Today (pivotal) categories generated by a trivalent vertex.
Example Say we had a aural category C, with a seff-dual simple object X, generated by a morphism $t: X \otimes X \rightarrow X$, and $\operatorname{dim} e(X \otimes X \rightarrow X \otimes X)=2$. What could we say?
node $e(x \otimes x \rightarrow X \otimes X)$, we have

$$
\begin{aligned}
& Y=\alpha)(+\beta \Omega \\
& X=\alpha \cap+\beta O \cap \\
& \text { " } \\
& \text { so } \quad \alpha+d \beta=0, \quad \alpha=-\alpha \beta \\
& \oint=-d^{2} \beta|+\beta|=\beta\left(1-d^{2}\right) \mid \\
& \theta=\alpha \lambda \\
& \Rightarrow-\alpha \beta=\beta\left(1-d^{2}\right) \\
& \text { so } d^{2}=d t 1 \\
& 11 \\
& d=\frac{1 \pm \sqrt{5}}{2} .
\end{aligned}
$$

We can take $\alpha=1, \beta=d^{-1}$, so

$$
Y=)\left(+\frac{1}{\tau} \cap\right.
$$

Lemma There is a unique non-degenerote pivotal category generated by λ satisfying $X=\alpha)(+\beta$ ~
Lemma If you have relations sufficient to evaluate all closed diagrams, your unique. with simple tensor unit
Proet Pivotal categones, have a unique maximal ideal, which is the ideal of negligible elements.
Prat a non-negligible element in an real free the deal to be ereything.
 exist?

We'd lube to develop a uniform approach of questions the this.
Consider the free spherical category if on some collection of generating mophisiss.
Any quotient $e=F I$ having a simple tensor unit gives an invariant $\mathbb{K}^{\text {Bolyhedra }}$
determined by evaluating each polyhedron as an endomorphism of $\mathbb{1}$. in fact, theris at most one nondegenerate quotient over each pout m \mathbb{R}^{P} !
Dimension bounds on hom spaces in e cut out subvarieties.

Example First $\{1,0\}$ in $e(x \rightarrow x)$.
The matrix of uner products is
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0\end{array}\right)$
If this is rank one. we must have $0=0$
In fact, since \mid is nonzero, $b_{1}=b$) for some b_{1} and by normalising we can tube $b=1$.
Consider $\left)_{1} \cup, Y\right\}$. The matin x of miner products is

$$
\left(\begin{array}{lll}
\infty & 0 & D \\
0 & 0 & 0 \\
0 & 0 & \text { D }
\end{array}\right)=\left(\begin{array}{lll}
d^{2} & d & d b \\
d & d^{2} & 0 \\
d b & 0 & d b^{2}
\end{array}\right)=\left(\begin{array}{ccc}
d^{2} & d & d \\
d & d^{2} & 0 \\
d & 0 & d
\end{array}\right)
$$

with determinant $d^{5}-d^{3}-d^{4}=0$

$$
\text { so } d^{3}\left(d^{2}-d-1\right)=0
$$

The hypoth as that $e s$ nendegeneate ensures $d=0$, so we get $d=\frac{1+\sqrt{5}}{2}$.

Theorem A $\quad \operatorname{dim} e_{4} \leqslant 3 \Longrightarrow P_{s o(3)}=d+t-d t-2=0$
and $e=\operatorname{So}(3)_{q}$ if $(d, t) \neq\left(-1, \frac{3}{2}\right)$
or $\operatorname{RepOSp}(1 / 2)$ if $(d, t)=\left(-1, \frac{3}{2}\right)$.
Theorem B $\quad \operatorname{dim} e_{4}=10$ and $\operatorname{dim}_{5} \leqslant 10 \Rightarrow$
$P_{A B A}=t^{2}-t-1=0$ and e is an "ABA category"
or $\quad P_{G_{2}}=d^{2} t^{5}-2 d t^{5}+4 d t^{4}-d t^{3}+6 d t^{2}+4 d t$

$$
+d+t^{5}-4 t^{4}+t^{3}+7 t^{2}-2=0
$$

and e is $\left(G_{2}\right)_{e}$ with $d=q^{10}+q^{4}+q^{2}+1+q^{-2}+q^{-8}+q^{-0}$
ABA

$$
t=-\frac{q^{2}-1-q^{-2}}{q^{4}+q^{-a}}
$$

Sketch of A

There must be a relation amongst $)\left(M_{1} n_{1} \lambda_{1}\right)-<$, and with a little work it must be of the form

$$
Y=\alpha Y+\beta) 1+\gamma \backsim
$$

This let's us evaluate any closed diagram, so there is at most one nondegeneate category over each point of $P_{\text {so (3) }}$. In fact we can derive $\quad-L-Y+\frac{1}{d-1}()(-\underset{1}{u})=0$

The $\mathrm{SO}(3)_{q}$ categones realise all but the paint $\left(d=-1, t=\frac{3}{2}\right)$, which is realised by $\operatorname{OSp}(2 \mid 1)$.

Proof of B if $\left.\left.Y_{1}\right)_{1} L_{1}\right)\left(i_{1} \sim\right.$ are dependent, we can deduce $\operatorname{dim} C_{4} \leqslant 3$.
Thus they are a basis.

$$
\begin{aligned}
& \Delta(4,0) \neq 0 \text {, so } P_{\text {su(3) }} \neq 0 \text { and } d t t+d t \neq 0 . \\
& \Delta(4,1)=0 \text {, so } \square=\frac{2 d+2 d t-4 d t^{2}+2 d t^{4}+2 d^{2} t^{4}}{d t t+d t} \\
& \text { and } \left.=\frac{d t^{2}+t^{2}-1}{d t+d+t}(Y+>-2)+\frac{-t^{2}+t+1}{d t+d+t}() 1+\sim\right) .
\end{aligned}
$$

Lemma $1 M^{\square}(n, k)$ has entries rational functions in d, t.

$$
\text { if } n+2 k<12 \text {. }
$$

Pret $u+2 k<12 \Rightarrow$ there are fewer than 12 faces in each pdyhedron. \Rightarrow there's a square or smaller
Lemma 2 if there is a linear relation amongst $D(n, k)$, $\Delta\left(n^{\prime}, k^{\prime}\right)=0$ for all $n^{\prime} \geqslant n$ and $k^{\prime} \geqslant k$.

$$
\begin{aligned}
& \Delta(5,0)=d^{10} P_{A B A}^{2} P_{50(3)}^{4} Q_{1,2} \\
& \Delta^{0}(5,1)=d^{11} P_{A B A}^{3} P_{s 0(3)}^{5} P_{a_{2}} Q_{1,1}^{-2} \quad\left(\text { if } \operatorname{dim}_{1 m} P_{4}=4\right)
\end{aligned}
$$

If $\operatorname{dim}_{10} l_{5} \leqslant 10, \quad \Delta^{\square}(5,1)=0$, so $P_{A B A}=0$ or $P_{G_{2}}=0$.
Now we tum to uniqueness S_{1}, and prove:
for each $\left(d_{1} t\right)$ with $P_{A B A}=0$ or $P_{G_{2}}=0$, there is at most one category with $d_{m} P_{a}=9$ $\operatorname{dim} \rho_{5} \leq 1$.
Say a face is small if it is a pentagon or smaller.
Lemma 3 a boundary connected open planar trivalent graph with $n \leq 5$ boundary points and no internal small faces has no internal faces.
Easier luna A closed planar trivdent graph has a sural face.
Proet Given each n-gon \$6-n dollars. By Euler characteristic, there are $\$ 12$ in total. Show we the money!

Lemma 4 given a relation reducing each $(n \leq 4)$-gon, and some relation m $D^{D}(5,1)$,
there is a relation reducing the pentagon.
Cor we can evaluate all closed graphs, so there is a unique such wondegenerate category.

Lemma 5 if $\operatorname{dim}_{a} e_{a}=4$, with a relation in $D^{0} / 5,1$, then e_{5} is spared by $D(5,0)$.
Prod by Lemmas 3,4 anything in C_{5} can be reduced to $D(5,0)$.

Relations. On $P_{A B A}=0$, if $\left.D^{0} / 5,1\right)$ spans $C_{5,}$
there are relations

$$
\left.\xi_{1}+\xi \xi^{2}+\xi^{2} \lambda+\xi^{3}\right)^{\prime}+\xi^{4} x^{\alpha}=0
$$

(and the c.c.)

- On $P_{c_{2}}$, if $D^{D}(5,1)$ spans e_{5}

$$
\underset{\sim}{C}=u_{\xi}(\zeta \alpha+\text { rotations })+\xi_{\xi}\left(J_{C}+\text { rotations }\right)
$$

Proofs just look at the kevel of $M^{D}(5,1)$.
The proof of uniqueness
If $D^{D}(5,1)$ is dependent, then lemma 5 says $D(5,0)$ spans, so $D^{D}(5,1)$ spans.
Otherwise, since dime $5 \leqslant 11$, it also spans.
Thus we hove the relations above, and the corollary gives uniqueness.

Realisation
ABA as a free product
$\left(G_{2}\right)_{q}$ via Kuperberigs spider
(or, very recently, Ostrik-Snyder show $\operatorname{Rep} U_{q} g_{2} \cong\left(G_{2}\right)_{q}$ even at (most) roots of unity.)

Sketch of e
$\operatorname{dim} e_{4}=4, \quad \operatorname{dim} e_{5}=11, \quad \operatorname{dim} e_{6} \leqslant 40$
If $D(6,0)$ is dependent. $\quad \Delta(6,0)=\Delta^{\square}(6,1)=\Delta^{D}(6,2)=\Delta(7,0)=0$
by Criobner bases, we reduce to fintely many points on the G_{2} or SO(3) carves, and by the earlier uniqueness results in fact $\operatorname{dim}_{5}=10$.
There are 41 diagrams is $D^{D}(6,1)$, so

$$
\Delta^{D}(6,1)=\Delta^{\square}(6,2)=0
$$

Thus we are on $P_{\text {sol } 3 \text { 3 }}$ or $P_{G_{2}}$ (contradicting $d_{m m} e_{5}=11$)

- on an elliptic carve $Q_{2,3}=$
on which we can calculate $\Delta P(7,1)$ and $\Delta(7,2)$, obtaining $d=\frac{3+\sqrt{13}}{2}, t=-\frac{2}{3} d+\frac{5}{3}$ or one of 96 howific pants at whey rank $M^{D}(6,2)=B$
- at finitely many other pants, at which
$\Delta D(7,1)$ and $\Delta^{0}(7,2)$ doit vanish

Uniqueness Lemma every dosed planar trivalent graph has a pentapent or a hesapent.
Lemma every open planar trivalent graph with at most 6 boundary points is in $D^{D}(n, 1)$ or has an internal pentapent or hexapent.
Lemma if $d_{i m} C_{4}=4$, and oe can reduce pentapents and herapents,

$$
D^{\square}(n, 1) \text { spans } e_{n} \text { for } n \leqslant 6 \text {. }
$$

Lemma if $d_{m} e_{4}=4$, dim $\rho_{5}=11$, $\operatorname{dim} e_{6} \leq 40$,

$$
\text { then } D^{\square}(6,1) \text { spans. }
$$

if dimspen $D P /(6,1) \leqslant 39$,
$D 6,0)$ independent weans there are relchons amongst pentaforks hence veductors pentatariks hen ce veluctiors.
From this we lock at the kernel of $M^{D}(6,1)$ to obtum relations, and use these to show we can evaluate by reducing pentgents and hesapents.
Realisation some sneaky arguments showing $H 13$ cant anywhere earlier on the list.

