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Topics
•

"

Generators mod relations
"

presentations

of pivotal categories / planar algebras

- an example : the Fibonacci category

• Temperley - Lieb - Jones categories

- Jones -
Wenzl idempotent

- an example : the Da categories

• algebra objects
,

and skein theory for module categories

• ( . . . diagrams for Dnnfdd centres
,

subfaokr planar algebras
,

string diagrams for higher categories . . .
?)



 

Diagramsquantumsymmetries
Victor 's talkshave given you

an

algebmipespece
on fusion

categories .

'

Rep a is a
'

prototypical
' fusion category .

and its often helpful to

think of a general fusion category as a

'noncommutative '

on

'

quantum
' generalisation of a finite symmetry group .

Noah 's talks this week will give a rather different perspective,

via the cobordism hypothesis :

"

Local topological held theories are classified by their value

on a point,
which is a certain sort of nice

higher category
"

.



 

The essential idea is that local TFTS
assign a set of "fields "

to each manifold
,

with rules for gluing together fields
.

A higher category just describes the local part,

when the manifolds

are balls
.

Exampled

• Z ( Mn )

=Q{
principal a- bundles on M }

uns the corresponding higher category B Vec G as an n - category

( "

Dijkgraaf -
Witten theory

"

)

• zf€G=§ Hyenas
we the corresponding 2- category is the

fusion category Fib
.



 

Perhaps surprisingly
, every local TFTI higher category

can be described in terms of "

string diagrams
"

(with perhaps complicated labels and local relations)

on
manifolds / balls

.

My lecture series takes this idea seriously
,

and develops

some of the theory of quantum symmetries (fusion categories,

de)

purely diagrammatically.



 

Let 's suppose we have some skein theory Cie
.

local linear relations)

for planar,
an oriented

,
trivalent graphs .

(Later :

"skein theory
"

-

-

' '

pivotal category
"

planaqgg.ci,

let's write Pn for the space of (formal linear combos off

planar trivalent graphs with n bdg pants
,

modulo these relations
.

Lets assume E-

Elo
3.

PREE
3

,Pz
-

-

EL
}

.

B -

-

HE
}

and dim Pc
,

S2

What can we say?

In Pa
,

we have (at least ! ) the diagrams

It
,

I . I .

H

Exercise derive a
contradiction if ) I and Un are

linearly dependent !

Exercise derive a
contradiction if ) I and Un are

linearly dependent !



 

We must have a relation of the form

A ) ( t B I + I = zero

and so :

a

Mt
B On t & =O

d)OtB Y t Yd = O

a

It
A bn t & =O

Now D= zero ,
and Q -

- b / for some
b

, -

so at Bd = ad t Bt b = at b -

- O
.

then d- ' ¥ .

a.  . is
.p⇒±z=¥#11=1+49-1

(and we may as well nenormalize the vertex so b =D



 

This relation " looks really powerful
" and suggests there's

perhaps

atmostonet

example satisfying these conditions !

Attwood -

-

' ' II )

Why?

Tami Ya =) I - fun allows us to evaluate all dosed diagrams

Proof In a dosed diagram, every
I must be adjacent to

another I ! The relation lets us replace that

part of the diagram with a linear combination of

strictly simpler diagrams .

Example # = 60 - ta D
= 8- to -

'

a ⑥ '- to 8

=D - d - did
"

= I



 

Such a stem theory lie
.

with dim

Pof
1) is called evaluate

.

(Equivalently
,

in a semisimple category the tensor unit is simple

!
A general fact : every

ideal in an e valuable skein theory

is contained in the negligible ideal
.

Deth is negligible if every dosed diagram

built using f is Zero
.

( I I

Roof Say ⑦ E I
,

and non - negligible .

I 1

Then there is some so ¥0
,

so the empty diagram is in I
,

and hence I is
the

entire skein theory .



 

If we've discovered some relations that let as prove
eval a ability

,

form the free skein theory given by those generators and relations
.

In our example,
let Q be

( h I o -
- HE

,

II = It 'ah )
Its e valuable

,
and there's a

"

functor
"

F : Q → P

( Later ,
when we interpret P and Q as categories.

this will be surjective on objects and morphisms)

Thus P is completely determined by the kernel of this

functor,
which isanideal

,
and

hence a sub - ideal of Q 's unique maximal ideal
,

the negligible s
.



 

If we add the assumption that P

is
nondegenerate ,

were done : P must be Q/µ .

(Although we may not be satisfied with this description

if we don't know a good description of N
. )

In fact
,

in our example Nt { 03 !

Observe 40 = D - ta no = zero
,

and since in every dosed diagram P appears next to another vertex
,

PEN
.

In fact N =

,

but we're not quite ready

to prove this
.



 

We potentially have a bigger problem . . .

what if Q is actually zero ! ?

( This could happen if the relations let us evaluate a closed diagram

in two different ways .

this would
say dim Q

.

-0
,

and

then dim Qu -0 for all n .) .

Threesdutions
⑦ Directly show Q is nonzero

, using
'confluence'

.

This is usually really hard - I don't even know how to do this case !

⑤ Find Q ( or a non-zero quotient)
" elsewhere in mathematics "

.

For this example
.

we're in luck : Qfu ⇐ Rep

Us
.

3 .

for via Temperley - Lieb
,

or the chromatic

⑥ Attempt a
"

general purpose
" construction

, using polynomial . )

graph planar algebras / the regular representation .

Hopefully well have time later in the week
.



 

One useful formalization of 2 - dimensional string diagrams

is as a ptanaralgebra .
(due to V. Jones

,

arXiv : 9909027)

A planar algebra P consists of :

• a collection of vector spaces
Pn

,

for n : IN
.

• for each "

spaghetti and meatballs "

diagram

A 2

a linear map Pa ⑦ P
,

⑦ Pa → Ps

(from the tensor product of the rector spaces
associated to the inner circles

to the vector space associated to the outer circle.



 

• such that

- gluing one diagram inside another is compatible

with composing
the corresponding linear maps :

P =p d)ofPY noida)

- the ' radial '

diagrams

act by the identity

- two diagrams which are isotopic rel boundary
act by the same linear map .



 

Cetane Temperley - Lieb - Jones forms a planar algebra :

TLJN=¢{ TLJ diagrams
with n bdy points } (the

"

vegetarian
"

spaghetti

✓ and meatballs

0--8 e E
diagrams)

Exercises . define a morphism of planar algebras

• explain why there is a morphism TLJ → P

for
any planar algebra P with dim Po -

- I
.

• discover and prove a formula for dim TLJ
.

• invent some generalisations of this definition ?

- what if I wanted to allow oriented spaghetti ?

- or a Colombian planar algebra : ?



 

Another perspective on string diagrams starts with the

traditional language of monoidal categories .

strict
A monoidastnngdiagram for

an
monoidal category E

is a planar diagram consisting of

- oriented strings,

which point af the page ,

labelled by objects of e

-

" vertices / " boxes "/"coupons
"

with incoming stings and outgoing strings,

labelled by appropriate morphisms from C

a
n a

÷i÷÷
' in::c:X::

7 n



 

We can represent any morphism in E as a string diagram,

representing composition using
"vertical stacking

'

and tensor product using
" horizontal juxtaposition

"

.

9¥! = Hogg . f
,

¥ 4µg = ¥tjs

theorem If two monoidal string diagrams are isotopic

(through an isotopy which neither introduces critical points m

stringsnorrotates vertices )

then the corresponding morphisms are equal.

Exercise Check
Hq

4
,

= Vq

toys
in any

monoidal category .

g f

How many axioms did you use ?



 

Definition a
monoidal string diagram category E consists of :

- a set I of edge labels

- for each pair of words Wm
,

Wont in L
,

a set

Llm
→ wont ) of vertex labels

- for each pair of words Win
,

Wont M L
,

a subspace U fwm → Wont ) of the (formal linear combos It

monoidal string diagrams labelled
using

I with

incoming boundary win and outgoing boundary Wm

- such that U forms an ideal under vertical stacking
and horizontal juxtaposition

- and if two string diagrams f and g are

monoidallyisopic rel 2
,

then f -

g EU
.



 

From this we can build a monoidal category E
,

by

Obj E =L

Efx → y ) =E{ I -

labelled string diagrams
from X to ' B

-

UH - it )

theorem every
monoidal category is monoidally equivalent

to one of this form .

Sketch Dehne I -

- Obje .

Deke L(X→y ) = ECX -4 ) ( i.e .

the vertex label set is just
all morphisms)

We have an
' evaluation map

' taking

string diagrams to morphisms in C
.

Dehne U=ker( eval )
.



 

Recall a
monoidal category is rigid if

- for every object X there is deal object X
"

and maps ev :X -0 XIII
coer : I → X

.

① X

satisfying y.ie?yxj.etY=f and -

- In

- and
every X has a

pre
-dual I so (XT -

- X
.

In a rigid string diagram strings can go up or down the page ,

and must be oriented totheright at
any

critical points .

Isotopes may
introduce or cancel pairs of critical points

,

but magnet rotate vertices
.



 

Now :

① we interpret rigid string diagrams in C using

fix maid
,

xD me er
,

:X -0K → I

↳ x me
coevx

: I → Tex

② theorem two isotopic rigid string diagrams evaluate

to the same morphism

③ theorem Every rigid monoidal category is equivalent

to a category of rigid string diagrams .



 

Finally recall we can assemble Xi→X into a

monoidal functor v :C → COP. mop

,

defined on morphisms by

÷

an . . . good exercises

and a pivotal structure is a choice of monoidal natural isomorphism

I : ideEvr



 

Now a (pivotal) string diagram has no constraints on the tangencies,

we interpret Mums l* . ,

H
t tx

a (pivotal) isotopy may freely rotate vertices lie .

it's just a general isotopy)

Then ① theorem : isotopic string diagrams have the same evaluation

② theorem : every pivotal category is pivotal equivalent

to a category of pivotal string diagrams .

How many applications of an
' algebraic

'
axiom are required to prove :

exercise



 

Both planar algebras and pivotal categories are

'

just
' the theory of planar diagrams up to planar isotopy .

Given a planar algebra P
,

we define a pivotal category Ep

by : Objep = IN

Ep ( n → m ) = Pam

Composition is provided by the tangle
& o

and tensor product is t on objects and provided by
-

Exercises :

•
on morphisms .

)
- check this is rigid

- write down the
' obvious '

pivotal structure
.



 

Given a pivotal category E and a choice of an object X

which is symmetrically self-dual

( i.e
.

we have
fin! and f = f. i )

we define a planar algebra Pe by

(Pe)
.

= CC I → Xo ) and

a Hoss :*
' init

Exercise explain carefully why this satisfies the axioms of
a planar algebra !



 

(In fact this is much easier if we work with the

oriented planar algebras you
defined earlier ;

then we don't need to ask that X is symmetrically self-dual
.)

theorem Epe
,

Me (the full subcategory of e on objects Xin )

theorem Pep
,

±
.

P (see . e.g .

arXiv : 0810.4186 )



 

At first it feels disconcerting to hear

"

Objep = IN
"

what about examples like Rep G
,

where the objects are representations
,

and decompose uniquely as direct sums of irreps ?

Slogan
"

objects don't matter "

We recover the objects we expect to see by taking

the idempotent completion / Karroubi envelope .

For any
I - category C

,

Obj Kare .
= { ( X :C

, p : X → X
, p' =p ) }

karekx.pt→ G. d) :={ Lf:&Cx
-

ID
,

poof -
- f .

. f.e) }

If C is monoidal frigid /pivotal / . . .

,
so is Kare in a natural

way .



 

We also need to formally adjoin direct sums
.

Matte ) has objects words in E

and Matte )(④ Xi  → ① Yi) = {( . . .
axial ;) .

. )}
with composition by matrix multiplication .

(again,
when C is

monoidaltigidlpirotalletc Mattel inherits this)

Exercise • show Kale ) ⇐ e

• if e already has direct sums
,

show Matte ) ⇐ e
.

Mat (Karle )) is the
"

Cauchy completion
"



 

Finally ,

without having to use abelian categories.

we can say E is semisimple if

there exist objects Xi so

dim ECX
,

→ XD = { I if i

O otherwise

and every object is isomorphic to a direct sum of the Xing

( or
,

more generally
,

if Matfkorfe )) satisfies this condition)



 

Lets return to our skein theory

Q =L) ,
I O -

-

"E
,

If = It fun
,

@ -
- zero >

and study the idempotent .

We have I =D
,

and X -6
.

Claim every idempotent is a direct sum of copies
of I and X

,

and in particular X -0 X ⇐ I ④ X
.

What does AE Bloc even mean ? We have morphisms

A BE" A
,

so I " Cc
.

a) = His htt .
" c.) = ida

,

and . anti ti:
'

÷
.
::

":p . %) .



 

WE can construct an explicit isomorphism XO X ← I ④ X as follows :

Xo x -51
'

au①
→

X⑦X

→
a

1 ,
I

and check :
'

a 00=0 ,

the identity on I
.

Q =/ .

the identity on X
,

and It ta Un = ) f is exactly the relation we gust discovered!

Exercises . explain why there are no maps
between I and X

.

• prove Xin # Fn
,

I @ Fn X
,

where the E are Fibonacci numbers
•

•

argue
that every object in

the idempotent completion is

a subobject of Xm for some n
,

and

hence show the idempotent completion is semisimple
.



 

-

• Explain which axiom for a braiding ensures thatExercises

if p , I ,

then Bn ,m=

Tsing,
I strings

Thus in Fib a braiding is determined by r
,

s : Q
,

I -

- r ) I t sun

• Explain ,

Somhe
for a braiding

,
why

X :-. Yi
'

=

and solve for r and s

• Explain why the only remaining
conditions are

⇐ = thy and I = and verily these
.



 

Dzn categories Ifollowing arXiv : 0808.0764 )
-

-

we've seen already that theTemperley
- Lieb - Jones category is

the
"

simplest possible
'

pivotal category from

the
"

generators and relations "

point of view -

• generators : an an oriented arc f
• relations : O = qtq

"

(and
,

when q is a primitive (2*2) th mat of unity
,

tf = zero )

We 'll now study the "

next simplest
' '

,

with a single generator.



 

Defy Fix n > I
,

and let g- exp (anti )
.

Consider the pivotal category /planar algebra I skein theory with generator

h4n -4 strands

modulo the relations

① O -
- ett ④

= is . ¥i
② @ = i Hit

③
t

= zero



 

theorem

④ every
dosed diagram is a scalar

multiple of the identity (the tensor unit is simple)

⑧ the isomorphism classes of simple idempotent are indexed

by vertices of the Da Dynkin diagram

I . .
.  

-•/•
\

.

and Yi I is isomorphic to thedirect sum of the

idempotent associated to the vertices

adjacent to p
in this graph .



 

To prove
either of these theorems are need

tf -

. zero and
=

Note f " " "

EN at q= exp .

In foot it is zero as a consequence

of the relations :

¥iii¥¥h¥ii÷¥÷
÷ . it :÷i ÷ . it :÷÷

.

= Zero



 

Then we check each way of adding a cap to the 2nd equation gives
Zero :

=
i =

Cby expanding out the TLJ braiding !)

= zero =
etc

Now ftp. ← every
term here

= "
has a cap

=

=

Note
.

however
,

that f- !



 

Now prove
theorem ④ - every dosed diagram can be evaluated

using
these relations :

① Pick a pair of s 's
,

and slide them towards each other

using the
' half - braiding

'

1/1 ⑤ I us s//③E
② Once they're adjacent

,

remove them a " "9
= qn.is .

⑤

③ Repeating ①
;

. we get down to 0 or

I
It " I

S 's
.

④ If there's 1
,

it must have a cap ,
so return zero

⑤ Otherwise
,

use O -

- qtq
" to evaluate to a number

.

In fact
,

one can prove this algorithm in invoices and

respects all the defining relations
, giving a direct

proof of the consistency of this presentation ! Gee arXiv : 0808.0764 )



 

Atgebras

An algebra I in a
monoidal category e ) consists of :

↳

*
satisfying ¥ -

- ¥
,

* * .

-

- t

We can
define the projednremdes for an algebra A

entirely diagrammatically.

First define fmod - A
, a category .

with

• Objffmod - A) = Obj Ce)

• fmod - A (X → 4) = ECX → YA )

with identity Ix : =

"

too
.

and

n

Exercise verify composition
composition f →

g : =

gµd is associative !

f •



 

We then define pmod - A : = karffmod - A)
.

What does this have to do with the usual mod - A
,

which is defined to be the category of A - module objects internal to e ?

In general ,
even in Vec

, they disagree - plenty of (honest)algebras

have modules which are notprojehre .

We mightexpect to need A semisimple
.

There is a functor
,

however
,

I :p mod - A  → mod - A
e Kore

sending ( X :C
, p

: Gx → XA )
,

'

¥4.971.1 )

to
KXA.it#..f..f.=.t:H=nl.ID

.

#
the underlying object in Kar C

0 : -f¥£ya,

Energised;thisis
a map

)
,

Exercise : this map
satisfies the

dxiomsaafof.orgmodule object )



 

Exercise define the functor i : epmod- A → mod - A
Kare

at the level of morphisms
,

and verify fundoriality .

Exercyise the functor i is fully - faithful
.

theorem If A is a special Frobenius algebra in e
,

then the functor i .
. pmod - A → mod - A

is an equivalence of categories .

Definition a special Frobenius algebra in a pivotal category E is a

symmetrically self - dad algebra further satisfying

⑦=/.y , ¥=/ Exercise : how does this

relate to the usual definition?



 

Proof we just need to verify i is essentially surjective.

Given ( ma ) : mod - A
,

let's define a projective module
(for simplicity

,

let's assume

C is idempotent complete
,↳ " m

' P : = 4¥
. .eu .

.jo?:=!V/=/qqfd=f.J so we don't need to worry

a
!

an a , o

Especial
.es ,

about Kare )

Now ill
, p.hf-imageff.nl;)

which is isomorphic ( in mod - Al to the original m
,

via the maps oh and 4N
.

Exercise : verify this isomorphism,
carefully noting when

you
need to

use specialness .



 

Now
,

if e is
braided

.

and the algebra A is commutative
,

so §=/ ,

we can
define a

monoidal structure on fmod - A :

on objects,

the tensor product is the same as in E

X
'

y
' A

on morphisms
, f -0g

=

Pdm Exercise which axiom for a

x Y
monoidal category do we

need commutativity for ?

This then gives a
monoidal structure on pmod - A = karffmod - A )

.

We'd the to describe an intrinsic generators mod relations presentation

of fmod - A
.



 

The story so far :

• the Dan categories,

with relations i
,

=

are e valuable
.

but we haven't yet computed

the minimal idempotent and their tensor products

• the categories fmod
. A

,
pmod - A : -

- karfpmod - Al
,

and mod - A
,

and a diagrammatic proof that

epmod- A ⇐ mod - A
Kare

when A is a special Frobenius algebra .



 

Theorem Suppose e

=LXa
,re ) is a presentation of a braided monoidal category .

Say A is an algebra in e
,

and A  ⇐ ① pi
,

where the pi are minimal projections in E
.

We have m -

- §,
Mig? where mijk :p .

⑦ Pi → Pn

,
and a -

- Eon
,

where in : He → pi

Then final -
A has a presentation P

,

with

generators{ Xa
,
Yi } with one Yi for each pi ,

and

relations Ers} along with

① ④ ②

is
.

. Fi .T=ir .

③
E ¢ .

④ i = Ein
k DDM



 

Proofsbetch we'll define Senators F .
. fmod - A P : a

(where P is
the category given by the presentation) .

(here
, Tati denotes the projection from A to

Flit:/ ) : = ? Hdmi ne summand pi .

followed by Yo)

lpi.A.fm
"afhiiit.io/:=hp.yx

.

-1

Exercises . make this as precise as you
like !

-

. why are F and a monoidal functors?

• why one F and G inverses ?

• see that it all works if e is not braided but

A is a commutative algebra in Zte )
.

• when is fmod - A pivotal?



 

How does this explain the Dz skein theory ?

What are the algebras an That g- exp (IIIa )?

this in Agnes

,
with principal graph

f ;o¥
-

- -

of

,←a
,

4)
Claim A :=f" to f

' "  -

has an algebra structure
given by :

4)

I

f
"

⑦ f "
.

.

:
.

.

.

.

O

.÷÷÷÷÷÷ :/:
.

-47 O ) -

.

.

.

a) 14h - 4)
O

where the interesting calculation is

Sketch
: ↳ af+ ! ;

t t
. fun . as

" 1=4
t

. .

t
.

:b.

.
.

= I which only holds at g- exp



 

Aside
: in fact

,
we know all the algebra objects in TLJ at

different roots of unity (Oshita
,

arXiv : 0111139
,

but also the

earlier sub factor literature
.)

← TILT at q
=

Mti
kt2

,

with principal

graph Anti
.

( from " A field guide to categories with

An fusion rules "

,
arXiv : 1710.07362 )



 

What is the skein theory for ¥mod - ff "
④ f "

"
") of

There are two new generators,
corresponding to the simple

summand , of the algebra . ④

They satisfy :

,
① : ni¥÷= i

Z

=

-

-

E.ba
.

a. is

✓ leave
out

exactly
③ : § = ¢ ⇐ ④ =¢ to

our skein

theoretic

iii. ⇐ presents: ,

k DDM



 

Exercise
• calculate the structure coefficients for the algebras

in A
"

and in Aza

• write down the corresponding skein theories for the

free .
module categories

• in Aza
,

with A -
- f "

@ f ' "
@ f " "

① f
" "

,

dome

formulas in
the skein theory for y and y

in terms of i
,

thereby showing the skein theory

13 singly - generated

• observe that this gives Bigelow's skein theory

for Es from arXiv : 0903.0144

( no one has ever done this exercise ! )



 

Let's return to Dan
,

and compute the minimal idempotent
,

and fusion rules
.

• We have all the idempotent t.fi for Oaks 4h -4

Are they still minimal
,

and non - isomorphic?

an " "

" " " = I I :÷÷÷÷÷÷÷÷::}
Using the evaluation algorithm,

we can ensure g
has

at monotone
.

If htt Lan - 4
,

that has a cap ,

and so must be zero !



 

Therefore for OEKE 2h - I
,

the are

still minimal idempotent ,

and pairwise non - isomorphic .

Next : Dt = Efts t

"

tf -
= : ftp.

and the two terms are minimal idempotent which are non - isomorphic .

Exercise !

Finally : E Dt÷ Exercise : in both directions
,

the morphism

is just S
.

Putting this all together
,

the minimal idempotent are

•-•-•→•- . . . .  

_•/• Pt

fan fc " farfG¥•p -

Exercise : are know how to tensor each of these with a strand
.

Explain why this shows every idempotent is a direct sum of these ones
.



 

We can also do these calculations from the perspective of

tcsfmod - If " '
@ fan

. as)

Daff "
→ f " ) =TLJ( f' "

→ f' " off "
@ fan -47)

ETLJ I f "
→ f

" '

④ fan
- a - e )

)

⇐ TLJff" → fu ' ) @ TLJFF ' "
→ fan -4 - e

Y

=

{
a if bed -

- 2n -2

E
' if k -

- l or k -

- 4h - 4 - l
,

but ktl

otherwise

This tells you
how f ' "

decomposes,
but to compute the

tensor product rules we'd need to use the algebra structure
. . .



 

Possible next topics
-

• annular TL ,
lowest weight decompositions

- triple point obstructions

• classification of small examples

- by rank
,

index
, global dimension

,
.

.
.

• constructing exotic categories using graph planar algebras

• annular categories
,

Dr infield centres
,

tube algebras

• string diagrams for n - categories



 

Drinfeldcentres
Given a planar algebra /pivotal category /skein theory E

,

we immediately get a vector space

I e :={
'

'

tie. h=}
for any

oriented surface I
.



 

Going down just one dunston
, Jg is a

I - category :

Obj foe :={ .

z
! X. 4. Z : Obie }

Hell 4 t }

Composition is just by gluing annuli concentrically .

Identities are the morphisms
.

Exercise explain why checking associativity is the same as

checking associativity in IT
,
CX )

.



 

White Joe is only a
I - category , Rep fee naturally has the structure

of a braidedmonoidaategoy . (Recall Rep D :
-

- Fun CD → Ved )

Given two representations V. W : Rep Ige ,

a. now :

}

This
gives

a new representation of he

where f
'

:=V()ff )

category Sse , by gluing annular diagrams on the outside .

The braiding V④W→W⑦V is given by dragging the pictures around !



 

lets understand why Cand when) this agrees
with the usual

Printed centre of a monoidal category :

Obj Zte ) :
-

- { Cx : e
, p : to - ¥- ④ X }

Because there is a functor E → Is,
C

, ¥
, i→ ,

any V : Rep Ige gives a representation of e Got  a
module category for

C as a ④ - category ,

and if E is semisimple then every representation just a representation of the

' S representable,
i.e

.
isomorphic to one of he

underlying I - category)

form Y → ECX → Y) for some object X :C
.

We'll take that X as
the underlying object of the object

in Zte ) that we're building .



 

Now we need By : Xo Y → Y⑦X
.

We have

ideecx → x) EV )
and

, using pivotal ity ,

dX⑦Y→Y⑦X)⇐e(X→Y⑦X④Y)

⇐ v

①

v Hid
" EYED

Exercises• check By is an isomorphism

• check By is natural in Y

• check By is monoidal in Y



 

Exercyise extend this to a functor Rep fee → Zk )

(hint : use Yoneda
.

bonus : is this functor co - or contra - variant ?)

In fact
,

this functor was
'

the hard direction
'

- we needed to

use semi simplicity of E to construct it
.

The '

easy direction ' Z (e) → Rep Sse should send an object with a

half - braiding CX
, p) to the representation

V ) : = ECX → A-013-04E

but this isn't well -

defined ! We only have a cyclic ordering on the

pants around the circle
,

but need a linear ordering to take horns to
.

Of course
,

the half - braiding saves us
, giving isomorphisms

EH → A ⑦ Boo c) → elxeo CIA -0 B) → eleven → A  -0 B) → eCx→C⑦A⑦B)



 

We also need to define the action of annular diagrams :

C D
C D

:
"

÷÷÷÷÷÷i÷a :*::: .

§
Use the half - braiding on X

We still have
many proof obligations :

• the functors Zfe ) I Rep Jsc form an equivalence

• at least one of the functors is monoidal C Exercise : why just one ?)

• that functor is braided

• ( we may
also want to define and

compare pivotal structures

on either side )



 

Lets check monoidalily of the functor 'D : He ) → Rep foe .

Vfx . MAY.DK c)

=e(x⑦Y→A⑦B④C)
-

4*4.

* *  It:}:;)

@cx.nxova.DI off f }
f : eats ?)

g : e ( Y - ' ?) A B
c

we can map one way via

"

i→

and tuna via i→



 

This interpretation of He ) as Rep Ise explains why

physicists think of ZK ) as classifying the '

point defects '

or
cpoint like excitations ' of the Zd lattice model realising C

.

An object of Zte ) is a collection of vector spaces describing

he possible quantum states of an excitation
, along with

rules (the annular action) for how these States interact with

the surrounding state of the bulk theory .



 

Let's describe the simplest example of a Dornfeld centre
.

( to physicists,

this example is
" the toric code " )

Let e -

- Rep 7422 =TLJg= , =L "

generators ) 0=1
,

I =) 1)
.

A representation V of Jsc consists of :

inbounday pants

- for each n : IN
,

a vector space Vu =

- however
, gives an isomorphism ( Eternia:my

Vntz ⇐ Vn

and since a me :p:;Pinette
Saine isomorphism

,



 

and so the representation V is entirely determined

by V
.

and Y
,

and the annular tangles between these
.

In fact
.

there are no maps
between Vo and V.

,
so we get

a direct sum decomposition into two pieces .

(equivalently ,
in any iwep Vo -

- O er 4=0 )

what is &e) (0-0) ? Just 400,0003/0000=003

similarly Hello-07=400,⑧}/⑧=④}



 

From these facts are have the classification of maps :

viv

-f÷}/⑧}
" magnetic

"

=/ /⑧=.g.) Exercises
" electric

"
• calculate the tensor

k products
e -

• calculate the braidingV =//④} .
companies at

em -
matrices

h . verify Z f Rep 2/22)v

={%}
. modular

.



 

From this perspective we can describe the functor

G : C -0 Ebor → Z (e) = Rep f. e

whenever e is braided
.Deemed

" "

Observe this is
monoidal :

skin . scut - { 2o=j=
Excise check the details

,

and confirm
A

the braiding is preserved .

GfX⑦W.
W ① Z )



 

Exercises
• When e is symmetric monoidal

,

show this functor factors through

C ⑦ e
bop

* e
→

He )

• When E is modular
,

show this functor

is an equivalence .



 

How do we concretely calculate Z Ce) ?

When e is finitely semisimple
, Jg,e is equivalent (after Cauchy

completion)

to a certain finite - dimensional associative algebra
,

the tube algebra .

Tube ( e ) :=¥¥eE(X④Z→Zfor all f :eCz→z 't

g :e(X⑦Z
'-sZ④Y

)

Composition sends f : ECXZ  → ZY ) z y z ×

g : e ( X' Z' → Z Y
t ¥ = ¥4

X Z
' X Z

" s*¥e÷. . nf :*::::*:÷:;
"

Etw→zz ' I e(w→zz ' )⑦dZZ' two-day



 

Exercise • every object in f. e is a direct

sum of objects ⑤
Ine

• every morphism in Jse is conjugate to

. u.am?::ad-enI" " " ¥?: ⇒

equivalence

Mat (KarlTube ED E Mat fKorff
,
d)

(hint
,

to define a functor out of Matfkar CD)) it suffices
:

to define a functor out of D.)



 

Let's calculate Tube ( Rep 2122 ) .

Ccxz → zy ) ⇐ E if X - y

{ O otherwise

So Tube ( Rep 7422) E 64
.

But what is the algebra structure ?

We could compute it
using

the formula! tg-sx.si?...?....YE:7i.Ew

But there's a shortcut : the S factor shows
% " ⇒

the algebra has a direct sum decomposition
,

into X=Y= Etr "

and X=Y -
- E

" is
"

pieces .

Since Pep 2122 is unitary
,

Tube ( Pep 2122) must be semisimple
,

So Tube ( Pep 21274€ Eto a ④ G to E
.

Exercise compute Tube CRep 2122) and Tube CFib ) explicitly .



 

What is . . .

d
string diagram n - category?

A stratification of an n - manifold W is a sequence

W = Wo2W
,

2 - - - 2Wn
so

Wfwk+
,

is a codimension k submanifold of W
.



 

It is a string

diagram
stratification if n

every x E Whlwn
,

has a nbhd in
W

n - -2

which is a product of its nbhd in Wn

and the code over a string diagram stratification
n =3

of some (n - k - D - sphere .

*
Equivalently.

if :

• it is the O - ball with its
unique

stratification

• it is W x I for some W with an SD stratification

• it is cone ( w )
.

where W is an SD stratification of
a sphere

• it is w
, wwz

,

Where W
,

and Wz have SD stratification
,

or

• it is W glued to itself along Y
,

where W has an SD stratification
,

and both restrictions to Y give the same stratification
.

[ Sieben mann

'

72 ! ]



 

If
"

E is an n -

category
,

an
m - dimensional E - string diagram is

an SD - stratified ball W
,

" with each

Im
- k) ball in www.i

,

labelled by some k
- morphism of E

.

i¥¥Any reasonable definition of a (pivotal) n - category let
you

eratuate a e - string diagram to an m - morphism,

so isotopic E - string diagrams have the same evaluation
.

et H=
We will define a n - category byaxiomatizing just this observation

.



 

An n-dimensional signature I consists of * oriented
,

anointed
,

spin ,

conformal
,

- for each Of Ksn equipped with a map to T
,

etc

- for each oriented k - ball X
,

- for each string diagram stratification a of 2X

- for each labelling c of each stratum sea by an

element of Lk - '

( normal disc of s )

a set LYX
;D

.

Example : If . ) -
- { . }

,

I(1)
= { 1,13

,

It :O.
) -

- { ④3.510.7=9 ⑦
.

3

all other I empty .



 

For a fixed signature I
,

a string diagram on
M

"

is a string diagram stratification of M
,

with each stratum labelled by an element of

[ ( normal disc )

Example with I as before
,

L string diagrams on €0
11

{ o
, . €0 . . . . }



 

A stringdiagramneategoy e consists of :

• a n - signature I
• for each n - ball X with a L - string diagram c in 2X

a subspace uh
; c) cases - string

,
!.gg?.d.;Y }

- such that U forms an ideal with respect to gluing balls

- if f and
g are L - string diagrams on X with the

same boundary c
, such that f and

g are

isotopicrel 2
,

then f E UH ; c )
.



 

Without pinning
ourselves down to a particular ' traditional '

definition of ( weak ! ) n - category ,

let 's sketch the construction of one
.

E °

= If . )
,

E ' (X → 4) = f string diagrams on [ 91T with

X at 0 and Y at ,
}

Ek " ( X → 4) = { string diagrams on [ 0,17k with

X on [ QD
" +903 Y on [ o.DK

'

x 913

(24--21) x I on Iko. D)
"

x I }

EYX - N ) -

-
EE string diagrams as a

NKo.ph ; x. y,
ax



 

Cagehypothesis
Every pivotal weak n - category is equivalent to

a string diagram a - category .

Payoffs .

.

-

.

straightforward definitions of '

sphere modules
'

)
Hochschild cohomology for n - categories (arXiv : 1009.5025 )

- higher dimensional analogues of

idempotent completion / algebra completion (coming
soon

,
see also

- construction of a 4- category from
arXiv : 1905.09566 )

Khorana homology
(coming soon )

- a proof of stabilisation

( k - boring n - categories =fkH) - boring u - categories when k > Etl )

Using traversal ily C someone should do it !)



 

How do we construct potential new tensor categories ?

Suppose we suspect the existence of some tensor category C

with a particular fusion ring Kole) in particular suppose we know

the principal graph for some object
, e.g .

µ = • -00-00 -•Ie-•-•

Any monoidal category C embeds via a monoidal functor

into the eadofunctos of the underlying I - category µ=C
.

G : CtEnd (M )

X - Xxo -



 

If E is semisimple,

with n simple objects,

then M E Vector
,

and End ( M ) is semisimple
,

with simple object Eij ,

defined

by the rule E ( Eh ) = { Ei if E- h

O otherwise
5

the additive generator of

the k - th summand of Vector

A general object of End CM) is (up
to so ) a direct sum of these

,

i . e . a matrix in MIN )
,

which we can interpret

as the adjacency matrix of a directed graph .

Now GCX : e) ( En ) =X⑦Xu = ① mile
5 the k - th simple of e

where nut is the adjacency matrix for the principal graph
.

so

gcx ) = T



 

Next we would like to calculate
① n

Endue ) → At =

, n

Ved lent → ACED
5

graphs ,
interpreted as on

functors = Veal @ One Cle → ④ in Ge)

= Onex :

This has as a basis pairs of edges
,

one in ①
,

one in A-

with the same source and target.

Composition of basis elements is easy :

( ee
,

fed ) " ( get ,

he D) =

}
( e. h ) if f- g

Zero otherwise



 

How do we false tensor products of graphs ?

① ④ A = length two paths in kn
,

first

edge in ①
.

second edge in - A

①
"

= length n paths in ⑦

How do we tensor morphisms?

( ee ①
,

fer ) ④ ( get ,
her )

=

}
( eng

c- ① ④ D
,

fish c-

Axon)
if ( e

, g) and Aid are com posable pairs

Zero otherwise



 

Now : End # T → T④m) =

a { pairs
of paths Iy , y

')
,

of length n and m
,

with the same source and target }
Composition is just Cy

, y
') My "

, y
' " ) = 8g

,
. ( 8,8

" )

Tensor is conation of paths
,

if possible .

At this point we know there must exist an embedding

( x : e) → Lt .

.
EndI MD

with a completely combinatorial description of

the target monoidal category !



 

In fact
,

it gets better
. End (M ) is a pivotal category ,

with duality given by taking right adjoins

(which exist as M is semisimple
,

and in fact are biadjoint)

which at the level of the graphs is orientation reversal
.

In fact Tw = T
,

so we could take the pivotal isomorphism

I : I
Ending

→ VV

to be the identity .

This is a bad idea !

If e is pivotal ,

each simple Xi has a categorical dimensions

dimly ) : -
- ① = ! E E

Dcoevx



 

theorem If we give
End (M ) the pivotal structure

IF
.

=da7fYs Ie
.

.

then E → End CM) is a pivotal embedding .

Exercise verify this (replacing the ratio with its inverse if needed! !)

( of arXiv : 1007.3173
,

arXiv : 1810.06076
,

arXiv : 1808.00323 )



 

idea .

 . ① from the principal graph T
,

deduce the existence

of an element S : ECI → X④n)

satisfying certain planar equations { ri }

② solve these equations in Enda ) ( I → Tron)

③ this gives an embedding Sl ri ) → End CM)

④ find more equations if necessary ,
perhaps by

observing equations satisfied by the solution in Enda)

④ use this equations to show Lst ri ) is

evatuable and has the desired simple

objects and fusion rules
.



 

Let's try to implement this for
P

T =  

''

#%g
,

we see dim E Ce - s XM = # of loops of length n based at I

-

-

t.EEdime

dimthl I I 2 5 14 42

Therefore ECI -7 E) = The → XM for us 8

ece→x④9=TLCe→X④9④E{i }
We can pick this S so ! = zero

and = w for some lath not of unity w
.



 

In e(x④5→X④5 ) we see must break up

as a sum of two non - isomorphic projections

¥i=fi¥¥ +

stfu
.

alia
- s )

( we use our remaining freedom to renormahze S here )

In fact
,

since dump ;Fpdimp =P - entry of FP - eigenvector of T

assume unitarily !
-

=¥( HE )/7tftI6f5trI n

3.21834
so we know A .

I at¥tsY=(ah ts ) gives us a quadratic in S

and we're done !



 

Exercise implement
' the idea '

- Show there are finitely many
solutions to these

equations in End f Ve ( I → EF
"

)

- Show these equations are enough to evaluate

and identify all the idempotent

- Check the principal graph really is Eg

-
Conclude there exists a fusion category with

principal graph Ese

- In fact
,

classify such categories using your solutions
.

See arXiv : 0909.4099 for He construction of
" the most exotic known fusion categories

"

.


