We will describe physical systems by their observables.
An algebra of observables A is

- an algebra over \mathbb{C}, with a
- star structure $+: A \rightarrow A$,
satisfying:

$$
\begin{aligned}
& -(z \cdot a)^{+}=\bar{z} \cdot a^{+} \\
& -(a+b)^{+}=a^{+}+b^{+} \\
& -(a b)^{+}=b^{+} a^{+}
\end{aligned}
$$

such that there merely exists a norm $\|-\|: A \rightarrow \mathbb{R}_{30}$ (so $\|a+b\| \leq\|a\|\|b\|, \quad\|a b\| \leqslant\|a\|\|b\|$, and $\|z \cdot a\|=|z|\|a\|)$
satisfying $\left\|a^{+} a\right\|=\left\|a^{+}\right\|\|a\|$.
(Further, if the algebra is infinite dimensional! we require that there merely exists another normed space $(B,\|-\|)$ so $A=B^{*}$.)

Let's begin with the fundamental definitions.
Suppose we have a system described by a *-algebra A.

- An observable is an element $a: A$.
- An event is a projection m A_{1} ie. a $P: A$ so $P^{2}=p=p^{+}$.
- An element $b: A$ is positive if $b=a^{+} a$ for some $a: A$.
- A state φ is a linear functional $A \rightarrow \mathbb{C}$
so $\varphi(1)=1 \quad$ (" φ is normalised")
and $\varphi\left(a^{+} a\right) \geqslant 0 \quad$ (" φ is positive")
Note that any convex linear combination
$\sum x_{i} \varphi_{i}$ of states is a state.

$$
\left(x_{i} \geq 0, \sum x_{i}=1\right)
$$

- The expected value of an observable a in a state φ is $\varphi(a)$.
- The probability of an event p in a state φ is its expected value, $\varphi(P)$.
* 1: A is the "certain' event: $\varphi(1)=1$ for even state φ.
* $O: A$ is the "impossible" event $\varphi(0)=0$ for every state φ.
- After observing an event p in the state φ, the new state is

$$
\hat{\varphi}(a)=\frac{\varphi(p a p)}{\varphi(p)} .
$$

Just for now, try not to attach any familiar meanings to these words!

Our next task is understand what all these definitions mean for particular examples of algebras of observables A.
\Rightarrow Well find that for commutative alyploras, all these definitions coincide with the informal interpretation of the words!
\Longrightarrow This suggests we should accept that however these definitions play out in the noncommutative case, we should accept them as reasonable descriptions of events, states, probabilities, and "updating knowledge on the basis of observations"
on the quantum world.

- What's the simplest example?

$$
A=\mathbb{C}^{n} \quad \text { (with pointuise mintupication) }
$$

Events: $\quad p^{2}=p=p^{+} \longleftrightarrow$ all entries of p are O or 1

Thinking of \mathbb{C}^{n} as $\operatorname{Fun}(\{1,-, n\}) \rightarrow \mathbb{C}$, the events are the characteristic functions of subsets of $\{1,-, n\}$.
Every event is uniquely the sum of some subset of the "minimal events"

$$
\delta_{i}=(0, \ldots, 0,1,0, \ldots, 0)
$$

The support of $p q$ for p and q events is the intersection of the supports of P and q.
$\Rightarrow " p q$ is the event ' p and q ""

Positive observables
$p=a^{+} a \Longleftrightarrow$ all entries of p are non-negative.
states The linear functional on \mathbb{C}^{n} just bok like \mathbb{C}^{n} :

$$
\begin{aligned}
\varphi & =\left(\varphi_{1}, \varphi_{n}\right) \\
\varphi(a) & =\sum \varphi_{i} a_{i}
\end{aligned}
$$

A linear functional B positive oft

$$
\varphi_{i} \geqslant 0
$$

A linear functional is normalised $\varphi(1)=1$

$$
\text { fl } \sum \varphi_{i}=1
$$

$\operatorname{States}\left(\mathbb{C}^{n}\right)=\Delta^{n-1}$ (the $n-1$ simplex)

These are the probability measures on the finite set $\{1, \ldots, n\}$.

In a state φ the probability of the minimal event

$$
p=\delta_{i} \quad \text { is } \quad \varphi(p)=\varphi_{i}
$$

For a general event $p=\sum_{i \in S \subseteq\{1-n,} \delta_{i}$, it is $\sum p_{i}$.

An extremal state is a state which is not a convex combination of other states.

The extremal states for \mathbb{C}^{n} are the

$$
\delta^{i}=(0,-1, \ldots, 0)
$$

In the state δ^{\prime}, the event p_{1} is "certain":

$$
\delta^{\prime}\left(p_{1}\right)=1 \cdot 1+0 \cdot 0+0 \cdot 0=1
$$

while the events p_{2} and p_{3} are "impossible".
In this example,
Every state is uniquely a convex linear combination of extremal states.

Suppose we are in the state

$$
\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{2}\right)
$$

and we observe the event

$$
p=(1,1,0,0)
$$

Our update rule says the new state is

$$
\begin{aligned}
& \begin{aligned}
\hat{\varphi}(a)=\frac{\varphi(p a p)}{\varphi(p)} & =\frac{\varphi(p a)}{\varphi(p)} \quad \begin{array}{c}
\text { since } A \text { is } \\
\text { commutate) }
\end{array} \\
\text { so } \hat{\varphi}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) & =\frac{\varphi\left(a_{1}, a_{2}, 0,0\right)}{\varphi(1,1,0,0)} \\
& =\frac{\varphi_{1} a_{1}+\varphi_{2} a_{2}}{\varphi_{1}+\varphi_{2}}
\end{aligned}
\end{aligned}
$$

Observe that in the new state, P is certain and 1 -p is impossible.

For a and p both events, $\quad\{$ assuming commutativity

$$
\hat{\varphi}(a)=\frac{\varphi(p a p)}{\varphi(p)}=\frac{\varphi(p a)}{\varphi(p)}
$$

is Bayes' law:

$$
P(a \text { given } p)=\frac{P(a \text { and } P)}{P(p)}
$$

(Notice that as every observable is a \mathbb{C}-linear combination of events, in fact it suffices to define $\hat{\varphi}$ on events.)

That's "all of classical probability".
Every finite-dimensional commutative *-algebra is of the form \mathbb{C}^{n} for sore n.
infinite dimensional commutative von Neamann algebras are $L^{\infty}(X, \mu)$ for some measure space (X, μ), and the states are exactly the probability measures.

The noncommutative world
$\overline{\left.\ln \quad A=M_{2}(\mathbb{C}) \text {, with }\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{+}=\left(\begin{array}{ll}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right) . .\right) ~}$ an event $p^{2}=p=p^{+}$ must be a self-adjant matrix, with eigenvalues 0 and 1.

These come in three flavours:

- $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the ceram event
- $p=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, the impossible event.
- otherwise, P is a rank 1 projection.

Solving the equations
(1) $\operatorname{trp}=\sum \lambda_{i}=0+1=1$
(2) $\operatorname{det} p=\Pi \lambda_{i}=0.1=0$
(2) $p=p^{+}$
we find

$$
P=\frac{1}{2}\left[\begin{array}{cc}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right] \quad \begin{aligned}
& \text { with } x, y, z \in \mathbb{R} \\
& \text { and } x^{2}+y^{2}+z^{2}=1
\end{aligned}
$$

Thus rank I projections are indexed by points in the unit sphere in \mathbb{R}^{3}.

$$
\operatorname{Erents}\left(M_{2}(\mathbb{C})\right)=
$$

1

Notice events no longer decompose uniquely as sums of indecomposable events:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

States
By a direct calculation using
φ linear, $\varphi(1)=1, \quad \varphi\left(a^{+} a\right) \geqslant 0$,
we can compute the states:

$$
\varphi_{x, y, z}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{1+z}{2} \cdot a+\frac{x-i y}{2} \cdot b+\frac{x+i y}{2} \cdot c+\frac{1-z}{2} \cdot d
$$

for $x, y, z \in \mathbb{R}$,

$$
x^{2}+y^{2}+z^{2} \leqslant 1
$$

Notice. the space of states is convex.

- but states are not uniquely expressible as convex linear combinations of the extremal states
- states are not probability measures on some set.

Recall the space of states for $M_{2}(\mathbb{C})$ is the unit ball

$$
\varphi_{x, y z}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{1+z}{2} \cdot a+\frac{x-i y}{2} \cdot b+\frac{x+y}{2} \cdot c+\frac{1-z}{2} \cdot d
$$

Let's measure the doservable $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ on the state $|\uparrow\rangle$.
$|T\rangle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=1$, so the event E certainly occurs.
When we observe this, the state doesn't change:

$$
\hat{\mu}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\frac{|\uparrow\rangle\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
1 & d
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)}{|\tau\rangle\left(\left[\begin{array}{ll}
1 & 0 \\
0
\end{array}\right]\right)}=\frac{|\tau\rangle\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)}{|\uparrow\rangle\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)}=\frac{a}{1}=a
$$

so $\hat{\mu}=|\uparrow\rangle$. (This is a good sign: \& we observe something ue're certain occurs, we don't need to update our knowledge.)

What if we measure the event $F=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$?
$|\uparrow\rangle\left(\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]\right)=\frac{1}{2}$, so we have a 50% chance of observing

$$
F \text { (and hence also a 50\% of "not } F "=I-F)
$$

If we observe F, the new state is

$$
\hat{\mu}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\frac{|\uparrow\rangle\left(\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{2} & \frac{1}{2}
\end{array}\right]\right)}{|\uparrow\rangle\left(\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\right)}=\frac{|\uparrow\rangle\left(\left[\begin{array}{cc}
\frac{a+b+c+d}{4} & 1 \\
4 & "
\end{array}\right]\right)}{|\uparrow\rangle\left(\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\right)}=\frac{a+b+c+d}{2}
$$

So $\hat{\mu}=\mid \rightarrow$. If, on the other hand, we observe $I-F$, then the new state is $|\leftrightarrow\rangle$.
We can interpret $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ as "measuring in the z-direction" and $\left[\begin{array}{cc}\frac{1}{2} & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$ as "measuring in the x-direction".

After measuring $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, the state is either $|\uparrow\rangle$ or $|\downarrow\rangle$.
After measuring $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$, the state is either $|\rightarrow\rangle$ or $|\leftrightarrow\rangle$.
In the classical setting, extremal states are definite
(that $1 S, \mu(E)=0$ or I for every event E) and do not change after any measurement.
In the quantum setting, e.g. $M_{2}(\mathbb{C})$ there may be no dehnite states at all!

It gets even stranger!
Bells mequality
If A, B, C, D are classical observables toking values in $\{ \pm=1\}$

$$
\text { (ie. } \left.\left(\frac{A+1}{2}\right)^{2}=\frac{A+1}{2}\right)
$$

then for any state μ,

$$
\mu(A B+B C+C D-A D) \leqslant 2
$$

Proof Think of those in a square

If $A=D$, then $A B+B C+C D-1 \leqslant 3-1=2$
If $A \neq D$, then either $A \neq B, B \neq C$, or $C \neq D$. In any case $A B+B C+C D+1 \leqslant 2-1+1=2$.

However in the quantum would it ss easy to violate this inequality
and this violation has been experimentally observed!

Example: $\quad A=M_{4}(\mathbb{C}), \mu(X)=\operatorname{tr}\left(\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right] x\right)$

$$
A=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & -1 \\
& & \\
-1
\end{array}\right], \quad B=-\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 1 & & \\
1 & -1 & & \\
& & 1 & 1 \\
& & 1 & -1
\end{array}\right], \quad C=\left[\begin{array}{lll}
& 1 & 0 \\
& & 0 \\
1 & 0 & 1 \\
0 & 1 &
\end{array}\right], D=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & -1 & & \\
-1 & -1 & & \\
& & 1 & -1 \\
& & -1 & -1
\end{array}\right]
$$

and (exercise!) $\mu(A B+B C+C D-A D)=\mu(A B)+\mu(B C)+\mu(C D)-\mu(A D)$ $=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=2 \sqrt{2}>2$.

- States and events

State operator correspondence:

$$
\begin{aligned}
& \text { State operator correspondence: } \\
&\left\{\begin{array}{c}
\text { positive elements } r: A \\
\text { so trace }(r)=1
\end{array}\right\}\left\{\begin{array}{l}
\text { (normal) } \\
\text { states on } A
\end{array}\right\} \\
& r \longmapsto(a \longmapsto \operatorname{tr}(\mathrm{ra}))
\end{aligned}
$$

Observe for \mathbb{C}^{2} and $M_{2} \mathbb{C}$, there was a correspondence
$\{$ rank \mid projections $\} \longleftrightarrow\{$ extrema states 3
(both are the unit sphere)

Vector states
Every finite dimensional algebra of observables is semisimple and in fact by Wedderburri's theorem

$$
A \cong M_{n_{1}} \mathbb{C} \oplus M_{n_{2}} \mathbb{C} \oplus-\oplus M_{n_{k}} \mathbb{C}
$$

Move abstractly, every algebra of observables admits a (non-unique! non-physical!) faithful action on some Hilbert space. In particular.

$$
\oplus M_{n_{i}} \mathbb{C} \quad C \oplus \mathbb{C}^{n_{i}}
$$

but matrix maltupication is a faithful action. we have

$$
\oplus M_{n_{i}} \mathbb{C} \underset{\substack{*-\text { algehew } \\ \text { mophibm }}}{ } M_{\Sigma n_{i}} \mathbb{C}
$$

Or in infinite dimensions

$$
A \longleftrightarrow B(t \theta)
$$

Eg. $M_{2} \mathbb{C} O \mathbb{C}^{2}$
Given a unit vector $\xi \in \mathcal{H}$, we can define a state by

$$
\varphi_{\xi}(a)=(a \xi, \xi)
$$

This really is a state:

$$
\begin{aligned}
& \varphi_{\xi}(1)=(\xi, \xi)=\|\xi\|^{2}=1 \\
& \varphi_{\xi}\left(b^{+} b\right)=\left(b^{+} b \xi, \xi\right)=(b \xi, b \xi) \geqslant 0
\end{aligned}
$$

States realisable in the way are called vector states.
Notice that the vector itself (indeed, the vector space!) has no physical meaning:

$$
\varphi_{\xi}=\varphi_{e^{i \theta \xi}}
$$

and if we embed $A \hookrightarrow B\left(\phi_{1} \oplus \dot{\theta}_{2}\right)$

$$
\left(\left.\frac{a}{b} \right\rvert\, \frac{0}{0}\right)
$$

Then $\left.\varphi_{\xi+\eta}(a)=\left(\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)\binom{\xi}{\eta},\binom{\xi}{\eta}\right)=\binom{a}{0},\binom{\xi}{\xi}\right)=$

$$
(a \xi, \xi)=\varphi_{\xi}(a) .
$$

What are the vector states of $M_{2} \mathbb{C}$?

$$
\begin{aligned}
& \left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}_{1}\binom{x_{1}}{x_{2}}\right) \\
= & a\left\|x_{1}\right\|^{2}+b \bar{x}_{1} x_{2}+c x_{1} \bar{x}_{2}+d\left\|x_{2}\right\|^{2}
\end{aligned}
$$

Matching this

$$
\varphi_{x, y, z}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{1+z}{2} \cdot a+\frac{x-i y}{2} \cdot b+\frac{x+y}{2} \cdot c+\frac{1-z}{2} \cdot d
$$

up with
we see

$$
\begin{aligned}
& \left.z=2 \| x_{1}\right)^{2}-1 \\
& x=\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2} \\
& y=-i\left(x_{1} \bar{x}_{2}-\bar{x}_{1} x_{2}\right)
\end{aligned}
$$

and we can calculate

$$
x^{2}+y^{2}+z^{2}=\cdots=1
$$

The vector states are precisely the extremal states.

How does the update wile work for vector states? Say E is an event, with eignspaces

$$
\theta=\theta_{0} \oplus \theta_{1} .
$$

Say $\xi=\xi_{0}+\xi_{1}$.
If we observe E, the updated state is

$$
\begin{aligned}
& \widehat{\varphi_{\xi}}(a):=\frac{\varphi_{\xi}(E a E)}{\left.\varphi_{\xi} \mid E\right)} \\
&=\frac{\langle E a E \xi, \xi\rangle}{\langle E \xi, \xi\rangle} \\
&=\langle a E \xi, E \xi\rangle \\
&\|E \xi\|^{2} \\
&=\left\langle a \frac{E \xi}{\|E \xi\|}, \frac{E \xi}{\|E \xi\|}\right\rangle \\
&=\varphi_{\frac{E \xi}{}}^{\|E \xi\|}(a)
\end{aligned}
$$

The vector 'collapses' into the relevant eigenspace.

Appendix: Direct derivation of the space of states for $M_{2} \mathbb{C}$.
(2) $A=M_{2}(\mathbb{C})$, with $\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)^{\lambda}=\left(\begin{array}{cc}\bar{w} & \bar{y} \\ \bar{x} & \bar{z}\end{array}\right)$.

The identity of $A_{i}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
A state $p: M_{2}(\mathbb{C}) \rightarrow \mathbb{C}$ must be of the form

$$
p\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)=a w+b x+c y+d z
$$

for some $a, b, c, d \in \mathbb{C}$.

$$
p\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1 \Rightarrow a+d=1
$$

Let's introduce α so $a=\frac{1+\alpha}{2}, d=\frac{1-\alpha}{2}$, with $\alpha \in[-1,1]$.
(Exercise:) A general positive element of A is of the form $\left(\begin{array}{cc}\omega & x \\ \bar{x} & \xi\end{array}\right)$ with $\omega_{1} \xi \in \mathbb{R}_{\geqslant 0}, x \in \mathbb{1}$, and $\omega \xi \geqslant x \bar{x}$.
Then $p\left(\begin{array}{cc}\omega & x \\ \bar{x} & \xi\end{array}\right)=\frac{1+\alpha}{2} \omega+\frac{1-\alpha}{2} \xi+b x+c \bar{x}$.
This must be real for all $x \in \mathcal{L}$, so we must hare

$$
c=\bar{b} .
$$

Now $\min _{x:|x|^{2} \leqslant \omega \xi} b x+\overline{b x}=-2|b| \sqrt{\omega \xi}$, so we must have $\frac{1+\alpha}{2} \omega+\frac{1-\alpha}{2} \xi-2|b| \sqrt{\omega \xi} \geqslant 0$

Minimising this with respect to $s=\omega^{\frac{1}{2}} \xi^{-\frac{1}{2}}$, we find
the minimum occurs at $s=\frac{2(6)}{1+\alpha}$.
The minimum still has to be positive, and this says

$$
1 \geqslant \alpha^{2}+4(b)^{2}
$$

Writing $b=\frac{\beta+i \gamma}{2}, c=\frac{\beta-i \gamma}{2}$, we have that a general state is of the form

$$
\rho\left(\begin{array}{ll}
\omega & x \\
y & z
\end{array}\right)=\frac{1+\alpha}{2} \omega+\frac{\beta+i \gamma}{2} x+\frac{\beta-i \gamma}{2} y+\frac{1-\alpha}{2} z
$$

with $\alpha^{2}+\beta^{2}+\gamma^{2} \leq 1, \quad \alpha, \beta, \gamma \in \mathbb{R}$.
We can draw the set of states (or "Bloch region") as the solid ball

