Digramand we tou 5 Scot Mo Mer som Aurtalan Natide Mivander

Topics

- "Generators mod relations" presentations of pivotal categories/planar algebras
- an example: the Fibonacci category
- Temperley-Lieb-Jones categories
- Jones-Wenzl idempotents
- an example: the $D_{2 n}$ categories
- algebra objects, and skein theory for module categories
- (... diagrams for Drinfeld centres, Sublactor planar algebras, sting diagrams for lirgher categories...?)

Diagrams and quantum symmetries
Victor's talks have given you an algebraic perspective on fusion categories.
Rep is a 'prototypical' fusion category, and its aten helpful to think of a general fusion category as a 'noncommutative' or 'quantum' generalisation of a finite symmetry group.
Noah's talks this week will give a rather different perspective, va the cobordism hypothesis:
"Local topological field theories are classified by their value on a point, which is a certain sort of nice higher category".

The essential idea is that local TFTs assign a set of "fields" to each manfold, with rules for gluing together hells.
A higher category just describes the local part, when the manifolds are balls.

Examples

- $Z\left(M^{n}\right)=\mathbb{C}\{$ principal G-bundles on $M\}$
\leadsto the corresponding higher category is VecG as an n-cotegory ("Dijkgraaf-witen theory")

$\leadsto \rightarrow$ the corresponding 2-category is the fusion category Fib.

Perhaps suprisingly every local TFT/higher category can be described in terms of "string diagrams" (with perhaps complicated labels and local relations) on manifolds/balls.

My lecture series takes this idea seriously, and develops some of the theory of quantum symmetries (fusion categories, etc) purely diagrammatically.

Let's suppose we have some skew theory (ie. bal lInear relations) for planar, unoriented, trivalent graphs. (Later "skem theory" "puratal category" = "planar algebra")
Let's write P_{n} for the space of (formal linear combos of) planar trivalent graphs with n bay pants, modulo these relations.
Lets assume $\left.\left.\left.\left.P_{0}=\mathbb{C}\right\} \bigcirc\right\}, P_{1}=\mathbb{C}\{ \}, P_{2}=\mathbb{C}\{D\}, P_{3}=\mathbb{C}\right\} Q\right\}$ and $\operatorname{dim}_{4} P_{4} \leq 2$
What can we say?
In P_{4}, we have (at least!) the diagrams

$$
)(, \quad \backsim, \quad Y, \quad><
$$

Exercise derive a contradiction of) (and \because are linearly dependent!

We must have a relation of the form

$$
\alpha)(+\beta \cup Y+\lambda=z e r o
$$

and so:

$$
\alpha \beta+\beta{ }^{0}+?=0
$$

$\alpha) 0+\beta \circlearrowright+P=0$
$\alpha \lambda+\beta \underset{\sim}{o}+\underset{\lambda}{d}=0$
Now $\rho=$ zero, and $\phi=b /$ for some b, so $\alpha+\beta d=\alpha d+\beta+b=\alpha+b=0$.
Then $d=\frac{1 \pm \sqrt{5}}{2}, \alpha=-b, \quad \beta=-b \frac{1+\sqrt{5}}{2}=\frac{b}{d}$

$$
I=Y+\frac{1}{d} \Omega
$$

(and we may as and renormalize the vertex so $b=1$.)

This relation "looks really powerful" and suggests there's perhaps at most one example satisfying these conditions!
$A\left(\right.$ two: $\left.d=\frac{(\pm \sqrt{5}}{2}\right)$
Why?
Clam $\left.1 \quad X^{\prime}=\right)\left(-\frac{1}{d} \cap\right.$ allows us to evaluate all closed diagrams
Proof in a closed diagram, every λ must be adjacent to another $A!$ The relation left us replace that part of the diagram with a linear combination of strictly simpler diagrams.
Example

$$
\begin{aligned}
\Delta & =\infty-\frac{1}{d} \infty \\
& =S^{-\frac{1}{d}} 0-\frac{1}{d} O+\frac{1}{d^{2}} \delta \\
& =d-d-d+d^{-1}=1
\end{aligned}
$$

Such a seen theory (i.e. with dim $P_{0} \leqslant 1$) is called evaluable. (Equivalently, in a semisimple category, the tensor unit is simple.)

A general fact: every ideal in an evaluable skim theory is contained in the negligible ideal.
Dean (f) is negligible if every closed diagram built using f is zero.

Roof Say $\left.{ }_{\|}^{\prime}{ }_{1}^{\prime}\right) \in I$, and non-negligible.

so the empty diagram is in I, and hence I is the entire skew theory.

If wive discovered some relations that let us prove evaluability, form the free sem theory given by those generators and relations.

In air example, let Q be

$$
\left.\langle\lambda| O=\frac{\mu \sqrt{5}}{2},\right)\left(=Y+\frac{1}{d}{ }^{u}\right\rangle
$$

Its evaluable, and there's a "functor"

$$
F: Q \longrightarrow P
$$

(Later, when we interpret P and Q as categories, this will be subjective on dejects and morphisms)
Thus P is completely determined by the kernel of this functor, which is an ideal, and hence a sub-ideal of Q's unique maximal ideal, the negligibles.

If we add the assumption that P is nondegenerate, were done: P must be Q / N.
(Although we may not be satished with this description If we dort know a good description of N.)

In fact, in our example $\quad l \neq\{0\}$!
Observe $Q=P-\frac{1}{d} \cap=$ zero,
and since m every closed diagram P appears next to another vertex, $\rho \in N$. In fact $N=\langle\varphi\rangle$, but were not quite ready to prove this.

We potentially have a bigger problem... what if Q is actually zero!?
(This could happen if the relations let us evaluate a closed diagram in two different ways. This would say $\operatorname{dim} Q_{0}=0$ and then $\operatorname{dim} Q_{n}=0$ for all n.)
Three solutions
(A) Directly show Q is nonzero, using 'confluence'.

This is usually really hard - 1 donit even know how to do this case!
(B) Find Q (or a non-zero quotient) "elsewhere in mathematics".
 or the chromatic
(C) Attempt a "general purpose" construction, using polynomial.)
graph planar algebras / The regular representation. Hopefully well have time later in the week.

One useful formalisation of 2 -dimensional string diagrams is as a planar algebra. (due to V. Jones, arliv:9909027)

A planar algebra P consists of:

- a collection of vector spaces Θ_{n}, for $n: \mathbb{N}$.
- for each "spaghetti and meatballs" diagram

a linear map $P_{4} \otimes P_{3} \otimes P_{4} \rightarrow P_{5}$
(from the tensor product of the rector graces associated to the miner andes to the vector space associated to the outer circe.).
- such that
- gluing one diagram inside another is compatible with composing the corresponding lInear maps:

- the 'radial' diagrams

act by the identity
- two diagrams which are isotopic rel boundary act by the same linear map.

Example Temperleg-Lieb-Jones forms a planar algebra:
$T L J_{n}=\mathbb{C}\{T L J$ diagrams with n body points $\}$ (the "vegetarian" spaghetti and meatballs diagrams)

Exercises. define a morphism of planar algebras

- explain why there is a morphism TLJ $\rightarrow P$ for any planar algebra P with $\operatorname{dim} P_{0}=1$
- discover and prove a formula for $\operatorname{dim} T L J_{n}$
- invent some generalisations of this definition!
- what if I wanted to allow oriented spaghetti?
- or a Colombian planar algebra:

Another perspective on string diagrams starts with the traditional language of monoidal categories.
A monoidal string diagram for a strict monoidal category e is a planar diagram consisting of

- oriented strings, which point up the page, labelled by objects of e
- "vertices"/"boxes"/ "coupons"
with incoming strings and outgoing strings,
labelled by appropriate morphisms from e

$$
\begin{gathered}
f: A \otimes B \rightarrow X \otimes W \\
g: W \otimes C \rightarrow Y \otimes Z
\end{gathered}
$$

We can represent any morphism in C as a string diagram, representing composition using "vertical stacking' and tensor product using "horizontal juxtaposition".

$$
\eta_{g}^{f}=\left\{g \circ f, \text { fo } p_{g}^{g}=\eta^{\log }\right.
$$

Theorem If two monoidal string diagrams are isotopic (through an isotopy which neither introduces critical points m strings nor rotates vertices)
then the corresponding morphisms are equal.
Exercise Check of ${ }_{N}=1 \bigcap_{i}^{9}$ in any monoidal category. How many axioms did you use?

Definition a monoidal string diagram category C consists of:

- a set L of edge labels
- for each pair of words $\omega_{\text {in }}, \omega_{\text {out }}$ in \mathcal{L}, a set $\mathcal{L}\left(w_{\text {in }} \rightarrow \omega_{\text {out }}\right)$ of vertex labels
- for each pair of words $\omega_{\text {in }}$, Wont m \mathcal{L},
a subspace $U\left(\omega_{m} \rightarrow \omega_{\text {out }}\right)$ of the (formal lInear combos of monoidal string diagrams labelled using \& with incoming boundary ω_{n} and outgoing boundary $\omega_{\text {in }}$
- such that $\cup 1$ forms an ideal under vertical stacking and horizontal juxtaposition
- and if two stray diagrams f and g are monoidally isotapic rel $\partial_{\text {, then }} f-g \in U$.

From this we can build a monoidal category \hat{e}, by

$$
\begin{aligned}
& \text { Obj } \hat{e}=\mathcal{L} \\
& \hat{e}(x \rightarrow y)=\frac{\mathbb{C}\{\mathcal{L} \text {-labelled string diagrams from } X \text { to } y\}}{U(X \rightarrow Y)}
\end{aligned}
$$

Theorem every monoidal category is monoidally equivalent to one of this form.

Snatch Define $\mathcal{L}=$ Obj.
Define $\delta(X \rightarrow Y)=e(X \rightarrow Y)$ (ie. the vatex fake at is just
We have an 'evaluation map' taking
string diagrams to morphisms in e.
DeAne $U=\operatorname{ker}($ eval $)$.

Recall a monoidal category is rigid if

- for every object X there is dual object X^{ν} and maps $e v: X \otimes X^{\nu} \rightarrow \mathbb{I}$

$$
\text { coev : } \mathbb{1} \rightarrow X^{\sim} \otimes X
$$

satisfying

- and ever X has a predial ${ }^{v} X$ so $\left({ }^{v} X\right)^{v}=X$.

In a rigid string diagram strings can go up or down the page, and must be oriented fo the right at any critical points.
Isotopies may introduce or cancel pairs of critical points, but may not rotate vertices.

Now:
(1) we interpret rigid string diagrams in C using

$$
\begin{aligned}
& \nmid x \leadsto i d_{x^{v}} \\
& \times \prod \operatorname{lv}_{x}: X \otimes X^{v} \rightarrow \mathbb{1} \\
& \varphi_{x} \leadsto \operatorname{coev}_{x}: \mathbb{L} \rightarrow X^{2} \otimes X
\end{aligned}
$$

(2) Theorem two isotopic rigid string diagrams evaluate to the same morphism
(3) Theorem Every rigid monoidal category is equivalent to a category of rigid string diagrams.

Finally recall we can assemble $X \longmapsto X^{\nu}$ into a monoidal functor $v: e \rightarrow e^{\text {op, mop }}$, defined on mouphisms by

$$
\left(\frac{\lambda^{y}}{\frac{p}{h_{x}}}\right)^{v}:=\psi \frac{\uparrow}{\frac{f}{t}} \psi
$$

(This is a good exercise!)
and a pivotal structure is a choice of monoidal natural isomor phis

$$
\tau: i d_{e} \simeq v v
$$

Now a (pivotal) string diagram has no constraints on the tangencies, we internet

$$
\frac{\sqrt{e v_{x^{v}}}}{x^{x^{v}} \frac{\frac{1 x^{\prime v}}{\sqrt{z_{x}}}}{\lambda_{x}}}
$$

a (pivotal) isotopy may freely rotate vertices (i.e. it's just a general (sotopy)
Then (1) Theorem: isotopic strung diagrams have the same evaluation
(2) Theorem: every pivotal category is pivotal equivalent to a category of pivotal string diagrams.
Exercise How many applications of an 'algebraic' axiom are required to prove:

Both planar algebras and pivotal categories are "just' the theory of planar diagrams up to planar isotopy.

Given a planar algebra P, we define a pivotal category e_{p} by: Obj $e_{\beta}=\mathbb{N}$

$$
e_{p}(n \rightarrow m)=P_{n+m}
$$

Composition is provided by the tangle

and tensor product is t on objects and provided by
 on morphisms.

Exercises:

- check this is rigid
- write down the 'obvious' pivotal structure.

Given a pivotal category P and a choice of an object X which is symmetrically self-dual
(1.e. we have ${\underset{i x}{x}}_{\substack{x \\ i_{x}}}$ and $\psi_{\rho_{i} \uparrow}=p_{i}$)
we define a planar algebra P_{e} by
$\left(P_{e}\right)_{n}:=e\left(\mathbb{1} \rightarrow X^{\text {en }}\right)$ and

Exercise explain carefully why this satistres the axioms of planer algebra!
(In fact this is much easier if we work with the oriented planar algebras you dehned earlier; then we dort need to ask that X is symmetrically self churl.)

Theorem $e_{p_{e, x}} \xlongequal{\sim}\langle X\rangle_{e} \quad$ (horal full subcategory of e on objects $X^{\infty n}$)
Theorem $P_{e_{p, 1}} \xlongequal[P, A .]{\sim} P$
(see eeg. ar kv: 0810.4186)

At first it feels disconcerting to hear

$$
" O_{b j} e_{p}=\mathbb{N} "
$$

what about examples like $\operatorname{Rep} G$, where the objects are representations, and decompose uniquely as direct sums of irreps?
Slogan "objects dort matter"
We recover the objects we expect to see by taking the idempotent completion / Karoubi envelope.

For any 1-categong C,

$$
\begin{aligned}
& O b j \operatorname{Kar} e:=\left\{\left(X: e, p: C(X \rightarrow X), p^{2}=p\right)\right\} \\
& \operatorname{Kar} e((X, p) \rightarrow(Y, q)):=\{(f: C(X \rightarrow Y), \quad p \nsim f=f=f \Rightarrow q)\}
\end{aligned}
$$

If e is monoidal/rigid/pivotal/..., so is $\operatorname{Kar} e$ in a natural way.

We also need to formally adjoin direct sums.
$\operatorname{Mat}(e)$ has objects words in C and $\operatorname{Mat}(e)\left(\oplus x_{i} \rightarrow \oplus y_{j}\right)=\left\{\left(\begin{array}{c}\vdots \\ \cdots \\ a_{i j} \\ \vdots \\ e\left(x_{i} \rightarrow y_{j}\right) \ldots\end{array}\right)\right\}$
with composition by matrix multiplication.
(again, aten e is monoidal/vigidlprostal)etc Mat (e) inherits this)
Exercise. show $\operatorname{Kar}(e) \cong e$

- If e already has direct sums, show $\operatorname{Mat}(e) \cong C$.

Mat (Var $(e))$ is the "Cauchy completion"

Finally, without having to use abelian categones,
we can say e is semisimple if
there exist objects X_{i} so

$$
\operatorname{dim} e\left(X_{i} \rightarrow X_{s}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

and every object is isomorphic to a direct sum of the X_{i} is (or, more generally, if $\operatorname{Mat}(\operatorname{Kar}(e))$ satisfies this condition)

Let's return to our stem theory

$$
\left.Q=\langle\lambda| O=\frac{4 \sqrt{5}}{2},\right)\left(=Y+\frac{1}{d} \Omega, \rho=\text { zero }\right\rangle
$$

and study the idempotents.
We have $\mathbb{1}=\square$, and $X=\square$.
Clam every idempotent is a direct sum of copies of 1 and X, and in particular $X \otimes X \cong \mathbb{1} \oplus X$.

What does $A \cong B \oplus C$ even mean? We have morphisms

$$
\begin{aligned}
& A \xrightarrow{\pi_{2}} \underset{C}{B} \xrightarrow{B} \xrightarrow[l_{2}]{l_{1}} A \text {, so }\binom{\pi_{1}}{\pi_{2}} \gg\left(l_{1} \quad l_{2}\right)=\left(\pi_{1} \gg l_{1}+\pi_{2}>l_{2}\right)=i d_{A}, \\
& \text { and }\left(l_{1} l_{2}\right) \gg\binom{\pi_{1}}{\pi_{2}}=\left(\begin{array}{ll}
l_{1} \gg \pi_{1} & l_{2}>\pi_{2} \\
l_{1}>\pi_{2} & l_{2}>\pi_{2}
\end{array}\right)=\left(\begin{array}{cc}
i d_{B} & 0 \\
0 & i d_{c}
\end{array}\right) .
\end{aligned}
$$

We can construct an explicit romorphism $X \otimes X \cong \mathbb{1} \oplus X$ as follows:

and check: $\frac{1}{d}(O)=O$, the identity on $\mathbb{1}$.

$$
\phi=1 \text {, the identity on } X_{1}
$$

and $Y+\frac{1}{d} \cap=\mid$ (s exactly the relation we just discovered!
Exercises. explain why there are no maps between 11 and X.

- prove $X^{\otimes n} \cong F_{n-1} \mathbb{1} \oplus F_{n} X$, where the F_{n} ore Fibonaca numbers
- argue that every object in the idempotent completion is
a subobject of $x^{\text {en }}$ for solve n, and hence show the idempotent completion is semisimple.

Exercises . Explain which axiom for a braiding ensures that
if $\beta_{1,}=Y$, then

Thus in Fib a braiding is determined by $r, s: \mathbb{C}$,

$$
Y=r)(+s \bigcup
$$

- Explain, from the axioms for a braiding, why

$$
X:=X^{-1}=X^{\prime}
$$

and solve for r and s

- Explain why the only remaining conditions are

$$
K=M \text { and } X / X \text { and verify these. }
$$

$D_{2 n}$ categories
We've seen already that the Temperley-Lieb-Jones category is the "simplest possible" pivotal category from the "generators and relations" port of view -

- generators: an unoriented are \int
- relations: $O=q+q^{-1}$
(and, when q is a primitive $(2 \lambda+2)$ th root of unity.

$$
\frac{\| p^{(x)}}{\| \pi I}=\text { zero }
$$

Well now study the "next simplest", with a single generator.

Detn $F_{\text {ix }} n \geq 1$, and lef $q=\exp \left(\frac{\pi i}{4 n-2}\right)$.
Consider the pivotal category/planar algebra/skem theory with geneator

modulo the relations
(1) $O=q+q^{-1}$
(4) !
(2) $\left(\frac{11-1}{5}\right)=i \stackrel{H}{5}$

(3) $\quad s^{\prime \prime}=$ zero

Theorem
(A) every closed diagram is a scalar
multiple of the identity
(the tensor unit is simple)
(B) the romarphism classes of simple idempotents are indexed by vertices of the $D_{2_{n}}$ Dynkin diagram

and $\left.\frac{\frac{11}{1}-1}{1 n+1} \right\rvert\,$ is isomorphic to the direct sum of the idempotents associated to the vertices adjacent to P in this graph.

To prove either of these theorems we need

$$
\frac{\| \cdots 1}{\frac{f^{(a n+3)}}{\pi \cdots 1}}=\text { zero } \quad \text { and } \quad\binom{\|-1}{s}=\begin{gathered}
(\|-1) \\
5
\end{gathered}
$$

Note $f^{(4 n-3)} \in N$ at $q=\exp \left(\frac{\pi i}{4 n-2}\right)$. In faotit is zero as a consequence of the relations:

$$
\begin{aligned}
& =\text { Zero }
\end{aligned}
$$

Then we check each way of adding a cap to the Ind equation gives zero:

$$
\begin{aligned}
& \binom{11-1}{(5)}=i=\begin{array}{l}
\|-1 \\
5
\end{array}
\end{aligned}
$$

Now
(by expanding out the TLJ b. brabbling!)

Note, howerer, that $\left(\frac{11}{5}\right) \neq \frac{(11-1)}{(1)}$!

Now prove theorem (A) - every closed diagram can be evaluated using these relations:
(1) Pick a pair of Sis, and slide them towards each other using the 'half-braiding'

$$
\text { 三(s) }\left\|\left\|(\mathrm{s}) \leq \sim \frac{\frac{1}{1}(s) \|(s)=}{\frac{1}{1}}\right\|\right.
$$

(2) Once they're adjacent, remove them using
(3) Repeating (1), we get dais to 0 or 1
 Sis.
(4) If there's 1 , it must have a cap, so rectum zero
(5) Otherwise, use $O=q+q^{-1}$ to evaluate to a number.

In fact, one can prove this algorithm in independent of choices and respects all the defining relations, giving a direct proof of the consistency of this preesutation! (See arkiv:0808.0764)

Algebras
An algebra (in a monoidal category e) consists of:
\therefore) satisfying

$$
\hat{X}_{\lambda}=\hat{\lambda}, \quad \underset{\lambda}{\lambda}=\hat{\lambda}=\uparrow
$$

We can detive the projective modules for an algebra A entirely diagrammatically.
First define fmod-A, a category, with

- Obj $(f \bmod -A)=O b_{j}(e)$
- $f_{\bmod -A(X \rightarrow Y)}(X(X \rightarrow Y A)$
with identity $1_{x}:=\left.\right|_{x} ^{x A}$ and composition $f>g:=\frac{g}{f}$

Exercise verity composition is associative!

We then define $\operatorname{pmod}-A:=\operatorname{Kar}(\operatorname{mad}-A)$.
What does this have to do with the usual mod-A, which is defined to be the category of A-module objects internal to e ?
In general, even in Vec, they disagree - plenty of (honest) algebras have modules which are not projective. We might expect to need A semisumple.

There is a functor, however, i : mod- $A \rightarrow \underset{\text { kor }}{\longrightarrow} \bmod -A$

$$
\left.\triangleleft:=\binom{\text { Exercise: this is a map }}{i_{A} \text { in are }} \text { Exercise: this map satistes the } \begin{array}{c}
\text { axioms for a module abject } \\
\text { action }
\end{array}\right)
$$

Exercise dative the functor $i: e^{\text {prod- } A} \rightarrow$ more $\bmod -A$ at the level of morphisms, and verity functoviality.
Exercise the functor i is filly-faithful.

Theorem If A is a special Frbenius algebra in C, then the functor $i: \operatorname{pmod}-A \rightarrow \bmod -A$ is an equivalence of categories.
Definition a special Frobenius algebra in a pivotal category C is a symmetrically self-dod algebra further satisfying

$$
Q_{m}=N_{m}, S_{m}^{m}=\int \quad \frac{\text { Exercise: how does this }}{\text { relate to the usual definition? }}
$$

Proof we just need to verify i is essentially surjective.
Given $(m, \Delta): \bmod -A$, lets defme a projective module
(for simplicity. Lets assume

Now $i(X, p, h)=\operatorname{image}\left(4 \not\left(\left.\sum_{m}\right|_{A}\right)\right.$
which is isomorphic (in mad-A) to the original m, via the maps sin and ak.
Exercise: verify this isomorphism, carefully noting when you need to use specialness.

Now, if C is braided, and the algebra A s commutative, so $c^{2}=1 m$ we can define a monoidal structure on fmod- A :
on objects, the tensor product is the same as in C
Exercise which axiom for a moncidal category do we need commutativity for?
This then gives a monoidal structure on mod- $A=\operatorname{Kar}(f m o d-A)$.
Wed like to describe an intrinsic generators mod relations presentation of fmod- A.

The story so far:

are evaluable, but we haven't yet computed the minimal idempotents and their tensor products

- the categories fmod-A, pmod-A: $=\operatorname{Kar}(p \operatorname{mad}-A)$, and $\bmod -A$, and a diagrammatic proof that

$$
e^{\operatorname{pmod}-A \cong} \cong_{k o r e} \bmod -A
$$

when A is a special Frobenius algebra.

Theorem Suppose $e=\left\langle X_{\alpha}, r_{B}\right\rangle$ is a presentation of a braided monoidal category.
Say A is an algebra in e, and $A \cong \oplus p_{i}$,
where the p_{i} are minimal projections in e.
We have $m=\sum_{i, j k} m_{i j}^{k}$, where $m_{i j}^{k}: P_{i} \otimes P_{j} \rightarrow P_{k}$, and $c=\sum c_{k}$, where $c_{k}: \mathbb{1} e \rightarrow p_{i}$
Then final- A has a presentation P, with generators $\left\{X_{\alpha}, Y_{i}\right\}$ with one Y_{i} for each P_{i}, and relations $\left\{r_{\beta}\right\}$ along with
(1) $\frac{\hat{Y}_{i}}{\frac{\|i\|}{\frac{p_{i}}{\|i\|}}=\frac{\theta_{i}}{\| \| \|} \text {, }}$
(2) $\bar{y}_{i}=\left\{\begin{array}{l}y_{i}, \\ \|+1\| H\end{array}\right.$,
(3) $\sum_{k} \frac{y_{i}}{\frac{11-T}{c_{m}}}=\phi$
(4)

Proof speech $w_{e^{-1}}$ detre finctors $F:$ fumed- $A \longleftrightarrow P: G$
(where P is the category given by the presentation).

$$
F\left(f_{x}^{y} \oint_{x}^{A}\right):=\sum_{i} f f^{y_{i}}
$$

(here, P_{A} denotes the projection from A to the summand p_{i}, followed by Y_{0})

Exercises. make this as precise as you like!

- why are F and G monoidal functors?
- why are F and G inverses?
- see That it all works if $e_{\text {is not braided but }}$
A is a commutative algebra in $Z(e)$.
- when is fmod-A pivotal?

How does this explain the $D_{2 n}$ skein theory?
What are the algebras in TL at $q=\exp \left(\frac{\pi i}{4 n-4}\right)$?
This in $A_{4 n-3}$, with principal graph

$$
f_{f^{(2)}}^{f^{(a)}} f^{(6)} \cdots \overrightarrow{f^{(4 n-4)}}
$$

Clam $A:=f^{(0)} \oplus f^{(4 n-4)}$ has an algebra structure given by:

Sketch:

$$
\begin{aligned}
& \hat{k}=\lambda+\hat{\lambda}+\lambda+\hat{\lambda} \quad \text { where the interesting calculation is } \\
& \lambda_{\lambda}+i^{\prime \prime} \lambda+\lambda=\lambda=\lambda \quad \cap=1 n \text { which ont holds at } q=\exp \left(\frac{\pi i}{4 n-4}\right)
\end{aligned}
$$

Aside: in fact, we know all the algebra objects in TLJ at different roots of unity (Ostrik, or Xiv: Olll139, but also the earlier subfactor literature.)
Algebra objects. The simple algebra objects A in the monoidal categories $C_{k, m}$ are as follows.

A	when	A-mod	commutative in $C_{k, \ell}^{\mathrm{br}}$
$\mathbf{1} \oplus f^{(k)}$	k even	$D_{\frac{k}{2}+2}$	if $k \equiv 0(\bmod 4)$
$\mathbf{1} \oplus f^{(k)}$	k, m both odd	$T_{\frac{k+1}{2}}$	if $k \ell \equiv 3(\bmod 4)$
$\mathbf{1} \oplus f^{(6)}$	$k=10$	E_{6}	yes
$\mathbf{1} \oplus f^{(8)} \oplus f^{(16)}$	$k=16$	E_{7}	no
$\mathbf{1} \oplus f^{(10)} \oplus f^{(18)} \oplus f^{(28)}$	$k=28$	E_{8}	yes

See [Ost03a] for details. For details on the categories A-mod (in subfactor language) see [BN91; Izu91; Izu94; Jon01; Kaw95; Xu98]. When A is commutative the category A-mod has the structure of a fusion category. For details on the skein theory of these fusion categories see [Big10; MPS10]
(from "A field guide to categories with

What is the skew theory for $\operatorname{fLJ} \bmod -\left(f^{(0)} \oplus f^{(4 n-4)}\right)$?
There are two new generators, corresponding to the simple summand of the algebra.

They satisfy:
(1):

(2): $T_{Y_{n-1}}$
(3):

$$
\sum_{k} \frac{Y_{i}}{\frac{11-T}{c_{k}}}=\phi \Longleftrightarrow Y_{0}=\phi
$$

50
(4):

This is exactly our stem theoretic presentation for $D_{2 n}!$

Exercise

- calculate the structure coefficients for the algebras in A_{11} and in A_{29}
- write down the corresponding skein theories for the free module categories
- in A_{29} with $A=f^{(0)} \oplus f^{(0)} \oplus f^{(18)} \oplus f^{(28)}$, derive
 in terms of $\frac{Y_{10} \text {, thereby showing the skein theory }}{11.1}$, teed 13 singly-generated
- Observe that this gives Bigelow's skein theory for E_{8} from ar Xiv: 0903.0144
(no one has ever done this exercise!)

Lets return to $D_{2 n}$, and compute the minimal idempotents, and fusion rules.

- We have all the idempotents $\frac{\mid l-1}{\frac{f^{(k)}}{\| \cdot 1}}$ for $0 \leq k \leq 4 n-4$ Are they still minimal, and non-isomorphic?

Using the evaluation algorithm, we can ensure g has at most one ST.
If $k+l<4 n-4$, that $\underset{1|c|}{(1) 1}$ has a cap, and so must be zero!

Therefore for $0 \leqslant k \leqslant 2 n-1$, the $\frac{f^{(k)}}{\pi \ldots 1}$ are still minimal idempotents, and pairwise non-isomorphic.

and the two terms are minimal idempotent which are non-isomorphic.
Exercise!
 is just S.
Putting this all together, the minimal idempotents are

Exercise: we know how to tensor each of these with a strand. Explain why this shows every idempotent is a direct sum of these ones.

We can also do these calculations from the perspective of

$$
f_{\text {TL }} \bmod -\left(f^{(0)} \oplus f^{(4 n-4)}\right)
$$

$$
\begin{aligned}
D_{2 n}\left(f^{(k)} \rightarrow f^{(l)}\right) & \equiv T L J\left(f^{(k)} \rightarrow f^{(l)} \otimes\left(f^{(0)} \oplus f^{(9 n-4)}\right)\right) \\
& \cong T L J\left(f^{(k)} \rightarrow f^{(l)} \oplus f^{(4 n-4-l)}\right) \\
& \cong T L J\left(f^{(k)} \rightarrow f^{(l)}\right) \oplus T L J\left(f^{(k)} \rightarrow f^{(a n-4-l)}\right) \\
& = \begin{cases}\mathbb{C}^{2} & \text { \& } k=l=2 n-2 \\
\mathbb{C}^{1} & \text { \&f } k=l \text { or } k=4 n-4-l, \text { but } k \neq l\end{cases}
\end{aligned}
$$

\mathbb{C}^{0} otherwise
This tells you how $f^{(k)}$ decomposes, but to compute the tensor product rules wed need to use the algebra structure...

Possible next topics

- annular TL, lowest weight decompositions
- triple point obstructions
- classification of small examples
-by rank, index, global dimension,
- constructing exotic categories using graph planar algebras
- annular categories. Drinfeld centres, tube algebras
- string diagrams for n-categories

Drinfeld centres
Given a planar algebra/pirotal category/skem theory C, we immediately get a vector space

$$
\int_{2} e:=\{\underbrace{(G)}_{\substack{f: p_{4} \\ g h: p_{3}}}=(\text { lav })\}
$$

for any oriented surface \sum.

Going down just one dimsion, $\int_{s^{\prime}} e$ is a 1-category:

$$
\begin{aligned}
& O \operatorname{Obj}_{s^{\prime}} e:=\left\{\operatorname{com}^{x} \mid x, y, z: \text { Oboe } e\right\}
\end{aligned}
$$

Composition is just by gluing annuli concentrically. Identities are the morphisms

Exercise explain why checking associativity s the same as checking asscciatuity in $\pi_{1}(x)$.

White $\int_{S^{\prime}} e$ is only a 1-category, $\operatorname{Rep} \int_{S^{\prime}} e$ naturally has the structure of a braided monoidal category. (Recall $\operatorname{Rep} 0:=\operatorname{Fun}(0 \rightarrow V e c))$

Given two representations $V, W: \operatorname{Rep} \int_{s^{\prime}} e$,

where $f^{\prime}:=V\left(Q^{B}\right)(f)$
This gives a new representation of the category $\int_{s} e$, by gluing annular diagrams on the outside. The braiding $V \otimes W \longrightarrow W \otimes V$ is given by dragging the pictures around!

Let's understand why (and when) this agrees with the usual Drinfeld centre of a monoidal category:
$O b j Z(e):=\left\{\left(X: e, \beta: X_{\otimes}-\underset{\otimes}{\cong}-\otimes X\right\}\right.$
Because there is a functor $e \longrightarrow \int_{S^{\prime}} e$,

any $V: \operatorname{Rep} \int_{s^{\prime}} e$ gives a representation of e (not a male category for and if e is semisimple then every representation just representation of the is representable, ie. Bomorphic to one of the underlying (-category) form $Y \longmapsto P(X \rightarrow Y)$ for sone abject $X: C$.
Well take that X as the underlying object of the object in $Z(e)$ that we've building.

Now we need $\beta_{y}: X_{\otimes} Y \rightarrow Y \otimes X$,
We have

$$
\text { id } \in e(x \rightarrow X) \cong V\left({ }^{x}\right)
$$

and, using protality,

$$
\begin{aligned}
e(X \otimes Y \rightarrow Y \otimes X) & \simeq e\left(X \rightarrow Y \otimes X \otimes Y^{\prime}\right) \\
\simeq & \left.V\left(0^{y}\right)^{x} y^{v}\right) \\
& V\left(\left(0^{y}\right)^{x}\right)\left(i d^{y^{v}} \in V\left(0^{x}\right)\right)
\end{aligned}
$$

Exercises. check β_{y} is an isomorphism

- check By is natural in Y
- check By is monoidal in Y

Exercise extend this to a functor $\operatorname{Rep}_{s_{s}} e \rightarrow z(e)$
(hint: use Yoneda. bonus: is this functor co- or contra-variant?)
In fact, this functor was 'the hard direction - we needed to use semismplicity of e to construct it.
The 'easy direction' $Z(e) \rightarrow R_{e p} \int_{s} e$ should send an object with a half-brading (X, β) to the representation

$$
V\left(\square_{e}^{A} \prod_{B}^{B}\right):=e(x \rightarrow A \otimes B \otimes C)
$$

but this snit well-defined! We only have a cyclic ordering on the points around the circle, but need a linear ordenng to take homs to. Of course, the half-braiding saves us, giving isomorphisms

$$
巳(X \rightarrow A \oplus B \otimes C) \rightarrow C\left(X \oplus C^{v} \rightarrow A \otimes B\right) \rightarrow C\left(e^{v} \otimes X \rightarrow A \otimes B\right) \rightarrow C(X \rightarrow C \otimes A \otimes B)
$$

We also need to define the action of annular diagrams:

Use the half-brading on X
We still have many proof obligations:

- the functors $Z(e) \longleftrightarrow \operatorname{Rep} \int_{S^{\prime}} e$ form an equivalence
- at least one of the functors is monoidal (Exercise: why inst one?)
- that functor is braided
- (we may also want to define and compare pivotal structures on either side)

Let's check monoidality of the functor $\nu: Z(e) \rightarrow \operatorname{Rep} \int_{s} e$.
and the Ether via

$$
\begin{aligned}
& V((X, B) \otimes(Y, \gamma))\left(C^{A \cdot B}{ }^{\circ}\right) \equiv C(X \otimes Y \rightarrow A \otimes B \otimes C)
\end{aligned}
$$

This interpretation of $Z(e)$ as $\operatorname{Rep} \int_{s^{\prime}} e$ explains why physicists think of $Z(e)$ as classifying the 'point defects' or 'pointlike excitations' of the 2 -d lattice model realising e.
An object of $Z(e)$ is a collection of vector spaces slescribing the possible quantum states of an excitation, along with rules (the annular action) for how these states interact with the surrounding state of the bulk theory.

Let's describe the simplest example of a Drinfeld centre. (to physicists, this example is "the tonic code")
Let $\left.e=\operatorname{Rep} \mathbb{Z} / 2 \mathbb{Z}=T L J_{\delta=1}=\left\langle\begin{array}{l}\text { no } \\ \text { generators }\end{array}\right| 0=1, \quad \begin{array}{l}N\end{array}\right)$.
A representation V of $\int_{S} e$ consist of:

- for each $n: \mathbb{N}$, a vector space $V_{n}=V(\operatorname{\infty og})$
- however, $v($ gives an isomorphism (Exercise: what is

$$
V_{n+2} \simeq V_{n}
$$

and since

wherever we put the cap we get the same isomorphism,
and so the representation V is entirely determined by V_{0} and V_{1}, and the annular tangles between the se.
In fact, there are no maps between V_{0} and V_{1}, so we get a direct sum decomposition into two pieces.
(equivalently, in any irrep $V_{0}=0$ or $V_{1}=0$)
What is $\left(\int_{S} e\right)(0 \rightarrow 0)$? Just $\mathbb{C}\{(0,0)=0\}$ Similarly $\left(\int_{S} e\right)(0 \rightarrow 0)=\mathbb{C}\{(0,0)\}$

From these facts we have the classification of reps:

Exercises
"electric"

- Calculate the tensor products

- compare the S \& T matrices
- verily $Z(\operatorname{Rep} \mathbb{Z} / 2 \mathbb{Z})$ is modular.

From this perspective we can describe the functor

$$
G: e \otimes e^{\text {bop }} \longrightarrow Z(e)=\operatorname{Rep}_{\operatorname{s}_{S^{\prime}}} e
$$

whenever C is braided.

Observe this is monoidal:

$$
G(x, y) \otimes g(u, z)=\{20,0
$$

Exercise check the details, and conform the braiding is preserved.

Exercises

- When e is symmetric monoidal show this functor factors trough

- When e is modular, show this functor is an equivalence.

How do we concretely calculate $z(e)$?
When e is finitely semismple, $\int_{S^{\prime}} e$ is equivalent (after Cauchy $\begin{gathered}\text { completion) }\end{gathered}$ to a certain finite-dimensional associative abebora, the tube algebra.

$$
\text { to } \delta_{x^{\prime}=y} \sum_{w: 1 r r e} \sum_{\substack{\alpha: a \text { basis } \\ \text { ot } \\ e^{e}\left(w \rightarrow z z^{\prime}\right)}}
$$

Here α^{v} is the dual basis element under the parring $e\left(w \rightarrow z z^{\prime}\right) \otimes e\left(z z^{\prime} \rightarrow w\right) \xrightarrow{0} e^{\prime \prime}(w \rightarrow w)$

$$
\begin{aligned}
& \operatorname{Tube}(e):=\underbrace{}_{x, y, z: l r e} e(x \otimes z \rightarrow Z \otimes y) / \text { for all } \quad f: e\left(z \rightarrow z^{\prime}\right) \\
& g: e\left(x \otimes Z^{\prime} \rightarrow Z \otimes Y\right) \\
& \text { Composition sends } f: e(X Z \rightarrow Z Y) \\
& g: e\left(X^{\prime} Z^{\prime} \rightarrow Z^{\prime} Y^{\prime}\right)
\end{aligned}
$$

Exercise - ever object in $\int_{5} e$ is a direct sum of objects $\bigcirc^{x: l n e}$

- every morphism un $\int_{S} e$ is conjugate to a matrix of morphisms
- use this to prove the
 equivalence

$$
\operatorname{Mat}(\operatorname{Kar}(\operatorname{Tube} l)) \cong \operatorname{Mat}\left(\operatorname{Kar}\left(\int_{S^{\prime}} e\right)\right)
$$

(hint: to define a functor out of $\operatorname{Mat}(\operatorname{Kor}(\mathbb{O})$) it suffices to define a functor out of (D.)

Let's calculate Tube $(\operatorname{Rep} \mathbb{Z} / 2 \mathbb{Z})$.

$$
e(x z \rightarrow z y) \cong \begin{cases}\mathbb{C} & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

So $\operatorname{Tube}(\operatorname{Rep} Z / 2 \pi) \cong \mathbb{C}^{4}$. But what is the algebra structure?
We could compute it using the formulal
But there's a shortcut: the δ factor shows the algebra has a direct sum decomposition, into $X=Y=\mathbb{C}^{\text {tiv }}$ and $X=Y=\mathbb{C}^{\text {sign }}$ pieces.
Since $\operatorname{Rep} \mathbb{Z} / 2 \mathbb{Z}$ is unitary, Tube (Rep $\mathbb{Z} / 2 \mathbb{Z})$ unit be semisimple, So $\operatorname{Tabe}\left(R_{e p} \mathbb{Z} / 2 \mathbb{Z}\right) \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$.
Exercise compute Tube(Rep 2/2Z) and Tube (Fib) explicitly.

What is ... a string diagram n-category?
A stratification of an n-manifold W is a sequence

$$
W=W_{0} \supseteq W_{1} 2 \cdots \supseteq W_{n}
$$

so $W_{k} \backslash W_{k+1}$ is a codmension k submanfild of W.

It is a string diagram stratification if every $x \in W_{k} \backslash W_{k i t}$ has a nile in W which is a product of its nblhd in W_{k}
\qquad and the cone over a string diagram stratification of some $(n-k-1)$-sphere.
Equivalently, if:

- it is the O -ball wilt its unique stratification
- it is $W \times I$ for some W with an SD stratification
- It is cone (W), where W is an SD shatification of a sphere
- it is $W_{1} \Delta W_{2}$, where W_{1} and W_{2} have SD stratifications, or
- it is W glued to itself along Y, where W has an SD stratification. and both restrictions to Y give the same stratification.
[Siebenmann '72!]

If " P is an n-category," an m-dimensional e-string diagram is an SD-stratified ball W^{m} with each (m-k) ball in $W_{k} \backslash W_{k+1}$, labelled by some k-morphism of e.

Any reasonable definition of a (pivotal) n-category lets you evaluate a e-string diagram to an m-morphism, so isotopic e-string diagrams have the same evaluation.

We will dene a n-category by axiomatising just this obsenation.

An n-dimensional signature \mathcal{L} consists of

- for each $0 \leq k \leq n$
- for each oriented k-ball X,
- for each string diagram stratification α of ∂X
- for each labelling c of each stratum $s \in \alpha$ by an element of $\mathcal{L}^{k-1}($ normal disc of $s)$
$a \operatorname{set} \mathcal{L}^{k}(X ; c)$.
Example: $\mathcal{L}^{\circ}(\cdot)=\{\cdot\}, \quad \mathcal{L}^{\prime}(r)=\{r, J\}$,

$$
\mathscr{L}^{2}(\boxminus)=\{\otimes\}, \mathcal{L}^{2}(\square)=\{\theta, \theta\}
$$

all other \mathscr{L}^{2} empty.

For a fixed signature \mathcal{L}, a string diagram on M^{n} is a string diagram stratification of M, with each stratum labelled by an element of $\mathcal{L}($ normal disc)

Example with \mathcal{L} as before,
I string diagrams on 60

A string diagram n-category e consists of:

- a n-signature \mathcal{L}
- for each n-ball X with a \mathcal{L}-string diagram c in ∂X
a subspace

$$
\mathcal{U}(X ; c) \subset \mathbb{C}\{\mathcal{I} \text {-string diagrams on } X\}
$$

- such that U forms an ideal with respect to gluing balls
- If f and g are \mathcal{L}-string diagrams on X with the same boundary c, such that f and g are isotopic rel ∂, then $f-g \in \mathcal{U}(X ; c)$.

Without pinning ourselves down to a particular 'traditional' definition of (weak!) n-category,
let's sketch the constuction of one.

$$
\hat{e}^{0}=\rho^{0}(.), \quad \hat{e}^{\prime}(X \rightarrow Y)=\left\{\begin{array}{c}
\text { strung diagrams on }[0,1] \text { with } \\
x \text { at } 0 \text { and } y \text { at } 1
\end{array}\right\}
$$

$\hat{e}^{k<n}(X \rightarrow Y)=\left\{\right.$ string diagrams on $[0,1]^{k}$ with

$$
\begin{aligned}
& X \text { on }[0,1]^{k-1} \times\{0\}, \quad Y \text { on }[0,1]^{k-1} \times\{1\} \\
& \left.(\partial X=\partial Y) \times I \text { on } \partial([0,1])^{k-1} \times I\right\}
\end{aligned}
$$

$\hat{e}^{n}(X \rightarrow Y)=\mathbb{C}\{$ string diagrams as above\} ~

Conjecture/ hypothesis
Every pivotal weak n-category is equivalent to
a strung diagram n-category.
$\left.\begin{array}{rl}\text { Payoffs: } & \text { - straightforward detritions of 'sphere modules' } \\ & \text { - Hochschild coshomology for n-categones }\end{array}\right\}(\operatorname{arxiv:1009.5025)}$

- higher dimensional analogues of
idempotent completion/algebra completion
- construction of a 4-category from

Khovanor homology

$$
\text { arkiv: }(905,09566)
$$

- a proof of stabilisation
$\left(k\right.$-bonny n-categoies $=(k+1)$-boring n-categories when $\left.k \geqslant \frac{n}{2}+1\right)$ using tranversality
(someone should do di!)

How do we construct potential new tensor categories?
suppose we suspect the existence of some tensor category e with a particular fusion ming $K_{0}(e)$ in particular suppose we know the principal graph for some deject, e.g.

Any monoidal category e embeds via a monoidal functor into the endofunctors of the unckilying $1-$ category $\mu=e$.

$$
\begin{aligned}
& G: C \xrightarrow{\otimes} \operatorname{End}(M) \\
& X \longmapsto \otimes-
\end{aligned}
$$

If e is somisimple, with n simple objects, then $M \cong \mathrm{Vec}^{\oplus n}$, and End (μ) is semisimple, with simple object $E_{i j}$, defined by the rule $E_{i j}\left(\mathbb{C}_{k}\right)=\left\{\begin{array}{cl}\mathbb{C}_{i} & \text { \& } j=k \\ 0 & \text { otherwise }\end{array}\right.$

The additive gereatior of
the k-th summand of $\mathrm{Vec}^{\text {en }}$
A general abject of End (M) is (up to iso) a direct sum of these, i.e. a matrix in $M_{n}(\mathbb{N})$, which we can interpret as the adjacency matrix of a directed graph.
Now $G(X: e)\left(\mathbb{C}_{k}\right)=X \otimes X_{k}=P n_{k}^{e} X_{l}$
The $k-$ th simple of e
where $n_{k}{ }^{\prime}$ is the adjacency matrix for the principal graph, so

$$
G(x)=\Gamma
$$

Next we would like to calculate

$$
\begin{aligned}
& \operatorname{End}(\mu)(\Theta \rightarrow \Lambda)=\underset{\xi^{2}}{(G<k \leq n} \operatorname{Vec}\left(\Theta\left(\mathbb{C}_{k}\right) \rightarrow \Lambda\left(\mathbb{C}_{k}\right)\right) \\
& \begin{array}{l}
\text { graphs } \text {, interpreted as } \\
\text { functor }
\end{array} \\
& =\underset{k}{\oplus} V_{e c}^{\theta_{n}}\left(\oplus \theta_{k}^{l} \mathbb{C}_{l} \rightarrow \oplus \lambda_{k}^{l} \mathbb{C}_{l}\right) \\
& =\underset{k, l}{\oplus} \Theta_{k}^{l} \lambda_{k}^{l}
\end{aligned}
$$

This has as a basis pars of edges, one in Θ, one in Λ with the same source and target.
Composition of bass elements is easy:

$$
(e \in \Theta, f \in \Lambda) \gg(g \in \Lambda, h \in \Lambda)= \begin{cases}(e, h) & \text { if } f=g \\ \text { zero } & \text { otherwise }\end{cases}
$$

How do we take tensor products of graphs?
$\Theta \otimes \Lambda=$ length two paths in K_{n}, first edge in Θ, second edge in Λ
$\Theta^{\infty n}=$ length n paths in
How do we tensor morphisms?

$$
\begin{aligned}
(e \in \Theta, & f \in \Lambda) \otimes(g \in \Delta, h \in \Omega) \\
& = \begin{cases}(e \geqslant g \in \Theta \otimes \Delta, & f \geqslant h \in \Lambda \otimes \Omega) \\
\text { zero } & \text { if (erg) and }(f, h) \text { are composable pars }\end{cases}
\end{aligned}
$$

Now: End $(\mu)\left(\Gamma^{\infty n} \rightarrow \Gamma^{\infty-n}\right)=$
$\mathbb{C}\left\{\right.$ pairs of paths $\left(\gamma, \gamma^{\prime}\right)$, of length n and $\left.m,\right\}$ with the same source and forget
Composition is just $\left(\gamma, \gamma^{\prime}\right) 川\left(\gamma^{\prime \prime}, \gamma^{\prime \prime}\right)=\delta_{\gamma^{\prime}, \gamma^{\prime \prime}}\left(\gamma, \gamma^{\prime \prime}\right)$
Tensor is concation of paths, if possible.
At this point we know there must exist an embedding

$$
\langle X: e\rangle \rightarrow\langle\Gamma: \operatorname{End}(M)\rangle
$$

with a completely combinatorial description of the target monoidal category!

In fact, it gets better. End (μ) is a pivotal category, with duality given by toking right adjoint
(which exist as M is semismple, and in fact are biactiont) which at the level of the graphs is onentation reversal. In fact $\Gamma^{v v}=\Gamma$, so we could take the pivotal isomorphism

$$
\Sigma: \mathbb{1}_{E n d(m)} \longrightarrow V V
$$

to be the identity.
This is a bad idea!
If e is pivotal, each simple X_{i} has a categorical dimension

Theorem If we give End (M) the protal structure

$$
\tau_{E_{i j}}=\frac{\operatorname{dm}\left(X_{i}\right)}{\operatorname{dm}\left(X_{j}\right)} \mathbb{I}_{E_{i j}}
$$

then $e \longrightarrow$ End (M) is a pivotal embedding.
Exercise venfy this (replacing the rato with its inverse it needed!!) (cf. ar Xiv: 1007.3173 , ar Xiv: 1810.06076 , ar Xiv: 1808.00323)

Idea: (1) from the principal graph Γ, deduce the existence of an element $S: P\left(1 \rightarrow X^{\text {on }}\right)$
satisfying certain planar equations $\left\{r_{i}\right\}$
(2) Solve these equations in End $(M)\left(1 \rightarrow T^{\infty n}\right)$
(3) this gives an embedding $F:\left\langle S \mid r_{i}\right\rangle \longleftrightarrow$ End (M)
(4) find more equations if necessary, perhaps by observing equations satisfied by the solution in End (M)
(5) use this equations to show $\left\langle S \mid r_{i}\right\rangle$ is evaluable and has the desired simple objects and fusion rules.

Let's try to implement this for

$$
\Gamma=\stackrel{1}{a} \because P_{Q}^{P} 0_{Q^{\prime}}
$$

we see $\operatorname{dim} e\left(1 \rightarrow x^{\infty n}\right)=$ \# of loops of length n bused at 1

$$
=\begin{array}{l|llllll}
n & 0 & 2 & 4 & 6 & 8 & 10 \\
\hline \operatorname{dim} e & 1 & 1 & 2 & 5 & 14 & 43 \\
\operatorname{dim} T L & 1 & 1 & 2 & 5 & 14 & 42
\end{array}
$$

Therefore $e\left(1 \rightarrow x^{\infty n}\right)=T L\left(1 \rightarrow x^{\infty-n}\right)$ for $n \leqslant 8$

$$
e\left(1 \rightarrow X^{\otimes 10}\right)=T L\left(1 \rightarrow X^{\infty 10}\right) \oplus \mathbb{C}\left\{\begin{array}{c}
\text { Mi } \\
S_{1!11}
\end{array}\right\}
$$

We can pick this S so $\frac{\text { SIll }}{\text { Sill }}=$ zero and $\left(\begin{array}{c}|1 \cdots| \\ 5 \\ 5\end{array}\right)=\omega$ for some 10 -th root of unity ω.

In $e\left(X^{\oplus 5} \rightarrow X^{05}\right)$ we see $\frac{\frac{1111}{f(5)}}{\frac{1111}{}}$ must break up as a sum of two non-isomorphic projections

$$
\frac{\|\|\| \mid}{\| f^{(5)}}=\left(\alpha \frac{\frac{\| \| \| \mid}{f^{(5)}}}{\| \| \|}+S\right)+\left((1-\alpha) \frac{\frac{\| \| \|)}{(f(5)}}{\| \| \|}-S\right)
$$

(we use our remaining freedom to renormalize S here)
In fact, since $\operatorname{dim} P=F P \operatorname{dim} P=P$-entry of $F P$-eigenvector of T assume unitarily!

$$
=\frac{1}{4}(1+\sqrt{5}) \sqrt{7+\sqrt{5}+\sqrt{6(5+\sqrt{5})}} \sim 3.21834
$$

so we know α.
$\left(\alpha \frac{\text { lld }}{\frac{f}{\| \prime \prime \prime}}+S\right)^{2}=\left(\alpha \frac{\sqrt{\text { ln }}]}{\|(111}+S\right)$ gives us a quadratic in S and we're done!

Exercise implement 'the idea'

- Show there are finitely many solutions to these equations in End $\left(\mathrm{Vec}^{\oplus 8}\right)\left(1 \longrightarrow E_{8}^{\otimes 10}\right)$
- Show these equations are enough to evaluate and identify all the idempotents
- Check the principal graph really is E8
- Conclude there exists a fusion category with principal graph E_{8}
- In fact, classify such categones using your solutions.

See arXiv:0909.4099 for the construction of "the most exotic known fusion categories".

