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Quantumprobity
We 'll describe quantum probability as a non commutative

analogue of classical probability .

Historically ,
this was one of the earliest instances of a pervasive

theme in 20h century mathematics
.

If widgets are interesting .
so are

non commutative ( or
"

quantum
") widgets .



 

Later examples :

�1� CCX)
,

the continuous functions on a (compact,
Haasdorff)

topological space ,

is a commutative 0* - algebra ,

so

general C* - algebras are
a

non commutative topological spaces
"

.

�2� Ug ,

the enveloping algebra of a lie group ,

is a co commutative Hopf algebra .
so

general Hopf algebras are
"

quantum groups
"

.

�3� Rep G
,

the representation category of a finite group,

is a symmetric fusion category,
so

general fusion categories are
"

quantum symmetries "

.



 

In classical probability ,

we have :

• a set X

• a 5- algebra E

c2×
of "

events
"

• an assignment of probabilities to

events
,

P
:

.{
→ [ 0,1 ]



 

In classical probability ,

we have : Example :

• a set X • X={

423,4
}

• a 5- algebra {c2×of "

events
"

• {=2×• an assignment of probabilities to • p({ B) =L

events
, P: .{→ [ 0,1 ] PCE 237 = 's

P( { 3 } ) - to

P( { 4 } ) - 0



 

In classical probability ,

we have : Example :

• a set X • X={

1.2.34
}

• a 5- algebra Ec2×of "

events
"

• {

=2×• an assignment of probabilities to • p({ B) =L

events
, P:.{→ [ 0,1 ] PCE 237 = 's

P( { 3 } ) - to

P( { 4 } ) - 0

Given a classical probability space (X.9.P) we can define

the
"

algebra of observables"

L*(X)={ boundedE-measurable functions X→E }

and a
" state "

on it : Example :

µ :[ ( X) → G
• LTE 1. 2.3.43) = £4

f- Sxfdp • µl[kq])= tzwttx + toy + Oz



 

In fact
,

we can talk about classical probability purely in

terms of observables and states :

A classical probability space consists of :

• a commutative von Neumann algebra A

(recall an algebra is a vector space where you
can also

multiply rectors )

( for today its enough to think about finite dimensional algebras
,

and the only finite dimensional commutative

von Neumann algebras are ¢ with pomtmse multiplication)
• a

" state
"

µ : A → �1� which is

- linear

- µlI)= 1

- ml A
*

A) 30



 

Let's make sure we understand States on

the commutative algebra En
.

• A linear map µ : �1�
"

→ �1� must be of the form

µ|✓)=V•W= V. W
,

+ Vzwzt - + Vnwn

for some fixed wed
.

• In the algebra 6
"

,
the multiplicative identity is [ ¥;]

,

so µ ( 1) = I means wtwzt - + wn - 1
.

• The operation * : �1�
"

→ 6
"

is complex conjugation,
so

vectors of the form A*A are those with non . negative real entries
.

µfA
* A) 30 means each WIZO

.

⇒ a state on E
"

is exactly a probability measure

on { 1,2
, -

n } .



 
A classical probability space consists of :

• a commutative von Neumann algebra A e. g.
E

"

• a
" state

"

µ : A → �1� which is

- linear

- µlI)= I e. g. µH=v•w,

- µlA*A > 0 we Rio
.

An element feet is an
" observable "

,

which we can secretly think of as a complex function

on some set of underlying
"

pure States ' '
.

The state µ represents our knowledge of the system.

µ( f)
"

= fxfdp
"

is the Expectedthe observable f
, given

our current knowledge .



 

quantum

A

classical
pobability space consists of :

• acommutative
von Neumann algebra A e. g. A- MDQ

,

the 2×2 matrices
,

• a
" state

"

µ : A → �1� which ' s
with (qbd*fajEdt

.

- linear

- µlI)= 1

- µlA*A z O
µKbd)=Ha+d)

.

An element FEA is still an
"observable

"

,
but we can't

necessarily interpret it as a function on some underlying space.

µ still represents our knowledge of the system,

and µH) the expected value of an observable
.



 

Before we study the fundamental example A=M( E)
,

lets

do some more classical probability .

Recall slates on 62 are probability measures on { 1,23 :

Win

states Cal = {

th
}

I

mlabtw , atwzb

Notice that if
µ

and v are states
,

so isxµ+a-x)v ,

forxofo ,D
.

that is
,

the set of all States is convex : given any
two

States,
the points on the interval between them are also States

.



 

Extras
( or

"

pure
" States) are States which are not

convex linear combinations of other States
.

Wz n

¥
two external states on e ?

"¥ .

In classical probability ,

the extremal states correspond to the points

of the underlying space
- we're 100% certain the system is

in a particular configuration .

More generally , Its( that 's subsets YCX
,

so Yes ) correspond

to protections in the algebra A
,

that rs
,

elements f so f2=f=f*
.

Giron a subset YCX
,

the characteristic function X ,
is a projection.



 

Let's now work out all this theory in the simplest noncom mutative

setting : t.M.CC )
.

An event in Mda is a 2×2 matrix E so

E2=E=E*
.

Such a matrix has eigen values 0 and 1
.

If

both@OrYhhe2nwE.q
°q}

.

(the " impossible
"

event )

If both a @FThFn°E=to .
(the " certain "

event )Otremba" HE-0+1=1 and detE= 0.1=0
.

Using E=E* and trE=1
,

we can write

E=tz[
'

IffyTIM with x.y.zc.IR
.

Then dote -0 says x2ty2+z2=1 .

Thus
"

rank one
"

projectronskvents
in MDG) are parameterised by the unit sphere in R ?



 

Every rank one projection E defines a state on Mda

by the formula µ=(X)= HEX )
.

(Notice this is linear in X
, µ±( I )=tr( E) =1 since E is rank one

,

and µelA*A - HEA '* A)

= trCE*EA*A)
= trlEA*AE*l
=HCea*kEA*M > O

. )

In fact
,

these are all external States
,

and every state is

a convex linear combination of these
.

( Exercise !)

( this is a special case of the " state - operator correspondence "

:

if A is a positive operator with trace one
,

X - > HAIis a
state

,
and every state is uniquely of this form

. )



 

Thus the space of States for Mda is the unit ball in
1123 :

→
µ ,

.az/9bd)=hE.atezs:b+Eb.c+lE2.d#@=xkIYjIEIe.

L Mda
y

*



 

¥
*Notice a significant difference from the classical setting +

.

9K¥.

there every state could be written uniquely as a convex

linear combination of pure States
.

Now we lose uniqueness : there is more than one way to express

a point in the interior of the ball as a linear combination of

pants on the sphere :

•

m States are not just probability

ftp.#
measures on some underlying set !

V

4 =

.Fµ+±sv=
tzdttzp



 

Recall that we are thinking of projections E2=E=E* as events
.

We think of these as observations that can take values

0 ( the event doesn't occur ) and

I ( the event does occur )
.

Recall µlE) is the expected value of an observation
,

so we

say E occurs with probability µ (E)
.

Remembering that a state represents our knowledge of a system
,

we should expect it to change after we observe

that an event does or does not occur
.

How should the state change?



 

In classical probability (µ is a probability measure on X. events EF are

characteristic functions on subsets of X .)

the rule for updating a state µ to a new state µ^
after observing an event E is

µr (f) = µ ( E F) " the probability that F occurs given
-

E has occurred is the
µ (E)

probability E&F occur
,

divided

by the probability E occurs
"

.

since all classical observables can be written as

( or approximated by) linear combinations of events
,

we have

at (A) = MCEAI for all observables A
.

µ (E)

Thrs completely determines the new state
.



 

Unfortunately,
this rule doesn't quite work in the quantum world !

However ,
we can write the classical rule in an equivalent form

µ^fA)=µµ¥,Af= µ¥=A)
=

µlE_AE7

g µlE ) f µ (E)

events are projections ! classically,

observables commute !

This one works in the non commutative setting too
.

Let's check it defines a state :

iii. HEIT . FY¥i ±

go
µ^lA*A=MtIf÷←A⇒=µlEIg÷⇒A⇒=µkAF#AED zo

µ (E) L~cfo.it
.



 

In many presentations of quantum mechanics
,

people use

scary words like warships at this point .

This is silly .

Nothing more or less complicated is happening than

what takes place when
you flip a coin

,
and

subsequently look at it
.



 

Recall the space of States for Mz (E) is the unit ball

^Z
May ,

zfdbd)=  ¥.at#:b+Etzt.c+tF.d
••

It > (Ebd ) = a

Hidaka'¥t¥#⇒l
:bat . and

a •

is It > lacbatd

Let's measure the observable E=( to8) on the state HD
.

F) food = 1
,

so the event E certainly occurs
.

When we observe this
,

the state doesn't change :

all : :b mail.EE?:nh=nfE::H=aea
so µ^ = IT >

.

(this is a good sign : if we observe something ue 're

certain occurs
, we don't need to update our knowledge .)



 

what if we measure the event F=[ fete ] ?

A) ( E¥
.

] ) =L
,

so we have a 50% chance of
observing

F (and hence also a 50% of "

not F
"

= I - F)

If we observe F
,

the new state is

all ::D . mail.EE?.fjid=nffitE?InI.atn#

so µ^=l⇒ .

If
,

on the other hand
,

we observe I - F
,

then the new state is 1←)
.

We can interpret [ to:] as
"

measuring in the z - direction "

and [ fete ] as
"

measuring in the x - direction "

.



 

After measuring [ '

o
:]

,

the state is either HD or ID
.

After measuring [ kzII ,
the state is either t ) or k→

.

In the classical setting , pure states are definite

( that is
, µ( E) =O or I for every event E)

and do notching after
any measurement

.

In the quantum setting
, e.g. MdE) there may be

Intesa all !



 

It gets even stranger!

Bell 's inequality

←A. B.C. D are classical observables taking values in {±B
Cie

. tA¥T=a÷l

then for
any state µ ,

µ( AB + BC + CD - A D) E 2
- D

Pzoof Think of these in a square A. ,

B - c

If A =D
,

then AB + BCTCD - 1<-3 - 1=2

If AFD
,

then either AIR
,

BFC
,

or CFD .

In any case ABTBGCD +1<-2 - 1+1=2
.



 

However in
the quantum World it is easy to violate this

inequality

and this violation has been

experimentally observed!

Example : A= Mala
, µlH=tr|fogEyEq8g]x)

at
'

'

. ;] .

a- trfit ,;] , of ,;

":] .

# taft' I
,;]

and ( exercise !) µ( AB + BC + CD - A D) =µ(AB)+µlB4+µK D) HAD
= th + th + th - - th ⇒ Be > 2

.


