The modular data machine
MATRIX 2016-12-15
Scott Morison (jaunt with Terry Gammon and Corey Tares)

$$
\text { fusion categories } \underset{\substack{\text { cobordism } \\ \text { hypothesis }}}{\substack{\text { Yyw:132.7188 }}} 3 \text { TQFTs }
$$

A 32 -dimensional TQFT is a functor $\{3$-manifolds $\omega /$ bounday $\} \xrightarrow[Z]{ }$ \{linear maps $\}$ \{2-manids TQFTS

A 321 -dimensional TQFT is a functor $\{3$-manifolds w/corners $\xrightarrow[Z]{ }$ \{linear maps $\}$ \{2-manifolds w/boundary\} $Z \longrightarrow$ \{vector spaces $\}$ R Q E1-manifolds \} $Z \longrightarrow$ categories \}

$$
\propto 0 \otimes Q \square=\sigma
$$

A 3210-dimensional TQFT is a functor $\{3$-manifolds w/corners $3 \longrightarrow Z$ linear maps $\}$ $\{2$-manifolds w/corners $\} \xrightarrow[Z]{ }$ \{vector spaces $\}$ \{1-manifolds w/boundary\} $Z \longrightarrow$ categories $\}$ Q §O-manifolds $\xi \xrightarrow[Z]{ }\{2$-categories $\}$ 7 TQFTS
a fusion category is a finitely semisimple rigid monoidal category

Fusion categories are "noncommutative finite groups".
Thy (Deligne)
A symmetric fusion category (satisfy a growth condition, eq. That sone Schur functor vanishes)
is Rep, for some finite (super) group.

Fusion categories are "noncommutative finite groups".
Thy (Deligne)
A symmetric fusion category (satisfy a growth condition, eq. That sone Schur functor vanishes)
is Rep, for some finite (super) group.

modular data
\Uparrow Today's goal is to determine the modular data for a Dnnfeld centre $Z(e)$.

This is so strongly constrained, in many cases we only need to know the tensor product multiplicities in e.
fusion categories $\xrightarrow[\text { arothendieck "based rings" }]{ }$ group

Modular data consists of

- a diagonal $n \times n$ matrix T
with order N
- a unitary, symmetric matrix

$$
S \in M_{n}(\underbrace{}_{\text {Che }_{\text {Neh }} \mathbb{Q i e l d}^{Q}\left[\xi_{N}\right]})
$$

n is called the rank
N is called the conductor

Modular data consists of

- a diagonal $n \times n$ matrix T with order N
- a unitary, symmetric matrix
n is called the rank
N is called the conductor
such that:
- $(S T)^{3}=S^{2}=C$ with C a permutation matrix, $C^{2}=I$
\Longrightarrow and so $p:\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \longmapsto S,\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \longmapsto T$ gives a representation of $S L(2 \mathbb{Z})$
- $S_{1 x}>0$ for all x
- p($\left.\begin{array}{ll}l & 0 \\ 0 & l^{-1}\end{array}\right)$ for l coprime to N is a signed permutation matrix

$$
\left(G_{l}\right)_{x y}=\varepsilon_{l}(x) \delta_{y, x^{l}}
$$

so we get an action of $\operatorname{Cal}\left(\mathbb{Q}\left[\xi_{N}\right]\right)$ on $\{1, \ldots, n\}$.

Modular data consists of

- a diagonal $n \times n$ matrix T with order N
- a unitary, symmetric matrix

$$
S \in M_{n}(\underbrace{\mathbb{Q}\left[\xi_{N}\right]}_{\substack{\text { the N th cylotomic } \\ \text { field }}})
$$

n is called the rank N is called the conductor

- $T_{x^{l} x^{l}}=T_{x x}^{l^{2}}$
- $\sigma_{l}\left(S_{x y}\right)=\varepsilon_{l}(x) S_{x^{l}, y}$

5
the Galois action
such that:
$-(S T)^{3}=S^{2}=C \quad$ win $C_{\text {a }}$ pempthon
\Rightarrow and so $p:\left(\begin{array}{ll}(1 & 1 \\ 1\end{array}\right) \mapsto S,\left(\begin{array}{lll}1 & 1 \\ 0\end{array}\right) \mapsto T$
ques a representation of $S(2 \mathbb{Z})$

- $S_{1 x}>0$ for all x
- p($\left.\begin{array}{ll}1 & 0 \\ 0 & l^{-1}\end{array}\right)$ for l coprme to N
is a saved permutation matrix x

$$
\begin{aligned}
& \left(G_{k}\right)_{x y}=\varepsilon_{1}(x) \delta_{y, x}{ }^{2} \\
& \text { so we get on action } \\
& \text { of } \operatorname{Gal}\left(\left[\left[\sum_{N}\right]\right)\right. \text { on } \\
& \text { \{1, —, n\}。 }
\end{aligned}
$$

- Verlinde's formula:

$$
N_{x y}^{z}=\sum_{\omega} \frac{S_{x \omega} S_{y w} S_{z \omega}}{S_{1 \omega}} \in \mathbb{Z}_{\geqslant 0}
$$

\Rightarrow and these are the structure constants of a based ring

Theorem
A unitary modular tensor category gives modular data via:

$$
\begin{equation*}
S_{x y}=\frac{1}{0}\left(\uparrow_{x}^{x}\left(\rho_{x}\right) \quad T_{x x} \uparrow\right. \tag{壁复}
\end{equation*}
$$

Questions -What are the Drinfeld centres of the exotic subfactors? (In particular 'extended Haagerup')

- Perhaps easier, what is the corresponding modular data?
- Can we describe possible character vectors for a CFT realising these MTCS?

fusion ring of e

$$
\left.\begin{array}{c}
\rightarrow \begin{array}{c}
\text { induction matrices } \\
e \rightarrow Z(e)
\end{array} \rightarrow \text { (dimensions of } \\
\text { simple objects }
\end{array} \rightarrow \begin{array}{c}
\text { conductor } \\
N=\text { ord }(T)
\end{array}\right]
$$

modular data for $Z(e)$

Induction and restriction
There are adjoint functors $I: \rho \rightleftarrows Z(e): R$ which at the level of Grothendieck groups give matrices

$$
A^{\top}: K_{0}(e) \rightleftarrows K_{0}(z(e)): A .
$$

$R(I(x))=\bigoplus_{V \in \operatorname{lrre}} V X V^{*}$, so the fusion ring of e determines $A A^{\top}$ (a symmetric non-negative integer matrix).
Lemma There are finitely many such A.
Now $\operatorname{dim}(Y \in Z(e))=\sum_{x \in 1 m e} A_{x x} \operatorname{dim}(X \in e)$,
$\operatorname{dim}(Y) \mid \operatorname{dim}(Z(e))$ as algebraic integers, and $\operatorname{dim}(Y)$ is an Ostrik d-number.
With these restrictions, and a trick when $A A^{\top}$ is not full rank, it is plausible to enumerate all possible A.
From these, we calculate the dimensions of objects in $Z(e)$.

Conductors
If $N=\prod p_{i}{ }^{n_{i}}$, we must have an object x_{i} with T eigenvalue λ_{i} where

$$
p_{i}^{n_{i}} \mid \operatorname{ord} \lambda_{i}
$$

Then $T_{x^{2} x^{2}}=T_{x x}^{l^{2}}$ tells us the Galois orbit of x_{i} has at least

$$
\left.P_{i}^{n_{i}-1}\left(p_{i}-1\right) / 2 \text { elements (or } 2^{n_{2}-3} \& p_{i}=2\right) \text {. }
$$

For a given rank, there are finitely many possible conductors.
Moreover, $S_{1 x}=\frac{D_{x}}{D}=\frac{\operatorname{dim} x}{D}$, and $\sigma_{l}\left(S_{1 x}\right)= \pm S_{1 x^{l}}$,
gives restrictions on the sizes of Galois orbits.
$S L(2, \mathbb{Z} / N \mathbb{Z})$ representations.
We now enumerate possible (abstract) representation types.

$$
\text { If } N=\prod_{p_{i}}^{n_{i}}, S \angle(2, \mathbb{Z} / N \mathbb{Z})=\prod_{i} S \angle\left(2, \mathbb{Z} / p_{i}^{n_{i}} \mathbb{Z}\right)
$$

and GAP compute character tables in the relevant ranges.
For a representation ρ, curite $T(\rho)$ for the set of T-eigenvalues (which we can read off the character table).
We can throw out most representations:

- $\operatorname{lcm}(\operatorname{order}(T(\rho)))=N$
- if λ appears in some irrep, $\{0, \lambda\}$ appear together in some rep.
- \#(λ i $\left.T\left(\rho_{\text {even en }}\right)\right) \geqslant \#\left(\lambda\right.$ in $\left.T\left(\rho_{o d}\right)\right)$
- traces of Galois group elements may be constrained by counting Axed pints.
- \#(1 in $T(\rho)) \geqslant \#$ of smiles in the induction of $1 e$.

Write T for the T-matrix in the abstract representation type.
T-matrices
At this point we have T^{\prime}, so we know the multi-cet of T-eigenvalues, but not how they correspond to columns of the molution maths.

Using $\sigma_{l}\left(S_{1 x}\right)= \pm S_{1 x^{l}}, \quad T_{x^{l} x^{l}}=T_{x x}^{l^{2}}$
and the top-left entry of STS $=T^{-} S T^{-1} C$:

$$
\sum_{i} d_{i}^{2} t_{i}=\sqrt{\sum_{i} d_{i}^{2}}
$$ using te Δ-mequality along te was.

we can enumerate all possible bijection.

Frobenius-Schur indicators
Define $\underset{\substack{x_{x}, k, v \\ \text { ire } \\ p_{m \times c}}}{ }: \operatorname{Hom}\left(V \rightarrow x^{x^{k}}\right) 5$

Knowing the T-matrix and the dimensions in the centre, we can compute

$$
\operatorname{tr}\left(p_{x, k, v}\right)={ }_{v}\left(S T^{k} A^{\top}\right)_{x}
$$

for $V=1$ (or any V in the Calais orbit of 1).

so $p_{x_{1}, k, v}$ has order dividing $k \cdot o r d\left(t_{v}\right)$ at k. n_{v}, and hence eigenvalues $\left\{\left\{_{k n_{v}}\right\}\right.$
It l is coprome to $k n_{v}$, then $\operatorname{tr}\left(\rho_{x, k, v}^{l}\right)=\sigma_{l}\left(\operatorname{tr} \rho_{x, k, v}\right)$, Now assure $V=1$
add If $g=\operatorname{gcd}\left(l_{1} k\right.$),

$$
P_{x, k, 1}^{l}=P_{x^{\text {mg }}, k / g .1}^{l / g} \text {; then as } \operatorname{tr}\left(\rho_{x \oplus Y, k, 1}\right)=\operatorname{tr}\left(\rho_{X, k, 1}\right)+\operatorname{tr}\left(\rho_{Y, k, 1}\right)
$$

we know the traces of all powers of $p_{x, k}, 1$.
Newtons identities tell us the eigenvalues of $\rho_{x, k}, 1$, which mast all lie in $\sqrt[k]{1}$.
\Longrightarrow There is no " $\mathrm{c}=2$ " category in Larson's classification of non-self dual pseadd-unitary rank 4 fusion categones.

Galois actions
We (finally!) determine the details of the Galois group action.
Recall

$$
\begin{aligned}
& \sigma_{l}\left(S_{1 x}\right)=\varepsilon_{l}(x) S_{1 x^{l}}=\varepsilon_{l}(x) \frac{d_{\ln x^{l}}^{D}}{D} \\
& \sigma_{l}\left(\frac{\operatorname{dim} x}{D}\right)
\end{aligned}
$$

and

$$
T_{x^{l} x^{l}}=T_{x x}^{l^{2}}
$$

These constrain the possible Galois actions. Enumerating them all is still a mess, but doable - the problem is that we need to avoid listing Liala;s actions which only differ by a symmetry of A and T.

The change of basis
Now we obtain explicit S^{\prime} and T^{\prime} matrices for the chosen $S L(2, \mathbb{Z} / N \mathbb{Z})$ representation type. (From the $\operatorname{Rep} S_{n}$ package in $G A P$.)
There's some change of bass Q so $T^{\prime} Q=Q T, S^{\prime} Q=Q S$, with Q and S mostly unknown, Q muertible.
We first solve all the linear equations available:

Now $S^{\prime} Q=Q S$ is a system of quadratic equations (in $Q_{i j}, S_{x y}$ jointly), which (if were lucky) we can solve (away from $\operatorname{det} Q=0$).
\qquad Let us calculate!

What about character vectors?

- If there is a conformal field theory whose representation category realises $Z(e)$, then the graded dimensions of its modules gives a character vector:
- a vector valued modular form $X(\tau) \in \mathbb{Q}\left[q_{1}^{-1} q\right]^{n}$

$$
X_{i}(\tau)=q^{h_{M_{i}}-c / 24} \sum_{n=0}^{\infty} q^{n} \operatorname{dim} M_{h_{M^{n}+n}}^{(i)} \quad\left(q=e^{2 \pi i \tau}\right)
$$

transforming according to the modular data:

$$
X\left(\frac{a \tau+b}{c \tau+d}\right)=\rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mathbb{X}(\tau)
$$

We can classify the vector valued modular forms associated with our modular data (for each possible cetrinal which satisfy appropriate integrality charge c) and positivity conditions.

Theorem (Gannon-Morrison ar Xiv: 1606.07165)
Any $c=8$ conformal held theory realising $Z(\Sigma \neq)$ has one of four candidate character vectors, with vacuum components:

$$
\begin{aligned}
& q^{1 / 3} \mathbb{X}_{1}(\tau)_{\omega_{0}}=1+12 q+73 q^{2}+346 q^{3}+1390 q^{4}+4956 q^{5}+16715 q^{6}+52982 q^{7}+\cdots \\
& q^{1 / 3} \mathbb{X}_{2}(\tau)_{\omega_{0}}=1+3 q+22 q^{2}+86 q^{3}+461 q^{4}+1992 q^{5}+8343 q^{6}+30997 q^{7}+\cdots \\
& q^{1 / 3} \mathbb{X}_{3}(\tau)_{\omega_{0}}=1+13 q+83 q^{2}+372 q^{3}+1460 q^{4}+5112 q^{5}+17053 q^{6}+53651 q^{7}+\cdots \\
& q^{1 / 3} \mathbb{X}_{4}(\tau)_{\omega_{0}}=1+4 q+32 q^{2}+112 q^{3}+531 q^{4}+2148 q^{5}+8681 q^{6}+31666 q^{7}+\cdots
\end{aligned}
$$

Challenge:
Construct such a CFT!

