> e) Sxey Siew

⇒ and these are the structure

5 constants of a based ring
the Galois .
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Theorem
A- unitary modular tensor category gives

modular data via :

5×5 to €0 tp=Txx)
5

the global dimension

Jedimlxth
X simple

Questions
What are the Dnnfeld centres of the exotic

-

sub factors ? ( In particular ' extended Haagerup
' )

- Perhaps easier
,

what is the corresponding

modular data ?

- Can we describe possible character vectors

for a CFT realising these MTCS ?
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fusion ring of E

@
action matrices dimensions of conductor

> e → ZCE) →
simple objects

→ N=ordCT )

abstracted> representation type → T matrix →
Frmodbienaiutosnfdvkrx

,
5. T

- change of basis
> Galois actions →

QS=5Q/
modular

data
for ZK )



Inductees on dad

There are adjoint funotas I :C # Zkl :R

which at the level of Grothendieck groups give matrices

At :kde)→←kdZKD : A
.

R(I(A) =fQweVXV*, so the fusion ring of E determines AAT

(a symmetric non - negative integer matrix ) .

Levina there are finitely many such A
.

Now dim HEZKD =€weA*,
dinked

,

dimly)|dm(ZKD as algebraic integers,

and dimly) is an
Ostnik d- number

.

With these restrictions
,

and a tick when AAT is not full rank
,

it is plausible to enumerate all possible A
.

From these
,

we calculate the dimensions of objects in ZK )
.



Conductors BBA

TfN=MpMi ,

we must have an object xi with Teigenvalue Xi where

pinilordli .

Then Txexe =TxlI tells as the Gala 's orbit of xi has at least

ponitlpitlk elements ( or 2h53 if pi⇒
.

For a given
rank

,
there are finitely many possible conductors

.

Moreover
,

S±x=KID = dung ,

and odS±×)=±S±×e
,

gives
restrictionson the sizes of Galois orbits

.



542,121N 2) representations .

Bagg
-

We now enumerate possible ( abstract representation types .

If N=M Pini
,

542,74N 74=7542 ,
Zlpini 2)

,

and GAP compute character tables in the relevant ranges .

For a representation p ,
write Hp ) for the set of Teigen values

(which we can read off the character table ) .

We can throw out most representations :

• dcm ( order CT(pD)=N
• if X appears in some mep ,

{ QX } appear together in some map .

• # ( X in tlpeven I # (X in Tlpodd)

• traces of Galois group
elements may be constrained by counting firedpoints

.

• # ( 1 in TIPDZ # of simples in the induction of 1e
.

Write T
' for the T . matrix in the abstract representation type.



TI.es par

At this point we have T
,

so we know the multi . set of Feign values
,

but not how they correspond to columns of the induction matrix

Using Oe(Sex)=±S±xe
,

Txexettx !
and the top . Iett entry of STET 's TI :

§di2ti  = §dF - usmgpeo . inequality along the was .

we can enumerate all possible bijections .
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.••..The change of basis
-

Now we obtain explicit 5
' and T

' matrices for the chosen

542,21N 2) representation type.

( From the Repsn package in GAP
. )

there's some change of basis Q so TQ=QT
,

s 'Q=QS
,

with Q and S mostly unknown
,

Q invertible
.

We first solve all the linear equations available :

T 'Q= QT

) STAT = Tt At ( ←→ s
'

QT At = QT
'A) Generalised Fpnndicatos)

S±±= dome
,

S ,e×= E. No
.

Ism)

g=c ( ⇐ 52 Q=QG)_
a pfo;) ,

so determined by

P
' ( dofed Q = QGE

the aol.is action
.

No|
s 'Q=Qs is a system of quadrate equations Gn Qij

,
Sxg jointly)

,

which ff we're lucky ) we can solve (away from detQ=O )
.



- Let as calculate ! -



What about character vectors ?

- If there is a conformal field theory whose representation

category realises Z (e)
,

then the graded dimensions

of its modules
gives a character vector :

- a vector valued modular form X

He
Q[qiqD

"

*ft)=
qhm.tk#zoqndimMtIn..+n(q=e2tit)transforming according to the modular data :*ae÷a=pl ::#⇒

.

We can classify the vector valued modular forms

associated with our modular data Ifor each possible central

which satisfy appropriate integrality
ohmge a)

and positivity conditions
.



theorem ( Gannon - Morrison arxiv : 1606.07165 )

Any c=8 conformal held theory realising Z( EH ) has one

of four candidate character vectors
,

with vacuum components :

Challenge:

Construct such a CFT !


