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Introduction

For my Summer Research Scholarship I have worked on understanding and extending the re-
sults of [CG15]. Let Γ be a connected finite graph, let n ∈ N be fixed, and let v1, . . . , vn be
vertices of Γ. For any n-tuple of non-negative integers a = (a1, . . . , an), the spider graph
Γa is defined to be the graph obtained from Γ by adjoining a 2-valent tree of length ai to ver-
tex vi. Most of my own work this summer has been on n-spokes, which are spider graphs
obtained from the graph consisting of a single vertex and no edges, along with the n-tuple
a = (a1, . . . , an) where we suppose that 1 ≤ a1 ≤ · · · ≤ an.

Of primary interest is the question of if a given graph is abelian. A graph Γ is abelian
if Q(λ2) is an abelian extension of Q, where λ is the Perron-Frobenius eigenvalue of Γ, the
largest eigenvalue of the adjacency matrix of Γ. Equivalently, Γ is abelian if λ is a cyclotomic
integer, which is an algebraic integer that is an element of Q(ζN ) where ζN = e2πi/N for some
N ∈ N.

This project consisted of three sections. During an initial reading of [CG15] I undertook a
period of background reading on basic graph theory, algebraic number theory and some field
theory, in order to understand the definitions and claims made in the papers [ST02, GR01].
My attention then turned to n-spokes, where I reconstructed much of the section of [CG15]
on 3-spokes. In doing so, I gained some experience in computing with Mathematica. Finally,
a number of lemmas and calculations for 3-spokes were replicated for the case of 4-spokes,
making progress towards the goal of finding all abelian 4-spokes.

Motivation

While the category-theoretic motivation behind the study of abelian graphs was not a focus of
this project, acknowledging the reason for looking at these graphs is important nonetheless. A
thorough treatment of the relevant category theory is both beyond the scope of this report and
beyond the extent of my knowledge, so numerous terms are used without definition, and many
claims are made with minimal explanation.

Given a finite group G and a vector space V , the set of finite dimensional representations
of G (which are homomorphisms from G to GL(V )) is a category, the objects of which are
representations and the morphisms of which are linear maps between the underlying vector
spaces. We call this category RepG, and it is a tensor category.

If a representation maps into a vector space V over C, it is called simple if the set of
endomorphisms on V is isomorphic to C. Every representation in RepG can be written as a
direct sum of simple representations, so RepG is semisimple.

Such categories can arise from physical systems. The representation category of a phys-
ical system’s symmetry group is an object of interest, as it can yield information regarding
the system’s excitations. However, some semisimple tensor categories are not the representa-

2



tion category of any finite group. Other approaches are needed in order to understand these
semisimple tensor categories.

Fusion categories, which are semisimple tensor categories with finitely many simple ob-
jects, are an active area of research and can be studied by looking at abelian graphs. Given a
fusion category C and an object X ∈ obj(C), we can find the principal graph for (C, X) in the
following way. The vertices of the principal graph correspond to the simple objects in C. Then
for each simple object Y ∈ obj(C), write Y ⊗X as a direct sum of simple objects, and for each
simple object Z, add an edge from Y to Z for each copy of Z that appears in this direct sum.

In the case that C is a unitary category, the Perron-Frobenius eigenvalue of the principal
graph of (C, X) is the dimension of X , which is a cyclotomic integer. Therefore the principal
graph is abelian. Conversely, given an abelian graph we can try to find (C, X) for which the
principal graph is the given abelian graph. The need to find and understand fusion categories
then provides motivation for developing systematic ways of finding abelian graphs.

Background Material

Prior to this project I had never formally studied graph theory, and some additional reading of
algebraic number theory was also needed during the course of this project. In this section some
of the most important results are mentioned, with a greater emphasis on their applicability to
work completed this summer than on their proofs.

The Interlacing Theorem is an important result in the study of graph eigenvalues. A proof
can be found in [GR01].

Theorem 1 (Interlacing). Let A be a real symmetric n × n matrix with eigenvalues θ1(A) ≤
· · · ≤ θn(A) and let B be a principal submatrix of A with order m×m and with eigenvalues
θ1(B) ≤ · · · ≤ θm(B). Then for i = 1, . . . ,m, θn−m+i(A) ≤ θi(B) ≤ θi(A).

In the context of graph theory, this result says that given an undirected graph Γ with adja-
cency matrix A and a graph Γ′ with adjacency matrix B which is obtained from Γ by deleting
some vertices and all of their incident edges, the eigenvalues of Γ and Γ′ follow the inequali-
ties above. In particular, if we add a vertex to a graph, the Perron-Frobenius eigenvalue of the
resulting graph is at least as large as that of the original graph.

In order to find bounds on the parameters a1, . . . an where Γa1,...,an is an abelian n-spoke,
we use properties of the norm of an algebraic number. The norm of an algebraic number λ
is defined to be the product of all Galois conjugates of λ. If λ is an algebraic integer, with
minimal polynomial c0 + c1x+ · · ·+ ck−1x

k−1 +xk, then the product of its Galois conjugates
is ±c0, a nonzero integer. This gives us the useful inequality 1 ≤ N(λ) =

∏
σ σλ.

Perhaps the most crucial theorem underpinning the computations involved in this project is
an equivalent condition that allows us to check if a given field extension is abelian.
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Theorem 2 ([CMS11]). Let β be an algebraic integer. Then Q(β) is abelian if, and only if, β
is a cyclotomic integer.

Every time we checked if a given graph is abelian, it was done not by constructing the
Galois group of a field extension, but by checking if the Perron-Frobenius eigenvalue λ is
cyclotomic.

These are just a few of the main results that I learned about this summer while working on
this project. Speaking more generally, gaining an introduction to graph theory was one of the
most important outcomes of this project.

A Summary Of Abelian Spiders

This section is included to introduce the results of [CG15], as well as some notation, and some
methods used in the section on 3-spokes that we later built upon. The main result of the paper
is as follows.

Theorem 3 ([CG15], Thm. 1.1). Let Γ and n be fixed. Then among the n-spiders Γa which
are not Dynkin diagrams, only finitely many are abelian.

The next two lemmas are needed for finding which 3-spokes are abelian. See [CG15] for
the definition of the function B.

Lemma 1 ([CG15], Thm. 3.3). Let L ≥ 0 and let β be a totally real1 algebraic integer, such
that β2 is not a singularity of B, the largest conjugate β of β satisfies β < L, and at most M
conjugates of β2 lie outside [0, 4]. Further, suppose that B(L2) ≤ 0.

Then either [Q(β2) : Q] <
20

11
·M · |B(L2)| orM(β) :=

TrQ(β2)/Q(β2)

[Q(β2) : Q]
<

14

5
.

From this point, Γ will always denote the graph of a single vertex, and Γa will denote the
corresponding n-spoke for the n-tuple a. Pa(x) is the characteristic polynomial of the adja-
cency matrix of Γa. It is frequently necessary to consider Pa(t + t−1), which for consistency
with [CG15] will be denoted Pa(t). Further, we will simplify some calculations by defining
P a(t) := Pa(t)(t− t−1)n(−1)(

∑n
i=1 ai)−1

Lemma 2 ([CG15], Lemma 7.3). Let a = (a, b, c). Then

P a(t) = (t4 − 2t2)ta+b+c + ta+b−c + ta+c−b + tb+c−a − ta−b−c (1)

− tb−a−c − tc−a−b + (2t−2 − t−4)t−a−b−c. (2)

1All roots of its minimal polynomial are real.
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Let ρ = ρ(a) be the largest root of the polynomial above, and let ρ∞ = lima,b,c→∞ ρ.
We see that ρ∞ is the largest root of t4 − 2t2, which is

√
2. Accordingly, lima,b,c→∞ λ =

ρ∞ + ρ−1
∞ = 3/

√
2.

Using λ = ρ+ρ−1 and Lemma 1, we can prove that eitherM(λ2−2) < 14/5 or D ≤ 12,
where D ≤ 12. In order to find bounds on a, b and c, we first make the assumption that
M(λ2 − 2) ≥ 14/5. This implies that D ≤ 12, which in turn allows us to impose a bound on
|λ2 − 9/2|. Lemma 3 is a weaker version of Lemma 7.5 from [CG15], obtained from making
trivial estimates.

Lemma 3. With a ≤ b ≤ c, if Γa is abelian then a ≤ 36.

Proof. Note that |2x − 9| ≤ 9 on [0, 4]. Since λ is an algebraic integer, so is 2λ2 − 9. Then
using the fact that the product of all Galois conjugates of an algebraic integer is a positive
integer,

1 ≤
∏
σλ2

|2σλ2 − 9| = |2λ2 − 9|
∏

σλ2 6=λ2
|2σλ2 − 9| ≤ |2λ2 − 9| · 9D−1 ≤ |2λ2 − 9| · 911.

The second to last inequality follows from the fact that σλ2 ∈ [0, 4] whenever σλ2 6= λ2,
and that the total number of conjugates of 2λ2 − 9 (including itself) is D, the degree of the
extension. Rearranging, we find that∣∣∣∣λ2 − 9

2

∣∣∣∣ ≥ 1

2 · 911
> 1.59332× 10−11.

Using Mathematica to calculate λ for triples of the form a = (a, a, a) we find that this in-
equality is violated whenever a ≥ 37. Note that a = b = c is the ‘worst case’, as we know
that λ increases monotonely towards 3/

√
2 as b and c increase, by the Interlacing Theorem.

It follows that for a particular value of a, among all triples (a, b, c) with a ≤ b ≤ c the triple
which maximises |λ2 − 9/2| is in fact (a, a, a).

The following is a slightly weaker result than Lemma 7.7 of [CG15].

Lemma 4. With a ≤ b ≤ c, if Γa is abelian then b ≤ 84.

Proof. For a fixed a, as b, c → ∞, ρ approaches the largest root of 1 − 2t2a+2 + t2a+4. Then
since ρ is an algebraic integer, so is 1−2ρ2a+2 +ρ2a+4. Note also that [Q(ρ2) : Q] = [Q(ρ2) :
Q(λ2)][Q(λ2) : Q] ≤ 2 · 12 = 24. Using the fact that the product of all Galois conjugates of
an algebraic integer is a positive integer, we then find that

1 ≤
∏
σρ

|1− 2σρ2a+2 + σρ2a+4|
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= |1− 2ρ2a+2 + ρ2a+4|
∏
σρ6=ρ

|1− 2σρ2a+2 + σρ2a+4|

≤ |1− 2ρ2a+2 + ρ2a+4| · 4D−1

= |1− 2ρ2a+2 + ρ2a+4| · 423

The second to last inequality follows from the fact that the total number of conjugates of 2λ2−9
(including itself) is D, the degree of the extension. Rearranging, we find that

|1− 2ρ2a+2 + ρ2a+4| ≥ 4−23

For each a such that 1 ≤ a ≤ 36, using Mathematica we calculate ρ for triples of the form
a = (a, b, b) and find the first b for which this inequality is violated. We find that the greatest
possible value of b is 84.

The computation required to find the bound b ≤ 84 took several hours, and so it was
apparent that computing a corresponding bound on c would be impractical. Using the same
method as in Lemma 4 and the polynomial t2a+2b+4 − 2t2a+2b+2 + t2b + t2a − 1, a bound
on c could be found in principle by calculating the largest c for which a certain inequality
holds, requiring such a calculation to be carried out for each a and b with 1 ≤ a ≤ 36 and
a ≤ b ≤ 84. The necessary computation time was not available, and so this result was not
replicated. In Lemma 7.8 of [CG15] the bound c ≤ 170 is found, though the estimates we used
were more crude and a slightly larger bound on c would have resulted.

Earlier we had assumed thatM(λ2−2) ≥ 14/5. It can be shown that any 3-spoke such that
M(λ2 − 2) < 14/5 must in fact satisfy the bounds on a, b and c we found earlier. Therefore
considering all 3-spokes within these bounds will indeed give a complete list of abelian 3-
spokes. While we did not replicate this calculation, the result is as follows.

Theorem 4 ([CG15], Thm. 7.1). Γa is abelian if, and only if, either Γa is a Dynkin diagram
or a ∈ {(2, 3, 7), (2, 4, 4), (2, 7, 11), (2, 8, 8), (3, 3, 3), (3, 3, 7), (3, 4, 9), (3, 5, 5), (4, 4, 4)}.

This result was partially verified using Mathematica, whereby for each 3-spoke with 1 ≤
a ≤ 4, a ≤ b ≤ 8 and b ≤ c ≤ 11, λ was calculated and whether or not it was cyclotomic
was determined2. The abelian 3-spokes within these bounds were exactly those listed above.
Given time complexity considerations it was not possible to check all 3-spokes up to the bounds
calculated in the previous lemmas.

2The algorithm used determines if a given algebraic integer is cyclotomic by taking its minimal polynomial
modulo various primes. The mathematics upon which this algorithm is built, however, was not a focus of this
project.

6



My Work On Abelian Spiders

The main contributions made in this project are a partial answer to the question of which 4-
spokes are abelian, and a detailed method for finding all abelian n spokes for any n. The
majority of this section is similar to parts of the last section, though proofs are included here. It
is my intention that the method for finding all abelian n-spokes in the same way is made clear.

First, we need a more general version of Lemma 2.

Lemma 5. Let a = (a1, . . . , an). Then

P a(t) =
∑

u∈{−1,1}n

(
n∏
i=1

ui

)
· t
∑n

i=1 uiai ·Qu(t)

where
Qu(t) =

∑
v∈{0,1}n

t
∑n

i=1(vi−1)ui · Pv(t).

Proof. The n = 1 case is easily verified. Now consider P ab(Γ) := P (a1,...,an,b)(Γ). Through-
out the following calculation we write P as a function of Γ rather than a function of t. Γ with
its associated subscripts is a fixed graph, while the subscripts on P indicate the parameters
corresponding to a spider of that graph. The subscripted asterisks indicate where the paths are
added, either to v1, . . . , vn (indicated by ∗ as the first character of the subscript), to vn+1 (in-
dicated by ∗ as the second character), or v1, . . . , vn+1 (indicated by ∗∗). To illustrate, P a(Γ∗b)
means we are considering the graph Γ with a path of length b at vn+1 adjoined to be a fixed
graph, then taking the n-spider of this graph formed by adjoining a path of length ai at vertex
vi for 1 ≤ i ≤ n. This rather cumbersome notation is necessary because we are simultaneously
considering 1-, n- and n+ 1-spiders, requiring a careful treatment of P . The second line of the
calculation follows from Lemma 11 of [MS05].

Pab(Γ) =(t−t−1)n(−1)a1+···+an−1P b(Γa∗)

=(t−t−1)n(−1)a1+···+an−1
∑

un+1=±1 un+1(t−t−1)−1tun+1b(P 1(Γa∗)−t−un+1P 0(Γa∗))

=(−1)a1+···+an−1
∑

un+1=±1 ut
un+1b((−1)a1+···+an−1Pa(Γ∗1)−(−1)a1+···+an t−un+1P0(Γ∗0))

=
∑

un+1=±1 un+1t
un+1b(Pa(Γ∗1)+t−un+1P0(Γ∗0))

=
∑

un+1=±1 un+1t
un+1b

(∑
u∈{−1,1}n(

∏n
i=1 ui)·t

∑n
i=1 uiai

(∑
v∈{0,1}n t

∑n
i=1(vi−1)ui ·Pv(Γ∗1)

)
+t−u

∑
u∈{−1,1}n(

∏n
i=1 ui)·t

∑n
i=1 uiai

(∑
v∈{0,1}n t

∑n
i=1(vi−1)ui ·Pv(Γ∗0)

))
=
∑

u∈{−1,1}n+1(
∏n+1

i=1 ui)·t
un+1b+

∑n
i=1 uiai

∑
v∈{0,1}n+1 t

∑n+1
i=1

(vi−1)ui ·Pv(Γ∗∗)

=
∑

u∈{−1,1}n+1(
∏n+1

i=1 ui)·t
un+1b+

∑n
i=1 uiaiQu(Γ)
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Lemma 5 is sufficiently general to hold for any connected, finite, simple graph Γ, requiring
only that every Pv(Γ∗∗) is calculated for the given choice of Γ and v1, . . . , vn. In the particular
case of 4-spokes, we find the following polynomial.

Corollary 1. Let a = (a, b, c, d). Then

P a(t) = −2t−1+a−b−c−d − 2t−1−a+b−c−d − 2t−1−a−b+c−d − 2t1+a+b+c−d

− 2t−1−a−b−c+d − 2t1+a+b−c+d − 2t1+a−b+c+d − 2t1−a+b+c+d

+ ta+b−c−d(t−1 + t) + ta−b+c−d(t−1 + t) + t−a+b+c−d(t−1 + t)

+ ta−b−c+d(t−1 + t) + t−a+b−c+d(t−1 + t) + t−a−b+c+d(t−1 + t)

− ta+b+c+d(t5 − 3t3) + t−5−a−b−c−d(−1 + 3t2),

and ρ∞ =
√

3.

Proof. This polynomial follows from Lemma 5. We then observe that ρ∞ is the largest root of
Q++++(t) = −(t5 − 3t3) which is

√
3.

As with 3-spokes, we need to find a bound on the degree D of the extension [Q(λ2) : Q]
before we can find bounds on a, b, c and d.

Lemma 6. EitherM(λ2 − 2) < 14/5 or D ≤ 26.

Proof. Let β = λ2−2. The minimal polynomial of λ is a factor of the characteristic polynomial
of a graph, all roots of which are real, so λ is a totally real algebraic integer. It follows that β
is also a totally real algebraic integer. Then β is a totally real algebraic integer. Noting that at
most one conjugate of β lies outside [−2, 2], by Lemma 1 we know that eitherM(β) < 14/5
or D ≤ 20

11 · 1 · |B(16
3 )| ≈ 26.24.

Assume that M(λ2 − 2) ≥ 14/5, so that D ≤ 26. With this assumption we can find a
bound on a, using a similar proof to Lemma 3.

Lemma 7. With a ≤ b ≤ c ≤ d, if Γa is abelian then a ≤ 64.

Proof. Note that |3x − 16| ≤ 16 on [0, 4]. Since λ is an algebraic integer, so is 3λ2 − 16.
Then using the fact that the product of all Galois conjugates of an algebraic integer is a positive
integer,

1 ≤
∏
σλ2

|3σλ2−16| = |3λ2−16|
∏

σλ2 6=λ2
|3σλ2−16| ≤ |3λ2−16| ·16D−1 ≤ |3λ2−9| ·1625.
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This calculation uses that the total number of conjugates of 3λ2 − 16 (including itself) is D,
the degree of the extension. Rearranging, we find that∣∣∣∣λ2 − 16

3

∣∣∣∣ ≥ 1

3
· 16−25 > 2.62953× 10−31.

Using Mathematica to calculate λ for 4-tuples of the form a = (a, a, a, a) we find that this
inequality is violated whenever a ≥ 65. By the Interlacing Theorem the inequality is violated
for all (a, b, c, d) where 65 ≤ a ≤ b ≤ c ≤ d.

Now let a be fixed, and let ρ be such that λ2− 2 = ρ2 + ρ−2. Then ρ∞ = limb,c,d→∞ ρ(a)
is the largest root of Q++++ + Q−+++. Then −2ρ1−a+b+c+d

∞ − ρa+b+c+d
∞ (ρ5

∞ − 3ρ3
∞) = 0,

so ρ2a+4
∞ − 3ρ2a+2

∞ − 2 = 0. Crucially, this means that ρ2a+4 − 3ρ2a+2 − 2→ 0 as b, c→∞.
Also,

[Q(ρ2) : Q] = [Q(ρ2) : Q(λ2)][Q(λ2) : Q] ≤ 2D ≤ 52.

With these results we are ready to compute a bound on b.

Lemma 8. With a ≤ b ≤ c ≤ d, if Γa is abelian then b ≤ 148.

Proof. For a fixed a, as b, c, d→∞, ρ approaches the largest root of t2a+4−3t2a+2 + 2. Then
since ρ is an algebraic integer, so is ρ2a+4 − 3ρ2a+2 + 2. Using the fact that the product of all
Galois conjugates of an algebraic integer is a positive integer, we then find that

1 ≤
∏
σρ

|σρ2a+4 − 3σρ2a+2 + 2|

= |ρ2a+4 − 3ρ2a+2 + 2|
∏
σρ6=ρ

|σρ2a+4 − 3σρ2a+2 + 2|

≤ |ρ2a+4 − 3ρ2a+2 + 2| · 6D−1

= |ρ2a+4 − 3ρ2a+2 + 2| · 651.

Rearranging, we find that
|ρ2a+4 − 3ρ2a+2 + 2| ≥ 6−51

For each a such that 1 ≤ a ≤ 64, using Mathematica we calculate ρ for triples of the form
a = (a, b, b) and find the first b for which this inequality is violated. We find that the greatest
possible value of b is 148.

As was the case in finding bounds for 3-spokes, finding a bound on c proved to be infeasible.
In principle, we could check (a, b, c, c)-spiders with 1 ≤ a ≤ 64 and a ≤ b ≤ 148 to find a
bound on c. Repeating this process with even larger a calculation, we could go on to find a
bound on d. There would remain finitely many 4-tuples (a, b, c, d) within the given bounds,
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and by calculating the Perron-Frobenius eigenvalue and using the cyclotomic test we could find
all abelian 4-spokes.

Even if the necessary bounds could be found, the time required to compute the eigenvalues
of many thousands of large matrices is simply too much. We can, however, reach a partial
answer by checking all small 4-spokes. Computing the largest eigenvalue and using the cyclo-
tomic integer test for all 4-spokes with d ≤ 15, the following were found to be abelian:

Theorem 5. Let

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 3), (1, 1, 3, 3), (1, 1, 4, 4),

(1, 2, 2, 2), (1, 2, 5, 5), (1, 3, 3, 3), (2, 2, 2, 2), (2, 3, 7, 7), (2, 4, 4, 4), (3, 3, 3, 3),

(3, 4, 9, 9), (3, 5, 5, 5), (4, 4, 4, 4)}.

Then Γa,b,c,d is abelian. Further, there are no other abelian 4-spokes where d ≤ 15.

Given that no abelian 4-spokes have been found with 10 ≤ d ≤ 15, it is at least plausible
that there are no abelian 4-spokes with d > 15.

The same time-complexity challenges will thwart attempts to find bounds for n-spokes with
larger n. However, the method of checking small n-spokes can give us lists of abelian graphs,
with the caveat that these lists are not guaranteed to be complete.

Theorem 6. Let

(a, b, c, d, e) ∈ {(1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 1, 3), (1, 1, 1, 2, 2), (1, 1, 1, 2, 3),

(1, 1, 1, 3, 3), (1, 1, 2, 2, 2), (1, 1, 3, 3, 3), (1, 1, 4, 4, 4), (1, 2, 2, 2, 2),

(1, 2, 5, 5, 5), (1, 3, 3, 3, 3), (2, 2, 2, 2, 2), (2, 3, 7, 7, 7), (2, 4, 4, 4, 4),

(3, 3, 3, 3, 3), (3, 4, 9, 9, 9), (3, 5, 5, 5, 5), (4, 4, 4, 4, 4)}.

Then Γa,b,c,d,e is abelian. Further, there are no other abelian 5-spokes where e ≤ 15.

Theorem 7. Let

(a, b, c, d, e, f) ∈ {(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 2, 2),

(1, 1, 1, 1, 2, 3), (1, 1, 1, 1, 2, 4), (1, 1, 1, 1, 3, 3), (1, 1, 1, 2, 2, 2),

(1, 1, 1, 3, 3, 3), (1, 1, 1, 3, 5, 5), (1, 1, 2, 2, 2, 2), (1, 1, 3, 3, 3, 3),

(1, 1, 4, 4, 4, 4), (1, 2, 2, 2, 2, 2), (1, 2, 5, 5, 5, 5), (1, 3, 3, 3, 3, 3),

(1, 3, 5, 5, 5, 5), (1, 3, 6, 6, 6, 6), (1, 4, 4, 4, 4, 4), (2, 2, 2, 2, 2, 2),

(2, 2, 2, 2, 2, 3), (2, 3, 7, 7, 7, 7), (2, 4, 4, 4, 4, 4), (3, 3, 3, 3, 3, 3),

(3, 5, 5, 5, 5, 5), (4, 4, 4, 4, 4, 4)}.

Then Γa,b,c,d,e,f is abelian. Further, there are no other abelian 6-spokes where f ≤ 8.
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Conclusion and Future Work

The method outlined for finding which 4-spokes are abelian can, in principle, be used for
n-spokes with arbitrarily large n. The more useful outcome would be that a pattern in the
occurrence of abelian spoke graphs can be observed from considering n-spokes for small n,
from which a complete classification of abelian spoke graphs may be possible. The results of
this project fall short of this aspiration, but it is hoped nonetheless that the work done on finding
some small spoke graphs is of use. Efforts to optimise how the Perron-Frobenius eigenvalue is
found and how the cyclotomic integer test is run might allow some of these computations to be
carried out in practice.

Spending this summer studying abelian graphs has been a tremendously rewarding expe-
rience. I was drawn to this project in particular because of the opportunity to explore areas
that were largely unfamiliar to me, which I certainly have been provided with. I have bene-
fitted greatly from learning some of the fundamentals of graph theory and algebraic number
theory, not to mention my first significant encounter with computational mathematics. Given
more time it would have been interesting to learn more about fusion categories and subfactors,
though I am happy with the balance that was struck between reading mathematics and doing
mathematics.
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