
artwork by Kevin Walker

Scott Morrison - ANU Logic Seminar - 20181010

interactive theorem
proving

↳ Why? To become better mathematicians
.

↳ But interactive theorem proving makes it

harder rather than easier to prove stuff . . .

-
so let's work on

that!

interactive theorem
proving

Dreams :

- interactive style .
,

in natural Ian
gauge

-
effective automation

. preserving human comprehensibility .

- finishing tactics disposing of boring goals
- interactive tactics that don't explode

- extensibility by users :: mathematics
, parsing, automation.

interactive theorem
proving

Today : experiments in Lean

• dependent types , very
similar to Coq

• meta - programming happens m the same language

• developed at MSR and CMU

• maths library / automation / tooling I code generation
all ' works on progress

'

.

• Lean 4 out
. . .

'

soon
' ?

Dependent type theory comes naturally to mathematicians .

.

similar

-

also :

"

3 is not a topology on 2
"

A demo?

where
•. Lean makes it significantly easier to write

next ? new tactics

• Its still way too cumbersome to write mathematics

in Lean
.

• As it becomes possible for mathematicians to write

tactics (not just language developers)
,

this may

rapidly change !

• Meta programming happens in Lean
,

under the [meta]

keyword
• Monadic programming

to interact with tactic
.

state

• pattern matching and anti quotations for expr mung ing

where Categorytheory an

next ? • Can we write enough automation
,

so that

we can write '

human - like ' proofs?

Cie . omitting lets of detail !)

Uni math : Coq. Isabelle :

How does this work ?

• an approximation of Ganesa lingam - Gowers
'

human -style automation
'

in Lean C arXiv : 1309.4501)

• an algorithm for automatic rewriting ,

using an edit distance heuristic and

some machine learning .

C in progress, w/ Keeley Hoek
,

ANU)

rewrite
-

search proves equationat goals by

rewringsubexpressiesusing specified (or discovered) lemmas

A depth or breadth first search of the rewrite graph would be

hopeless for all but the most trivial goals .

The basic version of rewrite -

search uses an

edit distance minimising search

- We search from both sides of the goal A- - B simultaneously .

- Pretty print each side
,
and calculate edit distances

.

- We track a list of '

interesting pairs ,

A
'

,
B
'

with small edit distance

- At each step we consider a
rewrite of A

'

or B
'

,

for

the mosthng
- pair at that point.

- In the basic version
,

most interesting means

smallest edit distance DCA 's B
'

)
.

Generalisations
- use A

' rather than greedy search

(so most interesting is the mini miser of

d f A. A
') t DIA '

,
B

') t DCB ! B)
.
)

- modify edit distance

• look at tokens appearing in A and B
,

and

run a classifier on them .

• increase the edit distance weighting for significant tokens

. dynamically update weights during the search
,

based on tokens in all { Ai } and { Bi }
.

• centre - of - mass classifier
,

or use libsvm in

a modified version of Lean
.

100 : 161/25/22

5 : 82/19/15
3 : 65/18/13 sum : 70/18113

2.62/24/19

