Today (pivotal) categories generated by a trivalent vertex.
Example Say we had a category C, with a self-dual object X, generated by
a morphism
$$t: X \otimes X \rightarrow X$$
, and $\dim C(X \otimes X \rightarrow X \otimes X) = 2$.
What could use say?
Insde $C(X \otimes X \rightarrow X \otimes X)$, we have $\int (, \, \cup , \, \downarrow_{\pm}^{\pm}, \, \downarrow_{\pm}^{\pm}, \, \downarrow_{\pm}^{\pm}, \, (M_{X \otimes X}, \, (ev \cdot coev))$

$$\chi = \alpha \left(+ \beta \right) \right)$$

$$\sum = -d^2\beta + \beta = \beta(1-d^2)$$

 $\int_{a}^{a} = \alpha \wedge + \beta \partial \wedge$

" $\frac{1}{2e0}$ $50 d+d\beta=0, d=-d\beta$

$$\begin{array}{cccc}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

We can take d=1, B=d⁻¹, 50 $=) \left(+ \frac{1}{z} \right)$ Lemma There is a unique non-degenerate pivatal category appreated by λ satisfying $\chi = \alpha (+ \beta)$. If you have relations sufficient to evaluate all closed diagrams, you're unique. with simple tensor unit Lemma Proof Pivotal categories, have a unique maximal ideal, which is the ideal of negligible elements. Proof a non-negligible element in an ideal book the ideal to be everything. Does such a category Fib, $(G_2)_1$ $SU(3)_{\xi(5)}$. exist? (3044 - 10064 of 0014 or 1004 of 014 or 1004 of 014 or 1004 or 100

Example First \$1,63 in
$$\mathcal{C}(x,x)$$
.
The matrix of when products is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ if this is rank one,
we must have
 $\begin{cases} 0 & 0 \end{pmatrix}$ is $dect, since ($ is nonzero, $d=b$) for some b , and by
normalising we can take $b=1$.
Consider $\{2\}(1, -1, X]$. The matrix of more products is
 $\begin{pmatrix} \infty & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} d^2 & d & db \\ d & d^2 & 0 \\ db & 0 & db^2 \end{pmatrix} = \begin{pmatrix} d^2 & d & d \\ d & d^2 & 0 \\ d & 0 & d \end{pmatrix}$
with determinant $d^2 - d^3 - d^4 = 0$
so $d^3(d^2 - d-1) = 0$.
The hypothesis that C is nondegenerate ensures $d=0$,
So we get $d = \frac{1+25}{2}$.

Shetch of A
dim Ca
$$\leq 3 \implies det \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{vmatrix} = 0 \implies P_{SO(3)} = d+t - dt - 2 = 0.$$

There must be a relation amongst $)(, n, X, K,$
and with a little work it must be of the form
 $f(x) = d(X + \beta) | + \delta n$.
This let's us evaluate any closed diagram, so there is at
most one nondegenerate category over each point of Psc3.
In fact we can derive $f(x) = -1, t = \frac{3}{2}$.
The SO(3)₂ categories realise all but the point $(d = -1, t = \frac{3}{2})$,
which is realised by OSp(2)1.

Proof of E (f X, X,)(, ~ ore dependent, we can deduce dim C_4 \le 3.
Thus they are a basis.

$$\Delta(4,0) \neq 0$$
, so $P_{5x3} \neq 0$ and $d + t + dt \neq 0$
 $\Delta(4,1) = 0$, so $\prod = 2d + 2dt - 4dt^2 + 2dt^4 + 2d^8t^4$
 $dt + t + dt$
and $\prod = dt^2 + t^2 - 1(X + X) + -\frac{t^2 + t + 1}{dt + dt + t}() + + -\frac{t^2}{dt + dt + t}() + + -\frac{t^2}{dt + dt + t}() + + -\frac{t^2}{dt})$.
Lemma | M⁰(n,k) has entres rational functions in d, t ,
if $n + 2k < 12$.
Proof $n + 2k < 12 \Rightarrow$ there are fewer than 12 fixes in each polyhedrom.
 $= 3$ there is a square or smaller.
Lemma 2 if there is a linear relation automast $D(n,k)$,
 $\Delta(n',k') = 0$ for all $n' \ge n$ and $k' \ge k$.

 $\Delta(5,0) = d^{10} P_{ABA} P_{SO(3)}^{4} Q_{1,2}$ If $\dim C_5 \leq 10$, (5,1) = 0, so $P_{ABA} = 0$ or $P_{G_2} = 0$. Now we turn to uniqueness, and prove: for each (d,t) with PABA=O or PGz=O, There is at most one ategory with Aim la=9 duntzell. Say a face is Small if it is a portagon or smaller. Lemma 3 a boundary connected open planar trivalent graph with in 55 boundary points and no internal small faces has no internal faces. Easter lemma A closed planar trivalent graph has a small face. Broat Given each n-gon \$6-n dollars. By Euler characteristic, there are \$12 in total. Show we the money!

Relations On PARA=O, if D⁰15,1) grans Cs,
Now are relations

$$4 + 5 + 5^2 + 5^3 + 5^4 = 0$$

(and the c.c.)
On Paz, if D⁰15,1) spans Cr
 $4 = 4e(-4 + notations) + 5i(-4 + notations)$
Proofs just look at the karel of M⁰(5,1).
The proof of uniqueness
if D⁰16,1) is dependent, then lemma 5 says D(5,0) spans so D⁹5,1
Spans
Memore, since dum C5 < 11, it also spans.
Thus we have the relations above, and the corollary
gives uniqueness.

Realisation ABA as a free product (G2)q Vic Kuperbergs spider (or, very recently, Ostrik-Snyder show $\operatorname{Rep}_{q} \operatorname{g}_{2} \cong (\operatorname{G}_{2})_{q}$ even at (most) roats of unity.)

Spetch of C
dim
$$C_{4} = 4$$
, dim $C_{5} = 11$, dim $C_{6} \leq 40$
If $D(6,0)$ is dependent, $\Delta(6,0) = \Delta^{-1}(6,1) = \Delta^{-1}(6,2) = \Delta(7,0) = 0$
by Crobiner bases, we reduce to finitely many points
on the G_{2} or $SO(3)$ curves, and by the earlier
uniqueness results in fact dim $C_{5} = 10$.
There are 41 diagrams in DP(6,1), so
 $\Delta^{-1}(6,1) = \mathcal{S}^{-1}(6,2) = 0$
Thus we are on Pads or $P_{G_{2}}$ (contradicting dim $C_{5} = 11$)
• on an elliptic curve $Q_{2,3} =$
on which we can calculate $\Delta^{-1}(7,1)$ and $\Delta^{-1}(7,2)$,
 $D(6,1) = \frac{3+175}{2}$, $t = -\frac{2}{3}d + \frac{2}{3}$ or one of 96 hometric
points at which is rank M⁻¹(6,2) = E
• of finitely many other points, at which is rank M⁻¹(6,2) = E