
artwork by Kevin Walker

Scott Morrison - ANU - 20181005 - Adelaide Colloquium

interactive theorem
proving

t t
.

I\
in

:* .
what how do

why? !
is it ? I do it ?

interactive theorem
proving

• computers can help as create and

§ understand mathematics

• formalization reduces the burden of verification
,

and increases confidence in correctness

why? ! • the constructive fragment of formalization bridges

the
gap between proofs and calculations

• perhaps (hopefully !) its an integral part of our future

• students love it !

interactive

,

theorem
prong

• a family of high level programming

languages

✓
• expressive enough to encompass

modern mathematics

what . tooling and user interface to manage

is if ? goals, hypotheses,
axioms

,
theorems

,

scopes ,
dependencies

. . . .

•
' automation '

: programs
that write proofs

interactive

,

theorem
prong

Examples : Mizar
,

Isabelle
, Coq .

Today : Lean

✓
. based on dependent type theory

• it's the latest and greatest -

what and changing underneath you
?

is it ? . open source
,

developed at Microsoft
Research

,
active community

• Lean is its own metal an

gauge

A crash course in dependytty.pe#heonf.

• everything is a term : 3
,

[
"

a

"

,

" "

il
"

,

"

i
"

,

"

s
"

,

't
"

]
,

5
,

IN

or a type
:

IN
,

list string ,

smooth .

manifold
, Type I

• every term has an unambiguous and fixed type .

• there is an eftedeprocedure for type checking .

•

"

propositions as type's
'

:

is
- prime 57 is a type

and a term of that type would be a proof
.

⇒ writing a proof is the same thing as

constructing a function
.

A crash course in dependytty.pe#heonf.

I

• we can construct new types :

① def vector la : Type) (n : IN) : Type : = { L : list a I L . length = n }

② inductive labelled
-

tree (B : Type) : Type
I leaf : B → labelled

.

tree

I branch : B → labelled
.

tree → labelled
-

tree → labelled
.

tree

③ structure Pre sheaf (C :

Type) [category C] : =

(X : Top)

(O : open .

sets X ⇒ c)

A crash course in dependytty.pe#heonf.

• very similar to the logical foundations of Coq ("calculus of inductive constructions")

• Lean has a model in ZFC t inaccessible cardinals

• I think dependent type theory comes veg naturally to mathematicians

(possibly more so than ZFC :

"

3 is a topology on 2
"

)

• No commitment to constructively
.

intuitionistic logic,

or homotopy type theory
,

although they're available
.

interactive

theoryprong
• Lean can run in a browser

• Runs in co calc

-
collaborative editor V

- course management

• Run locally
with editor support

how do

in vscode or emacs .
I do it ?

• There's an introductory book for
mathematicians

"

Theorem
proving in Lean "

.

Live demo - there are infinitely many primes .

interactive theorem

pony
✓

where
next ?

 •
mathis

,

the standard library for Lean is primitive bat
growing fast

where
next ? (Examples : holomorphic functions

,
Noetherian rings,

and the Yoneda lemma all in
the last month

.)

• We're increasingly confident it's possible to do modern

mathematics
- perfectoid

spaces are
'almost ready

'

•• students are getting involved -

- undergrad research projects at ANU and Imperial

- homework sets in Lean at Imperial this semester !

where
• formal isatin is creeping towards relevance

next ?

•• A major
"formal abstracts "

project will next year start

formats
ing abstracts of major papers in Lean

.

where
•. Lean makes it significantly easier to write

next ? new tactics ('

programs
that write proofs ')

.

• Its still way
too cumbersome to write mathematics

in Lean
.

• As it becomes possible for mathematicians to write

tactics (not just language developers)
,

this may

rapidly change !

where Categorytheory an

next ? • Can we write enough automation
,

so that

we can write '

human - like ' proofs?

Cie . omitting lets of detail !)

Uni math : Coq. Isabelle :

How does this work ?

• an approximation of Ganesa lingam - Gowers
'

human - style automation '

in Lean C arXiv : 1309.4501)

• an algorithm for automatic rewriting ,

using an edit distance heuristic and

some machine learning .

C in progress,
w/ Keeley Hoek

,

ANU)

