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Abstract

The mapping class group is an important algebraic invariant of a surface. Presenta-

tions of this group have wide applications to low-dimensional topology. We explicitly

construct Hatcher and Thurston’s finite presentation with Dehn twist generators for

genus one and two surfaces. We then extend Bene’s chord slide presentation from sur-

faces with connected boundary to those with disconnected boundary. This presentation

arises from studying a cell decomposition of Teichmüller space whose vertices are fat-

graph decorations of surfaces. We can convert the resulting fatgraph presentation of the

mapping class group to one with chord slide generators. This chord slide presentation

has potential applications to computing bordered Heegaard Floer invariants for open

books with disconnected binding.
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Notation and terminology

We will assume all surfaces are orientable and connected with no punctures, though

they may have boundary components. In the following, S is an orientable surface, ∂S

is its boundary, and x is a point in S. We use g for the genus of a surface, and n

for the number of boundary components. A closed surface is one with no boundary

components.

All groups of maps from S to S come with the compact-open topology (Defini-

tion 2.2), and if F is such a group of maps containing the identity, we take π1(F ) to

be based at the identity.

We will identify the following objects, which are defined in Chapters 4-6:

1. an edge e of a marked bordered fatgraph,

2. the graph dual of e, which we can view as an element of the fundamental path

groupoid, and

3. if e is in the canonical generating set for the fundamental path groupoid, the

image of e under branch reduction. This image is an edge in a chord diagram

that has the same dual as e.

Notation

� If c1 and c2 are oriented chords, we write c1 � c2 if the initial point

of c1 immediately precedes that of c2.

[a, b] The commutator of a and b, aba−1b−1.

{pi} On Σg,n, this is a collection of n marked dual points, disjoint from

the n marked points, with one on each boundary component.

e If e is an oriented edge in a graph or chord diagram, e is the same

edge with the opposite orientation.

πn(S, x) The nth homotopy group of S with basepoint x.
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π1(S,X, x) The relative fundamental group. For x ∈ X ⊂ S, this is homotopy

classes of maps (D1, S0, s0)→ (S,X, x) where D1 has endpoints s0

and s1.

Π1(S, {pi}) Let Π1(S) be the fundamental path groupoid of S, that is, the

groupoid consisting of homotopy classes of paths in S. Then Π1(S, {pi})
is the full subgroupoid of Π1(S) containing all paths that start and

end at points in {pi}..

Σg,n A fixed orientable genus g surface with n boundary components,

with an ordering on the boundary components. Comes equipped

with n marked points, one on each boundary component.

Dn The n-dimensional closed disk.

Diff(S) The group of diffeomorphisms S → S.

Diff+(S) The group of orientation-preserving diffeomorphisms S → S.

Diff(S, ∂S) The group of diffeomorphisms S → S that fix the boundary of S,

∂S, pointwise.

Diff(S, ∂S, x) The group of self-diffeomorphisms of S that fix ∂S pointwise and

send x to itself.

Diff(S relX) The group of self-diffeomorphisms of S that fix X ⊂ S as a set.

Homeo(S) The group of orientation-preserving homeomorphisms S → S. This

can be modified in the same way as the group of diffeomorphisms

(for example, Homeo(S, ∂S)).

Mod(S) The mapping class group of S. This is the group of orientation-

preserving homeomorphisms (or diffeomorphisms) of our surface

S, that fix ∂S pointwise, up to isotopy also fixing ∂S. See Defini-

tion 2.3.

Pn The pure braid group on n strands. See Definition 2.15.

P (X;n) Configuration space of n points in X. See Definition 2.14.

Sn The n-dimensional sphere.

±Symn The signed permutation group on n elements. Each element of this

group is a permutation σ of {±1,±2, . . . ,±n such that −σ(k) =

σ(−k) for all k.

xii



Tγ A Dehn twist about γ.

T (e) For e an edge in the maximal tree of a bordered fatgraph, this is

the subset of the maximal tree that is disconnected from the tail

within the tree if we remove e.

W (e) A Whitehead move on the edge e.

xiii





Chapter 1

Introduction

The mapping class group Mod(S) is the group of isotopy classes of homeomorphisms

from a surface to itself. It is an important algebraic invariant of a surface, and is deeply

connected to Teichmüller space and the moduli space of Riemann surfaces homeomor-

phic to S. One natural problem is to find a “nice” presentation of the mapping class

group. Such a presentation allows us to easily work with and investigate the group.

We first consider a presentation developed by Hatcher and Thurston. Its generators

are Dehn twists (Definition 2.5), which are a type of mapping class that arises naturally

in the 2-manifold context. A classical result of Dehn and Lickorish shows that Mod(S)

is finitely generated by Dehn twists [Lic64]. More recently, Hatcher and Thurston

showed that for a certain choice of Dehn twist generators of Mod(S) for closed surfaces

S, one could construct a finite generating set of relations [HT80].

After giving some background in Chapter 2, in Chapter 3 we give an exposition

of this Dehn twist presentation of Mod(S). Hatcher and Thurston show that one

can construct a finite presentation whose generating set is Dehn twists, but leave an

explicit execution of it to the reader. They examine the action of Mod(S) on a certain

combinatorial complex, the cut system complex (Definition 3.2). They prove that a

series of fibrations of diffeomorphism spaces determines a presentation of the subgroup

of Mod(S) that fixes a vertex of this complex, then build the full presentation from this.

While Wajnryb gave a very explicit exposition of their work, his intentional choice of

elementary techniques mean his approach is substantially removed from the fibrations

and exact sequences of homotopy groups used in the original paper [Waj99]. Chapter 3

bridges this gap in techniques, using Hatcher and Thurston’s fibrations and the Birman

exact sequence (Theorem 2.22). We derive an explicit presentation of the subgroup of

Mod(S) that fixes a vertex for genus one and two surfaces, then discuss how to extend

this to a presentation of the whole group.

There are many other presentations of Mod(S). We consider another one in Chap-

ters 4-6. Though Dehn twists are natural in the two-dimensional topology context, in
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different contexts other generators arise. Penner, among others, considers cell decom-

positions of Teichmüller space that have an action of Mod(S) [Pen87; Pen04]. In this

setting, the edges of this cell complex provide a natural set of generators. One cell de-

composition of Teichmüller space has graphs embedded in S as vertices (Definition 5.4)

and Whitehead moves on these graphs as edges (Definition 5.3). We naturally have

a presentation of the fundamental path groupoid whose generators are the Whitehead

moves, and whose relations are the faces in the complex. The Whitehead move pre-

sentation has a much more combinatorial flavour than Hatcher and Thurston’s more

algebraic topology-influenced work.

As in Hatcher and Thurston’s presentation, the action of Mod(S) on the complex

can be used to find a presentation of the group. In this case, the result is an infinite

presentation of Mod(S) whose generators are Whitehead moves. For surfaces with

one boundary component, Bene showed that this Whitehead move presentation of the

fundamental path groupoid of the complex can be translated to one whose generators

are chord slides [Ben10] using the branch reduction algorithm [ABP09]. This chord

slide presentation of the fundamental path groupoid is finite, and by restriction gives

an infinite presentation of Mod(S). Bene builds on work lifting various representa-

tions of Mod(S) to fundamental path groupoids in combinatorial complexes, which has

been particularly successful in the connected boundary case (for example, see [ABP09]

and [MP08]).

A chord slide presentation of Mod(S) has applications in bordered Heegaard Floer

homology, which is an invariant of a three-manifold with boundary that generalises the

Heegaard Floer invariants for closed 3-manifolds. Heegaard Floer homology has been

one of the most important developments in low-dimensional topology this century. It

gives rich and complicated new structures, and has been instrumental in proofs of

previously open problems, such as computing knot genus. The fundamental Heegaard

Floer invariant for a closed three-manifold Y is ĤF (Y ). The bordered theory computes

ĤF (Y ) as an iterated Hom space of modules associated to a standard handlebody and a

set of generators of Mod(S). In the Heegaard Floer context, the morphisms associated

to the chord slide generators of Mod(S) are called arc slides, and these have been

computed for the surfaces covered by Bene’s work.

In Chapters 4-6, we extend Bene’s chord slide presentation from surfaces with one

boundary component to those with n boundary components for any n ≥ 1. The results

in these chapters have potential applications in low-dimensional topology. As noted in

Section 1.6 of [LOT14], the current bordered Heegaard Floer techniques can be used to

compute ĈF (Y ) for a 3-manifold presented as an open book with a connected binding.

Extending this approach to open books with disconnected binding requires a chord slide

generating set for surfaces with multiple boundary components. Furthermore, chord

slides appear in [GL18] in the form of handleslides occurring in an S1-family of Morse
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functions on a surface. A presentation of Mod(S) in terms of these generators would

be a significant step towards a classification of the Morse structures compatible with a

fixed contact structure.

Our extension of Bene’s work proceeds as follows. First, in Chapter 4, we define

a marked bordered fatgraph as in [God07] and discuss its dual, a quasi-triangulation,

to show that the mapping class group acts freely on the set of marked bordered fat-

graphs. In Chapter 5, we define the marked bordered fatgraph complex, which is

homotopy equivalent to Teichmüller space [God07; Har86]. The action of the mapping

class group on this complex gives an infinite presentation of Mod(S) whose generators

are Whitehead moves (Corollary 5.12). In Chapter 6, we generalise Bene’s chord slide

presentation by extending the branch reduction algorithm [ABP09] to the n boundary

component context. The branch reduction algorithm takes a fatgraph to a chord dia-

gram, which we show is determined by a canonical set of generators of the fundamental

path groupoid of the surface that is associated to the marking of a fatgraph. We show

that, under this algorithm, the images of Whitehead moves on fatgraphs are generated

by chord slides (Theorem 6.20). We find a set of chord slide generators for Mod(S)

for surfaces with boundary, and show one can construct a finite but large relation set.

We give a simpler candidate relation set (Conjecture A). The proof that the relations

in Conjecture A generate all relations is not complete, as we have not checked all the

necessary cases.

The marked bordered fatgraphs defined in Chapter 4 have been previously explored,

and Sections 4.1 and 4.2 are an exposition of previous work. Section 4.3, which dis-

cusses the dual of a marked bordered fatgraph, is a topological approach to Harer’s

arc-system [Har86] and Penner’s quasi-triangulation [Pen04]. The marked bordered

fatgraph complex (Section 5.1) is well-known, and by taking the dual of its vertices

is homeomorphic to Harer’s arc-system complex. For example, this complex can be

used to compute the homology of the mapping class group for punctured or bordered

surfaces [God07]. However, to the author’s knowledge, marked bordered fatgraphs have

not been applied to find a presentation of the mapping class group aside from in the

connected boundary case.

From Section 5.2 onwards, we generalise the work in [ABP09] and [Ben10], extend-

ing the objects defined there from the one-boundary to the n-boundary case. One

particular difficulty in the n-boundary case is that the effects of Whitehead moves are

not local (Theorem 5.13). Constructions that particularly differ from the one bound-

ary case include the following: (1) the definition of a chord diagram (Definition 6.1),

(2) the method to associate a generating set for the fundamental path groupoid to a

marked bordered fatgraph (Proposition 4.30), and (3) the proof that chord diagrams

are determined by this associated generating set, which involves showing that reduced

words in the fundamental path groupoid are unique (Proposition 6.19). Most of the
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remaining proofs in Chapters 4-6 follow Bene’s ideas, but are more involved since we

have more complicated cases of Whitehead moves.
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Chapter 2

Background

In this chapter we introduce the mapping class group of a surface and provide some

background material for the rest of this thesis. See [FM12] for more details.

Let S be an orientable genus g surface with n boundary components. It is a conven-

tion of a field to say that S is a closed surface if it has no boundary components. Let

Homeo(S, ∂S) be the group of boundary-fixing orientation-preserving homeomorphisms

of S, and Diff+(S, ∂S) be the boundary-fixing orientation-preserving diffeomorphisms

of S.

2.1 Some results on the mapping class group

First, we define the fundamental group and fundamental path groupoid.

Definition 2.1. Let S be a topological space. The fundamental group of S based at

x ∈ S, π1(S, x), is the group of homotopy classes of paths that begin and end at x with

composition.

The fundamental (path) groupoid of S, Π1(S), is the groupoid of homotopy classes of

paths in S, which may begin and end anywhere in S. There is a composition operation

on pairs of paths f, g such that f ends at some x ∈ S and g starts at x.

By convention, the composition of paths fg is the map I → S that sends t ∈ [0, 1/2]

to f(2t) and t ∈ [1/2, 1] to g(2t− 1).

Note that in the fundamental group, the identity is the trivial path I → {x} and

the inverse of a path is the same path with the other orientation. See [Hat01, Chapter

1] for a verification of these claims. There is a natural inclusion of the fundamental

group in the fundamental groupoid.

We define a topology on a space of maps S → S.

Definition 2.2. Let S be a surface, and F some space of maps S → S. The compact-
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2.1. SOME RESULTS ON THE MAPPING CLASS GROUP

open topology on F is generated by

VU,K = {f ∈ F | f(K) ⊆ U}

for U ⊂ S open and K ⊂ S compact.

When we write Diff(S), or any other space of maps of a surface, we will assume it

has the compact-open topology. This will allow us to consider the homotopy groups of

the spaces of diffeomorphisms or homeomorphisms. With this topology, as our surfaces

are Hausdorff and compact, the connected components of Homeo(S, ∂S) are isotopy

classes of homeomorphisms, and paths are isotopies. We will take as a convention that

π1(Homeo(S, ∂S)) is based at the identity.

Definition 2.3. The mapping class group Mod(S) of S is the group of (boundary-

fixing) isotopy classes of Homeo+(S, ∂S).

Note that the set of isotopy classes of Homeo(S, ∂S) is precisely π0(Homeo(S, ∂S)).

This definition is equivalent to several others.

Theorem 2.4 (Theorem 6.4 [Eps66], [Bae27], [Bae28], Theorem 6.3 [Mun60]). The

following groups are isomorphic:

Mod(S) = π0(Homeo(S, ∂S))

∼= Homeo(S, ∂S)/homotopy

∼= π0(Diff+(S, ∂S))

∼= Diff+(S, ∂S)/smooth isotopy.

We call an element of Mod(S) a mapping class. Note that a mapping class acts on

the set of simple closed curves and on the fundamental group(oid).

Some particularly important mapping classes are the Dehn twists.

Definition 2.5. Let α be a simple closed curve in S. The Dehn twist about α, Tα, is

defined as follows.

Let A = S1×I be the annulus, with orientation from some embedding in the plane.

Let the twist about A, T : A→ A, be the map sending (θ, t) 7→ (θ + 2πt, t). Note that

T is orientation-preserving and fixes the boundary of the annulus pointwise.

Let U be a neighbourhood of α, with ϕ : U → A an orientation-preserving homeo-

morphism. Then Tα acts as follows:

Tα(x) =

x x 6∈ N

ϕ−1 ◦ T ◦ ϕ(x) x ∈ N.

6



2.1. SOME RESULTS ON THE MAPPING CLASS GROUP

(a) Before the Dehn twist. We will twist

around α in the neighbourhood U .

(b) The resulting curve after the Dehn

twist.

Figure 2.1: The effect of a Dehn twist on α on the purple curve.

For example, see Figure 2.1.

We give some basic results on Dehn twists. Let a and b be homotopy classes

of simple closed curves with representatives α and β respectively. Let i(a, b) be the

algebraic intersection number of a and b. This is the minimal number of intersections

between any two representatives of a and b.

Now, Tα acts on β as follows. Replace each piece of β that crosses α by a piece

that turns left as it approaches α, does one circuit of α, and then turns right to follow

β again.

We give some special cases for Ta and Tb depending on the intersection number of

a and b.

Lemma 2.6. If α and β are simple closed curves of homotopy classes a and b respec-

tively, with i(a, b) = 0, then Tα acts trivially on β.

Proposition 2.7 (Braid relation, Prop. 3.11 [FM12]). If i(a, b) = 1, then

TaTbTa = TbTaTb.

It is a classical result that the Dehn twists generate the mapping class group, and

that in fact one can pick a finite generating set.

Theorem 2.8 (Dehn (1938), Lickorish (1964), [Lic64]). If S has no boundary compo-

nents, Mod(S) is generated by finitely many Dehn twists about non-separating simple

closed curves.

Theorem 2.9 (Section 4.4.4 [FM12]). For a surface S, possibly with boundary, Mod(S)

is generated by finitely many Dehn twists about (possibly separating) simple closed

curves.

7



2.2. ADDITIONAL USEFUL RESULTS

2.2 Additional useful results

We give some results we will reference in later chapters.

Isotopies of curves in S can be extended to isotopies of S.

Lemma 2.10 (Proposition 1.11, [FM12]). Let F : S1 × I → S be a smooth isotopy of

simple closed curves. Then there is an (ambient) isotopy F̃ : S × I → S such that for

x ∈ S, F̃ (x× 0) = x, and for y = F (θ, 0), F̃ (y, t) = F (θ, t).

By observing that the mapping class group of the disk is trivial, we have the fol-

lowing lemma.

Lemma 2.11 (Alexander Trick). Let f : D2 → D2 be a map fixing the boundary

pointwise. Then f is isotopic to the identity by an isotopy fixing the boundary pointwise.

We can describe diffeomorphism classes of a disjoint union of circles as a permutation

group.

Definition 2.12. The signed permutation group on g elements, ±Symg, is the group

of permutations σ of {±1, . . . ,±g} such that σ(−k) = −σ(k).

Lemma 2.13. The smooth isotopy classes of diffeomorphisms of circles, π0

(
Diff

(⋃n
i=1 S

1
))

,

is isomorphic to ±Symn.

Proof. Let αn be the nth copy of S1. Define a homomorphism

φ : π0

(
Diff

(
g⋃
i=1

S1

))
→ ±Symg

as follows. For [f ] an isotopy class of diffeomorphisms with a representative f and

n > 0, let |φ([f ])(n)| be the integer such that f(αn) = α|φ([f ])(n)|. This is well-defined,

as, since f is a diffeomorphism, it sends αn surjectively to exactly one αj . Further, f

is injective, so for n 6= m, |φ([f ])(n)| 6= |φ([f ])(m)|.
Now, consider f |αn . This is a map S1 → S1, so f |αn is isotopic to ωk, the winding

number k map. As it is a diffeomorphism, it is injective, so is isotopic to ω±1. Let the

sign of φ([f ])(n) be + if f |αn is isotopic to ω1, and − if f |αn is isotopic to ω−1.

Then φ is an isomorphism.

The braid group appears naturally as the fundamental group of configuration space.

We briefly discuss this space. For more details, see Chapter 9, [FM12], particularly

Section 9.3.

Let D(S×n) be the points in S×n where at least two coordinates are equal.

Definition 2.14. The configuration space of n ordered points in a surface S is S×n −
D(S).

8



2.3. BIRMAN EXACT SEQUENCE

Definition 2.15. Let φ be a homomorphism from the braid group on n strands, Bn, to

the symmetric group on n elements, Symn, that acts as follows. For b ∈ Bn, b induces

a permutation on the n strands. Let φ(b) be this permutation.

The pure braid group on n strands, Pn, is the kernel of φ.

Equivalently, the pure braid group is the subgroup of Bn that induces the trivial

permutation on the strands.

Lemma 2.16 (p.249 [FM12]). The pure braid group Pn is isomorphic to π1(P (D2;n))

where D2 is the disk.

This theorem is a consequence of a generalised version of the Birman exact sequence

(Theorem 2.22) from one marked point to n marked points. We describe the pure braid

group in terms of generators and relations.

Proposition 2.17 (Theorem 16, [Art47]). The braid group on n strands has a finite

presentation with generators σi for 1 ≤ i < n, which takes strand i over strand i + 1,

and relations σiσj = σjσi if |i− j| > 1, and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n− 1.

Proposition 2.18 (p. 251 [FM12], Theorem 18 [Art47]). The pure braid group Pn has

the following presentation.

For 1 ≤ i < j ≤ n, let Ai,j = (σj−1 · · ·σi+1)σ2
i (σj−1 · · ·σi+1)−1.

Then Pn is generated by all such Ai,j, with relations, for all 1 ≤ i < j < k < l ≤ n,

as follows:

[Ai,j , Ak,l] = 1 j < k

[Ai,l, Aj,k] = 1 i < j < k < l

[Ak,lAi,kA
−1
k,l , Aj,l] = 1 i < j < k < l

and the relation that the three cyclic permutations of Ai,kAj,kAi,j are equal.

2.3 Birman exact sequence

The Birman exact sequence relates the mapping class group of a surface to the mapping

class group of the same surface with a fixed point. The exactness of this sequence is

proven in Theorem 4.6, [FM12], but the authors only outline the main steps of the

proof. For example, they do not explicitly show the maps in the sequence are Push

and Forget.

Let S be a surface with x ∈ S. This theorem will give us a well-defined map

Push : π1(S, x)→Mod(S, x), which we will use in Chapter 3.

Definition 2.19. The group Homeo+(S, x, ∂S) is the orientation-preserving homeo-

morphisms of S fixing x and the boundary ∂S pointwise.

9



2.3. BIRMAN EXACT SEQUENCE

The mapping class group of S with a fixed point x, Mod(S, x), is Homeo+(S, x, ∂S)/ ∼
where for f, g ∈ Homeo+(S, x, ∂S), f ∼ g if there is some isotopy fixing x from f to g.

We first give a lemma on the centre of π1(S).

Lemma 2.20. Let S be a compact surface with χ(S) < 0. Then π1(S) is centreless.

Proof. (This proof follows ideas from Keeley Hoek and Chris Hone.)

As χ(S) < 0, we have 2g+b > 2 where g is the genus and b the number of boundary

components of S.

If b > 0, the surface S deformation retracts to a wedge sum of circles. The funda-

mental group is thus free, so trivially centreless.

Otherwise, suppose b = 0 so g > 1. Then

π1(S) ∼= {a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 · · · a
−1
g b−1

g }.

Consider the quotient π1(S)/〈b1, . . . , bg〉. This is {a1, . . . , ag | a1a
−1
1 · · · aga−1

g }. Note

that a1a
−1
1 · · · aga−1

g = 1 trivially, so π1(S)/〈b1, . . . , bg〉 is the free group on g generators,

for g > 1, so is centreless. Also, the kernel of this quotient map is similarly the free

group on {b1, . . . , bg} which is also centreless.

Suppose x ∈ π1(S) such that x commutes with all elements of π1(S). We must

have x 7→ 1 in π1(S)/〈b1, . . . , bg〉, as this group has trivial centre. Thus x must be in

the centre of the kernel, which is trivial. Therefore x is trivial, so π1(S) has trivial

centre.

Before proving the Birman exact sequence, we will define the maps in it. The map

Forget : Mod(S, x) → Mod(S) acts by inclusion. The equivalence class of an element

of Mod(S, x) up to isotopy not fixing x is an element of Mod(S).

Definition 2.21. The map Push : π1(S, x)→Mod(S, x) is defined as follows.

Let α : I → S be a representative of an element of π1(S, x). We can view α as an

isotopy of points {∗} × I → S. We can consider α−1 as an isotopy of curves by

I × I projection−−−−−−→ {∗} × I α−1

−−→ S.

We can extend this to an isotopy of the whole surface S, F : S × I → S, such that

F |S×0 is the identity on S (Lemma 2.10). Let φ be the homeomorphism at the end of

this ambient isotopy, that is, F (−, 1). Then Push(α) is the equivalence class of φ in

Mod(S, x).

(We use α−1 here as by convention composition in π1 is left to right, but in Mod

is right to left. We must consider the inverse to get a homomorphism rather than an

anti-homomorphism.)

10



2.3. BIRMAN EXACT SEQUENCE

(a) The curve α (red), and the fundamental group

generators a (purple) and b (blue).

(b) The image of a (purple) and b (blue)

under Push([α])

(c) The images of a and b after homotopy,

showing the action is trivial.

Figure 2.2: The action of Push([α]) on the fundamental group of the torus.

Note that it is unclear that homeomorphism is well-defined, as there are many

extensions of α to an isotopy of the whole of S. However, if it is, Push([α]) induces an

automorphism on π1(S, x) taking [β] 7→ [α−1βα].

We examine the action of Push([α]) in a few cases. Figure 2.2 shows the action

of Push([α]) on the torus for a certain choice of α. We have picked generators a and

b of the fundamental group, and drawn a curve α = ab. Then Push([α]) acts on the

fundamental group by sending

a 7→ α−1 · a · α = (ab)−1a(ab) = a

b 7→ α−1 · b · α = (ab)−1b(ab) = b.

As the fundamental group is abelian, conjugation is trivial, and so Push([α]) is in fact

trivial for all choices of α.

However, on higher genus surfaces, Push([α]) is in general not trivial. For example,

see Figure 2.3. As the Euler characteristic of the genus two surface is negative, its

fundamental group is centreless (Lemma 2.20). Thus for any non-trivial α, conjugation

11



2.3. BIRMAN EXACT SEQUENCE

(a) The curves α (red), a (purple) and b

(blue).

(b) The image of a (purple) and b (blue)

under Push([α])

Figure 2.3: A non-trivial action of Push([α]) on the genus two surface.

by α is non-trivial.

Theorem 2.22 (Birman exact sequence, Theorem 1 [Bir69]). Let S be a surface with

χ(S) < 0. Fix some x ∈ S. Then the following sequence is exact:

0→ π1(S, x)
Push−−−→Mod(S, x)

Forget−−−−→Mod(S)→ 0.

Remark 2.23. We can directly see that Forget is surjective. Since S is path-connected,

any homeomorphism of (S, ∂S) is isotopic to one fixing x.

If we assume that Push is well-defined, we can also directly show that it is injec-

tive. As π1(S) is centreless, for [α] non-trivial, there is some [β] ∈ π1(S, x) such that

[α−1βα] 6= [β].

For the proof of the Birman exact sequence, we will first construct the sequence

and then show that the maps in it are indeed Push and Forget.

First, we describe π1(Homeo+(S)). Let Homeo0(S, ∂S) be homeomorphisms of S

fixing the boundary pointwise that are isotopic to the identity.

Theorem 2.24 (Theorem [Ham62], Theorem 3 [Ham65], Theorem 5.1 and 5.2 [Ham66]).

Let S be a compact surface. If S is not homeomorphic to S2, R2, D2, the torus or the

annulus, then Homeo0(S, ∂S) is contractible.

Corollary 2.25. Let S be a compact surface, possibly with a finite number of punctures,

such that χ(S) < 0. Then π1(Homeo+(S, ∂S)) = 0.

Proof. Note that as χ(S) < 0, S is not S2, R2, D2, T 2, the annulus, D2 − {∗} or

R2−{∗}. Now, the connected component of Homeo+(S, ∂S) that contains the identity

is precisely Homeo0(S, ∂S). By Theorem 2.24, any loop in π1(Homeo+(S, ∂S)), which

is based at id ∈ Homeo0(S, ∂S), is trivial.

Proof of Birman exact sequence. We will show that we have the following fibre bundle,

12



2.3. BIRMAN EXACT SEQUENCE

where evx takes φ ∈ Homeo+(S, ∂S) to φ(x).

Homeo+(S, x, ∂S) Homeo+(S, ∂S)

S − ∂S

evx

The inclusion Homeo+(S, x, ∂S) → Homeo+(S, ∂S) is well-defined since any homeo-

morphism of S that fixes x is a homeomorphism of S.

To show this is a fibre bundle, we provide a local trivialisation. Pick an open

neighbourhood U of x that is homeomorphic to the open complex unit disk D1(0) ⊂ C
by a homeomorphism p : U → D1(0) such that p(x) = 0. Note p exists as the manifold

is locally Euclidean. For each point ξ ∈ D1(0), let γξ : D1(0)→ D1(0) be the function

z 7→ z − ξ
1− ξz

.

Note that γξ fixes the unit circle in C as a set, so is a homeomorphism, and sends

ξ 7→ 0. For a point u ∈ U , let φu = p−1 ◦ γ−1
p(u) ◦ p, which is a homeomorphism of U and

sends x 7→ u. Then φu varies continuously as a function of u.

We now have a homeomorphism U ×Homeo+(S, x)→ ev−1
x (U) by the map

(u, ψ) 7→ φu ◦ ψ

with inverse

α 7→ (α(x), φ−1
α(x) ◦ α).

To get a local trivialisation at an arbitrary point y ∈ S, pick α ∈ Homeo+(S) with

α(x) = y. Then α : U → α(U) induces a homeomorphism α(U) × Homeo+(S, x) →
ev−1(α(U)). This homeomorphism is given explicitly by

(z, φ) 7→ α ◦ ψα−1(z) ◦ φ

with inverse

β 7→ (β(x), ψ−1
α−1◦β(x)

◦ α−1 ◦ β).

Now, as we have a fibre bundle, we have an induced long exact sequence in the

homotopy groups [Hat01, Theorem 4.41] that ends with

π1(Homeo+(S, ∂S), id)→ π1(S − ∂S, x)→ π0(Homeo+(S, x, ∂S), id)

→ π0(Homeo+(S, ∂S), id)→ π0(S − ∂S, x).

As S is connected, π0(S − ∂S) is trivial. As x 6∈ ∂S, we can homotope any loop

in S to be disjoint from the boundary. Thus π1(S − ∂S, x) = π1(S, x). Recall that

π0(Homeo+(S, ∂S)) is the homeomorphisms of S up to isotopy, which is precisely

13



2.3. BIRMAN EXACT SEQUENCE

Mod(S). Similarly, π0(Homeo+(S, x, ∂S)) ∼= Mod(S, x). Finally, by Lemma 2.25,

π1(Homeo+(S, ∂S)) is trivial. Thus we can rewrite this sequence as

0→ π1(S, x)→Mod(S, x)→Mod(S)→ 0.

Now, it remains to show that the maps between these groups are Push and Forget.

First, we show f : π1(S, x)→Mod(S, x) is Push. Let α be a loop in S based at x,

representing [α] ∈ π1(S, x). As we have a fibre bundle, the induced map from projection

(evx)∗ : π1(Homeo+(S, ∂S),Homeo+(S, x, ∂S), id) → π1(S − ∂S, x) is an isomorphism

(Theorem 4.41, [Hat01]).

Now (evx)−1
∗ ([α]) is the homotopy class of a map

(D1, S0, s0)→ (Homeo+(S, ∂S),Homeo+(S, x, ∂S), id).

From the construction of the long exact sequence, f([α]) is the restriction of (evx)−1
∗ ([α])

to the homotopy class of a map (S0, s0) → (Homeo+(S, x, ∂S), id). Let φ be a repre-

sentative of (evx)−1
∗ ([α]). Then φ(t)(x) = evx(φ(t)) = α(t), so φ is an isotopy of the

surface extending the isotopy of points given by α as in the definition of Push. Let the

point in S0 that is not s0 be s1. The map f([α]) is determined by where s1 is sent, up

to isotopy fixing x. Thus, f([α]) is the isotopy class of φ(s1) in Homeo+(S, x, ∂S), as

in the definition of Push([α]), so Push is well-defined.

Second, the map Mod(S, x)→Mod(S) is induced by the inclusion

Homeo+(S, x, ∂S) ↪−→ Homeo+(S, ∂S).

This map sends an element of Mod(S, x) to its isotopy class in Homeo+(S, ∂S) (rather

than in Homeo+(S, x, ∂S)), which is precisely the Forget map.

14



Chapter 3

The Hatcher-Thurston

presentation of Mod(S)

In [HT80], the authors give a finite presentation of the mapping class group of a closed

surface (that is, with n = 0) in terms of Dehn twists. It is a result from the 1930s

that a finite number of Dehn twists generate the mapping class group (Theorem 2.8).

Hatcher and Thurston showed that one could construct a Dehn twist presentation with

a finite number of relations.

The authors do not explicitly demonstrate their method to construct a full presen-

tation. We give a complete description of the construction outlined by Hatcher and

Thurston, and then apply it to find an explicit presentation for genus one and two

surfaces.

3.1 The cut system complex

To construct the presentation, Hatcher and Thurston consider the action of the mapping

class group on a cut system complex.

Definition 3.1. A cut system 〈α1, . . . , αg〉 on a closed genus g surface S is an unordered

collection of g disjoint smoothly embedded circles such that their complement is a sphere

with 2g punctures. A cut system is defined up to isotopy of the surface.

Definition 3.2. The cut system complex is constructed as follows. Its vertices are the

cut systems of S. Let 〈α1, . . . , αg〉 be a cut system. Suppose that α′1 is a circle that

intersects α1 once and is disjoint from the rest of the circles, such that 〈α′1, α2, . . . , αg〉
is a cut system. Then there is an edge from 〈α1, α2, . . . , αg〉 to 〈α′1, α2, . . . , αg〉. The

2-cells are the triangle, commutativity and pentagon relations shown in Figure 3.1.

There is a natural action of Mod(S) on this complex induced by the Mod(S)-action

on simple closed curves of S.

15



3.1. THE CUT SYSTEM COMPLEX

〈c1〉 〈c2〉

〈c3〉

c1

c3

c2

(a) The triangle face.

〈c1, c2〉 〈c′1, c2〉

〈c′1, c′2〉〈c1, c
′
2〉

c1 c′1 c2 c′2

(b) The commutativity face.

〈c1〉

〈c2〉

〈c3〉〈c4〉

〈c5〉

c1

c2

c3c4

c5

(c) The pentagon face

Figure 3.1: The faces of the cut system complex. Black dots correspond to intersection

points between circles. Each face corresponds to a commutative diagram in moves on

cut systems, exchanging a circle with another circle that intersects it once.
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3.2. BUILDING A PRESENTATION OF H

Theorem 3.3 (Theorem 1.1 [HT80]). The cut system complex is connected and simply

connected.

Hatcher and Thurston show this result using Cerf theory, which we will not discuss

in this thesis.

The standard cut system, C, is the cut system consisting of a meridian of each

handle of the surface. Let H be the subgroup of the mapping class group that fixes C.

Equivalently, this is the subgroup that fixes the corresponding vertex of the cut system

complex.

We will construct a mapping class that flips an edge incident to C. Let a be the

meridian of the first handle, and b be a fixed longitude of the first handle. Let C ′ be

the cut system consisting of a meridian of each handle except for the first handle, and

a longitude of the first handle. That is, C ′ = C −{a}∪ {b}. Note that there is an edge

between C and C ′.

Definition 3.4. The mapping class σ is TaT
−1
b Ta.

This is the identity outside a neighbourhood of the first handle, so fixes the merid-

ians of all other handles. On the first handle, one can verify that σ takes the curve a

to b and takes b to a. Thus, σ(C) = C ′ and σ(C ′) = C.

Given a finite presentation of H and such an element σ, which allows us to flip

an edge in the complex, we can give a finite presentation of the mapping class group

(Theorem 2.2, [HT80]). We will discuss this further in Section 3.3.

The authors give the construction of the full presentation quite explicitly. However,

for developing the presentation of H, they give only the essential steps, and leave the

construction of the presentation itself to the reader. In [Waj99], the author gives an ex-

plicit presentation of H following [HT80], but this employs only elementary techniques

and does not directly use the fibrations used to construct the exact sequence in [HT80].

We will show how to apply an exact sequence to construct an explicit presentation for

H genus one and two surfaces by directly following Hatcher and Thurston’s argument.

3.2 Building a presentation of H

Using the Push map (Definition 2.21), we describe how to construct a presentation for

H in the general case, following [HT80], and then apply this to give explicit presenta-

tions for genus one and two.

3.2.1 The key steps in the H presentation

Before considering the genus one and two cases in detail, we first outline the key steps

in the construction. Let S be a (closed) genus g surface, with 〈αi〉 a fixed cut system.
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3.2. BUILDING A PRESENTATION OF H

There is a fibration [HT80, Proof of Prop. 2.1]

Diff+(S rel{αi}) Diff+(S)

Diff({αi})

restriction p

which induces a long exact sequence in homotopy groups [Hat01, Theorem 4.41] ending

with

π1(Diff({αi}))→ π0(Diff+(S rel{αi}))→ π0(Diff+(S, {αi}))→ π0(Diff({αi}))→ 0.

(3.1)

Lemma 2.4 [HT80] shows that π0(Diff+(S, α)) is isomorphic to H. Proposition 2.1

[HT80] states this exact sequence is equivalent to

Z→ Zg ⊕ P2g−1 → H → ±Σg → 0. (3.2)

We describe how to extract a presentation from an exact sequence.

Lemma 3.5 (Lemma 28 [Waj99]). Let 0 → A → B → C → 0 be an exact sequence,

with A and C finitely presented groups. Let 〈a1, . . . , an | r1, . . . , rm〉 be a presentation

of A, and 〈c1, . . . , ch | s1, . . . , sg〉 a presentation of C. Then we get a presentation of B

as follows.

Let αi be the image of ai in B. Let γj be a fixed choice of element of B that is sent

to cj in C. For each relation rk of A, which is a word in the ai, let tk be the word in

the αi that is the image of the word rk under the map ai 7→ αi. For each relation s` of

C, let u` be the image of s` under the map cj 7→ γj. As u` is sent to 0 in C, it is in

the image of A in B. Thus we have u` = v` where v` is some word in the αi. For each

αi and γj, γjαiγ
−1
j is also sent to 0 in C, so is equal to wij where wij is some word in

the αi.

Then we have a presentation of B as follows:

B = 〈αi, γj | tk, u`v−1
` , γjαiγ

−1
j w−1

ij 〉

where the variables range as follows: 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ h and 1 ≤ ` ≤ g.

3.2.2 Genus one case

We construct a presentation of H for genus one, following [HT80]. Let S be a torus.

We have a long exact sequence, from Equation 3.1, ending with

π1(Diff(α))
γ−→ π0(Diff+(S relα))→ π0(Diff+(S, α))→ π0(Diff(α))→ 0.

To understand these groups, first, we consider γ : π1(Diff(α))→ π0(Diff+(S relα)). In

the construction of the long exact sequence, this map is defined as follows. The induced
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3.2. BUILDING A PRESENTATION OF H

map from the relative homotopy group of the fibration to the homotopy group of the

base space,

p∗ : π1(Diff+(S, α),Diff+(S relα), id)→ π1(Diff(α), id),

which comes from the projection in the fibration, is an isomorphism [Hat01, Theorem

4.41]. Now γ is defined as the induced map in the following diagram.

π1(Diff(α), id) π0(Diff+(S relα), id)

π1(Diff+(S, α),Diff+(S relα), id)

γ

p∗,∼= restriction

One may easily verify that π1(Diff(α), id) is isomorphic to Z, and generated by a

rotation by 2π of α ∼= S1. Then p−1
∗ (1) is the map

(D1, S0, s0)→ (Diff+(S, α),Diff+(S relα), id)

which has a representative sending s0 to id and s1 to Push(α) (as in Definition 2.21).

Then the restriction map sends this map to the image of s1, which is Push(α). Thus,

γ acts by sending n to the map induced by pushing a point on α around the curve n

times.

Note that in particular, this map is isotopic to the identity if we do not fix α point-

wise. Thus it is in the kernel of the induced map from inclusion π0(Diff+(S relα)) →
π0(Diff+(S, α)), as we expect from the exact sequence.

By Lemma 2.4 [HT80], π0(Diff+(S, α)) ∼= H. The group π0(Diff(α)) is the isotopy

classes of diffeomorphisms of α ∼= S1. Any map S1 → S1 is homotopic to the nth

winding map for some n, and this map is injective only for n = ±1. Thus π0(Diff(α)) ∼=
Z/2 ∼= ±Σ1.

We can now write our exact sequence as

Z γ−→ π0(Diff+(S relα))→ H → Z/2→ 0.

It remains to interpret π0(Diff+(S relα)).

Suppose we cut S along α. The resulting surface is an annulus, which we can write

as D2 − D̊1 for D1 a disk in the interior of the D2. This induces a diffeomorphism

Diff+(S relα)→ Diff(D2 rel{D1, ∂D
2}). Thus

π0(Diff+(S relα)) ∼= π0(Diff(D2 rel{D1, ∂D
2})).
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3.2. BUILDING A PRESENTATION OF H

(a) (b) Tβ (c) TαTβ

(d) is homotopic to (e) TαTβTαTβ (f) TβTαTβTαTβ

(g) is homotopic to

Figure 3.2: Verifying that r(α) = α−1. The green curve is the image of the given series

of Dehn twists; the blue is the curve we will twist about next.

The mapping class group Mod(D2 − D̊1) is isomorphic to Z and generated by

a Dehn twist about the curve parallel to one of the boundary components. Thus,

Diff+(S relα) ∼= Z. When we re-glue, the generator in π0(Diff(D2 rel{D1, ∂D
2})) is a

Dehn twist about α.

Consider the map γ : π1(Diff(α)) → π0(Diff+(S relα)). We have the generator of

π1(Diff(α)) going to Push(α). But on the torus, Push(α) is isotopic to the identity,

even if α is fixed. (We can also see this from the exact sequence, as in terms of Dehn

twists about α, the generator of π1(Diff(α)) is sent to TαT
−1
α which is trivial.) Thus

γ : π1(Diff(α))→ π0(Diff+(S relα)) is in fact the zero map.

Thus, we have a short exact sequence

0→ Z→ H → Z/2→ 0.

From this, we can build a presentation for H as described in Lemma 3.5. The

generators are r, which is some element in the preimage of 1 ∈ Z/2, and t, which is the

image of 1 ∈ Z in H. We have no relations from Z. We have r2 7→ 0 ∈ Z/2, so r2 is

some word in the generators of Z. Similarly, rtr−1 7→ 0 ∈ Z/2, so rtr−1 is also some

word in the generators of Z.

Let Tγ be the Dehn twist about γ (Definition 2.5). Let t be a Dehn twist about
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3.2. BUILDING A PRESENTATION OF H

(a) Tβ (b) TαTβ (c) TβTαTβ

(d) homotopy equivalent (e) TαTβTβTαTβ (f) TβTαTβTβTαTβ

(g) homotopy equivalent

Figure 3.3: Verifying that r sends β 7→ β−1. The green curve is the image of the given

series of Dehn twists; the blue is the curve we will twist about next.

α. Let r be (TαTβTα)2, for β a curve that intersects α once. By the braid relation

(Prop. 2.7), since β and α intersect once we have TαTβTα = TβTαTβ. So

r = TαTβTαTβTαTβ = TβTαTβTαTβTα.

Since Tα(α) = α, as illustrated in Figure 3.2, we can verify this map takes α 7→ α−1.

Thus r does indeed map to 1 ∈ Z/2.

Since r2 fixes α, and all other curves on the torus intersect α at least once, r2 is

some number of Dehn twists about α. To determine r2 in terms of Dehn twists it

suffices to calculate its action on β. As illustrated in Figure 3.3, r sends β 7→ β−1.

Thus r2 is the identity.

Now, consider rtr−1. This fixes α so is also some word in the Dehn twists about α.

As t = Tα, using the braid relation we have

rtr−1 = (TαTβTα)2Tα(TαTβTα)−2

= (TαTβTαTβTαTβ)T−1
β T−1

α T−1
β T−1

α T−1
β

= Tα

so rtr−1 = t, which is to say, t and r commute. Thus,

H ∼= 〈r, t | r2, rtr−1t−1〉 ∼= Z⊕ Z/2.

21



3.2. BUILDING A PRESENTATION OF H

To verify this, we can describe H explicitly without using Equation 3.2, as the

mapping class group of the torus is easy to describe.

It is a classical fact that Mod(S) ∼= SL(2,Z). Fix a meridian and longitude. Then

this group is generated by the Dehn twist about the meridian, which is

(
1 −1

0 1

)
, and

the Dehn twist about the longitude, which is

(
1 0

−1 1

)
[FM12, Theorem 2.5]. The

fundamental group of the torus is generated by the meridian and longitude. If we

identify them with (1, 0) and (0, 1) respectively, the mapping class group acts on them

as SL(2,Z) acts on these vectors.

Let the fixed cut system 〈α〉 be the meridian. Note that an element

(
a b

c d

)
∈

Mod(S) takes (1, 0) 7→ (a, c). Then the subgroup H of Mod(S) that fixes (1, 0) is the

set that sends (1, 0) 7→ (±1, 0) (as (−1, 0) is (1, 0) with the opposite orientation, and

the cut system is defined up to orientation and ordering). This is the subgroup

H =

{(
a b

c d

)
∈M(2,Z) | ad− bc = 1, a = ±1, c = 0

}

=

{(
a b

c d

)
∈M(2,Z) | a = ±1, d = a, c = 0

}
.

All elements of H look like (
±1 b

0 ±1

)
for b ∈ Z, and we can verify that this set is closed under multiplication and inverses,

since for example (
1 b

0 1

)(
−1 b′

0 −1

)
=

(
−1 b′ − b
0 −1

)
.

Relating this back to the presentation of H from Equation 3.2, the correspondence

is

r =

(
−1 0

0 −1

)
which reverses the orientation of both α and β, and

t =

(
1 −1

0 1

)
which is a Dehn twist about α.

3.2.3 Genus two case

Next, we consider the genus two case. With genus one, the problem is substantially

simpler: the pure braid group does not make an appearance, and the zero map γ :
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Figure 3.4: Illustrating α1 and α2 on a genus two surface S.

π1(Diff(α)) → π0(Diff+(S relα)) makes the exact sequence much simpler. Genus two

is more indicative of the complexity of the general case.

Let S be the genus two surface, and α1 and α2 be the curves marked in Figure 3.4.

As with genus one, from Equation 3.1 we have a fibration inducing a long exact sequence

ending with

π1(Diff({αi}))
γ−→ π0(Diff+(S rel{αi}))

φ−→ π0(Diff+(S, {αi}))
ψ−→ π0(Diff({αi}))→ 0. (3.3)

Recall that by Lemma 2.4 [HT80], π0(Diff+(S, {αi})) ∼= H.

Consider the map γ : π1(Diff({αi})) → π0(Diff+(S rel{αi})) which is defined as in

the genus one case by the following diagram.

π1(Diff({αi}), id) π0(Diff+(S rel{αi}), id)

π1(Diff+(S, {αi}),Diff+(S rel{αi}), id)

γ

p∗ ∼= restriction

One may easily verify that π1(Diff({αi}), id) ∼= Z2 with generators the rotations by 2π

about α1 and α2. Then p−1
∗ (n,m) has a representative

φn,m : (D1, S0, s0)→ (Diff+(S, {αi},Diff+(S rel{αi}), id)

sending s0 to id and s1 to Push(α1)m ◦ Push(α2)n. Thus γ sends (1, 0) to Push(α1)

and (0, 1) to Push(α2). Note that these Push maps are trivial if we fix {αi} as a set,

rather than pointwise. Thus, as we would expect, im γ is sent to 0 in H by φ. Also

note that γ is injective, which allows us to rewrite Equation 3.3 as

0→ π1(Diff({αi}))
γ−→ π0( Diff+(S rel{αi}))

φ−→ H
ψ−→ π0(Diff({αi}))→ 0. (3.4)
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Now, consider π0(Diff+(S rel{αi})). Suppose we cut S along {αi}. We get a sphere

with four boundary components, which we can write as D2 − {D̊1, D̊2, D̊3} where the

Di are disks embedded in D2. Note that any diffeomorphism of S that fixes the αi

pointwise can be interpreted as a diffeomorphism of D2 − {D̊i}, so

π0(Diff+(S rel{αi})) ∼= π0(Diff(D2 rel{D1, D2, D3, ∂D
2})).

To find π0(Diff(D2 rel{D1, D2, D3, ∂D
2})), note that there is a fibration

Diff(D2 rel{D1, D2, D3, ∂D
2}) Diff(D2 rel ∂D2)

B

g

where B is the space of orientation-preserving embeddings of three disjoint disks in D̊2

[HT80, Proof of Lemma 2.5]. The map g : Diff(D2 rel ∂D2) → B is given by sending

a diffeomorphism φ to the embedding sending the first disk to φ(D1), the second to

φ(D2) and the third to φ(D3). From the fibration, we get a long exact sequence in

homotopy groups:

π1(Diff(D2 rel ∂D2))→ π1(B)
ξ−→ π0(Diff(D2 rel{D1, D2, D3, ∂D

2}))

→ π0(Diff(D2 rel ∂D2)). (3.5)

We use two statements from the proof of Lemma 2.5 [HT80]. First, Diff(D2 rel ∂D2)

is contractible. Thus the isotopy classes of diffeomorphisms and the fundamental group

of this space are trivial, so, in Equation 3.5, ξ is an isomorphism. Thus

π1(B) ∼= π0(Diff(D2 rel{D1, D2D3, ∂D
2})).

Second, B is weakly homotopy equivalent to [SL(2,R)]3×P (D̊2; 3) by the following

map. Let f ∈ B be an embedding. The weak homotopy equivalence sends f to

(d1, d2, d3, {c1, c2, ci}), defined as follows. A point ci is the image of the centre of the

ith disk under f . A matrix di is the gradient of f at the centre of the ith disk.

From these statements, we have

π0(Diff(D2 rel{D1, D2, D3, ∂D
2})) ∼= π1(B)

∼= π1([SL(2,R)]3 × P (D̊2; 3))

∼= Z3 × P3.

With these results, we can rewrite Equation 3.4 as

0→ Z2 γ−→ Z3 × P3
φ−→ H

ψ−→ π0(Diff({αi}))→ 0. (3.6)
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Consider the image of the generators of π1(B) under ξ. The fundamental group of

SL(2,R) is isomorphic to Z, and is generated by the loop g : S1 → SL(2,R) sending θ to

the matrix rotating the plane by θ. In B, ξ(1, 0, 0, e) then corresponds to a full rotation

of the embedding of the first disk. Thus ξ(1, 0, 0, e) is a Dehn twist about the boundary

of first disk. Similarly, ξ(0, 1, 0, e) and ξ(0, 0, 1, e) are Dehn twists about the boundaries

of the second and third disks respectively. When we glue up D2−{D̊1, D̊2, D̊3} to make

the genus two surface, we get ξ(1, 0, 0, e) mapping to Tα1 , ξ(0, 1, 0, e) mapping to T−1
α1

and ξ(0, 0, 1, e) mapping to Tα2 . The Dehn twist about the boundary of the disk goes

to T−1
α2

. See Figure 3.5 for some examples of how the disk glues up.

From the presentation of P3 in Proposition 2.18, P3 is generated by A12 = σ2
1,

A23 = σ2
2, and A13 = σ2σ

2
1σ
−1
2 . The two relations are

A13A23A12 = A23A12A13 and

A13A23A12 = A12A13A23.

Consider the image of A12 under ξ. In configuration space, this loop is a rotation

of two points around each other. In π1(B), this is a rotation of the first and second

disks around each other, as illustrated. This is a Dehn twist about the circle separating

the first and second disks from the third and the boundary. Now, ξ(0, 0, 0, A12) is a

Dehn twist about the loop illustrated in red on the right in Figure 3.5a. Similarly,

ξ(0, 0, 0, A23) and ξ(0, 0, 0, A13) are Dehn twists about the red loops in Figure 3.5b and

c.

Now, recall γ : π1(Diff({αi}))→ π0(Diff+(S rel{αi})) sends (1, 0) to Push(α1) and

(0, 1) to Push(α2). As α1 is a simple closed curve, Push(α1) is t+t
−1
− , where t+ is the

Dehn twist about α1 pushed off to the right, and t− is the Dehn twist about α1 pushed

off to the left. When we cut along α1 and α2, t+ is the Dehn twist about D1 and t− is

the Dehn twist about D2. Thus γ(1, 0) is TD1T
−1
D2

on D2 with an embedding of three

disjoint disks. Similarly, γ(0, 1) is T∂D2T−1
D3

. Thus in Z3 × P3, γ(1, 0) = (1,−1, 0, e),

and γ(0, 1) = (0, 0, 1, A−1
23 A12) (since A−1

23 A12 is the Dehn twist about ∂D2).

We can take the quotient of the groups in Equation 3.6 by (1, 0) ∈ π1(Diff({αi})) and

its image. This is only (1,−1, 0, e) ∈ π0(Diff+(S rel{αi})), as by exactness (1,−1, 0, e) 7→
0 ∈ H. Then Z2/〈(1, 0)〉 ∼= Z and Z3 × P3/〈(1,−1, 0, e) ∼= Z2 × P3. Thus from Equa-

tion 3.6, we have the exact sequence

0→ Z γ−→ Z2 × P3
φ−→ H

ψ−→ π0(Diff({αi}))→ 0 (3.7)

with the map γ : Z→ Z2 × P3 taking 1 7→ (0, 1, A−1
23 A12).

As shown in Lemma 2.13, π0(Diff({αi})) ∼= ±Σ2, the group of symmetries of a

square. A presentation of this group is

〈r, f | f2, frfr〉.
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3.2. BUILDING A PRESENTATION OF H

(a) The action of ξ(0, 0, 0, A12).

(b) The action of ξ(0, 0, 0, A23).

(c) The action of ξ(0, 0, 0, A13).

Figure 3.5: The actions of the generators of the permutation group under ξ. On the left

is D2 − {D1, D2, D3}. The element ξ(0, 0, 0, Aij) is a Dehn twist about the red curve.

On the right, we show how this glues to make the genus two surface.

On the square, f is a flip and r a rotation by π/2. As elements of ±Sym2, these

act as f sending 1 7→ −1 and 2 7→ 2, and r sending 1 7→ 2 and 2 7→ −1. The map

ψ : H → π0(Diff({αi})) is induced by restriction of S to {αi}.
From these results, we have the exact sequence

0→ Z γ−→ Z2 × P3
φ−→ H

ψ−→ ±Sym2 → 0 (3.8)

from Equation 3.7, as we expect from Equation 3.2.

Now, we build a presentation of H using Lemma 3.5. Note that for a sequence

K → A→ B → C → 0, the generators of K give us additional words in the generators

of A that are trivial in B. It suffices to add these relations to the relation set from

Lemma 3.5.
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We have generators

gTD1
, gTD3

, gA12 , gA13 , gA23 , gf and gr

where the first five are the images of the generators of Z3 × P3 under φ, and the last

two are some choice of elements of H that get sent to f and r respectively by ψ.

From the relations in Z2 × P3, we have relations

gA13gA23gA12g
−1
A13

g−1
A12

g−1
A23

gA13gA23gA12g
−1
A23

g−1
A13

g−1
A12

[gTD1
, gA12 ]

[gTD1
, gA23 ]

[gTD1
, gA13 ]

[gTD3
, gA12 ]

[gTD3
, gA23 ]

[gTD3
, gA13 ]

[gTD1
, gTD3

].

We know the map γ : Z → Z2 × P3 takes 1 7→ (0, 1, A−1
23 A12). Thus the image of

this map is generated by (0, 1, A−1
23 A12), so by exactness this gives us the relation

g−1
TD3

g−1
A23

gA12 = id

in H, that is, gTD3
= g−1

A23
gA12 . Thus we can discard gTD3

as a generator. We are then

reduced to the relations

gA13gA23gA12g
−1
A13

g−1
A12

g−1
A23

(3.9)

gA13gA23gA12g
−1
A23

g−1
A13

g−1
A12

[gTD1
, gA12 ]

[gTD1
, gA23 ]

[gTD1
, gA13 ]

[g−1
A12

gA23 , gA12 ]

[g−1
A12

gA23 , gA23 ]

[g−1
A12

gA23 , gA13 ].

Let the curves a, b, c and d be as in Figure 3.6. Note that gTD1
is Ta, and gTD3

is

Tb. We choose gf and gr to be

gr = TdT
−1
b TaTd

gf = TcT
2
aTc.
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3.2. BUILDING A PRESENTATION OF H

Figure 3.6: The curves a (blue), b (green), c (pink) and d (green) on the genus two

surface.

One can check that these act on α1 and α2 as we expect, with gr sending α1 to α2 and

α2 to α−1
1 , and gf reversing the orientation of α1 and fixing α2.

From Lemma 3.5, each of

g2
f , gfgrgfgr, gfgTD1

g−1
f , gfgA12g

−1
f , gfgA13g

−1
f , gfgA23g

−1
f ,

grgTD1
g−1
r , grgA12g

−1
r , grgA13g

−1
r and grgA23g

−1
r (3.10)

is equal to some words in the generators corresponding to generators of Z2×P3, giving

us another ten relations. We will not compute these relations, as it is a tedious and

uninsightful computation.

Wajnryb’s calculation [Waj99, Prop. 27] also gives an explicit set of relations for

H, though with a slightly different set of generators. To give a sense of what our final

ten relations would be, we express those of his relations that correspond to these ten

words in our generators. They are the following:

g2
r = gA13gA23gA12(g−1

A12
gA23)−2g−2

TD1

g2
f = gA23g

−4
TD1

gfgrgfgr = g2
A23

g−4
TD1

(g−1
A12

gA23)4 (gA13gA23gA12)−2

gfgTD1
g−1
f = gTD1

gfgA12g
−1
f = gA13

gfgA13g
−1
f = g2

A23
gA12g

−2
A23

gfgA23g
−1
f = gA23g

−3
TD1

grgTD1
g−1
r = g−1

A12
gA23

grgA12g
−1
r = gA12

grgA13g
−1
r = g−1

A12
g−1
A23

g−1
A13

g−1
A12

gA13gA23gA12gA13

grgA23g
−1
r = grg

−1
A12

g−1
A13

g−1
A23

g−1
r gA23gr(grg

−1
A12

g−1
A13

g−1
A23

)−1.
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In summary, we have the mapping class group of the genus two surface generated

by

gTD1
, gA12 , gA13 , gA23 , gf and gr

with relations those listed in Equation 3.9 and the ten relations coming from Equa-

tion 3.10.

3.3 Constructing a presentation of the mapping class group

We now discuss how to use these presentations of a designated subgroup of the mapping

class group to construct a presentation for the whole group. Let σ be the mapping class

that takes C to C ′ from Definition 3.4.

Theorem 3.6 (Theorem 2.2 [HT80]). Let φ be a mapping class. Then φ can be written

as a word in elements pi of H and σ, of the form φ = p1σ · · ·σpkσpk+1.

To prove this, we first show the mapping class group acts transitively on the com-

plex.

Lemma 3.7. The mapping class group acts transitively on the vertices of the cut sys-

tem, and H acts transitively on the edges incident to C.

Proof. The mapping class group acts transitively on the vertices of the cut systems. We

can see this as follows. Cutting along the cut system gives a sphere with 2g holes. This

is homeomorphic to any other such sphere, and we can pick how this homeomorphism

acts on the boundary components.

Also, H is transitive on the edges incident to the vertex C in the complex. Let w be

a vertex at the end of an edge incident to C. So w is a cut system with all the curves

in the cut system the same as those in C, except for one, β, which intersects αi ∈ C
once. Let z be another such vertex, which has a curve γ that intersects αj ∈ C once.

Cut the surface S open along C ∪ {β}. We get a sphere with 2g− 1 holes. Each αk

becomes the boundary of two holes, except for αi, where we get a hole with boundary

αiβα
−1
i β−1. We get an analogous picture if we cut along C ∪ {γ}. Then there is a

homeomorphism between the two spheres with boundary that takes the two boundary

components corresponding to αk to each other, for all k 6= i, j, and takes the boundary

αiβα
−1
i β−1 to αjγα

−1
j γ−1. The remaining boundary components are those correspond-

ing to αj after we cut C ∪ {β}, and those corresponding to αi after we cut C ∪ {γ}.
Map these to each other.

This homeomorphism fixes C as a set, though it exchanges αi and αj . Thus it is in

H. It also takes β to γ and vice versa so takes the edge from C to w to the edge from

C to z, as required.
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Proof of theorem. We have fixed our standard cut system C. Recall that σ(C) = C ′.

As the cut system complex is connected, there is an edge path (C = v0, v1, . . . , vn =

φ(C)) where the vi are pairwise-adjacent vertices. We build the word for φ in elements

of H and σ as follows. First, as H is transitive on the edges incident to C, there is

some p1 ∈ H taking C ′ to v1 and fixing C. Then p1σ takes C to v1 and C ′ to C.

We have (p1σ)−1 taking v2 to some v′1, which is connected by an edge to (p1σ)−1(v1) =

C. Then pick some p2 ∈ H taking C ′ to v′1, so p1σp2σ takes C to v2. We can repeat

this process to get some word p1σ · · · pkσpk+1 such that p1σ · · · pjσ takes C to vj .

Note that H(p1σ · · · pkσpk+1)−1 fixes C, so is some element f of H. Thus H =

fp1σ · · · pkσp−1
k+1 with fp1 ∈ H.

Thus, the mapping class group is finitely generated by the generators of H and σ. It

remains to find the relations between σ and the generators of H. Hatcher and Thurston

give explicit classes of relations between σ and the generators of H by analysing the

five types of ways in which two of these words in H and σ may represent the same

mapping class. These are as follows, where the square, triangle, and pentagon relations

are as in Figure 3.1:

1. The two words are different words corresponding to the same path.

2. The two words correspond to paths that differ by an involution. For example, if

one path of edges is e1e2e3, the other might be e1e2e4e
−1
4 e3.

3. The two words differ by a triangle relation.

4. The two words differ by a square relation.

5. The two words differ by a pentagon relation.

The corresponding five classes of relations are as follows.

Theorem 3.8 (Theorem 2.2 [HT80]). All relations between words of the form p1σ · · · pkσpk+1

as mapping classes follow from the following five classes of relations. These relations

correspond to the five ways in which two of these words may represent the same mapping

class.

1. The letter σ commutes with the subgroup of Mod(S) that fix both C and C ′ =

σ(C), which one can show is finitely generated.

2. The element σ2 is in H.

3. For a finite set of pγ in H, (pγσ)3 ∈ H.

4. For a single p ∈ H, such that p is a particular mapping class taking the meridian

of the first handle to the meridian of the second, and the longitude of the first

handle to the longitude of the second, σ and p−1σp commute.
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5. For a finite number of choices of p0, p1, . . . , p4, σp4σp3 · · ·σp0 is in H.

By this theorem, the mapping class group has a finite set of relations. A complete

and entirely explicit presentation of the mapping class group in Hatcher and Thurston’s

generators can be found in Theorems 3 and 31 of [Waj99].
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Chapter 4

Marked Bordered Fatgraphs and

Their Duals

A marked bordered fatgraph (Definition 4.16) is an embedding of a certain class of

graph in a surface such that its complement consists of one contractible piece for each

boundary component. The dual graph to this is embedding is a quasi-triangulation.

Quasi-triangulations consist of monogons (each of which contains one boundary compo-

nent) and interior triangles. As in Chapter 3, we can consider the mapping class group

action on a surface S decorated with one of these objects. In this case, the action is

free (Proposition 4.26).

In this chapter, we will define a marked bordered fatgraph and prove some results on

its dual. Principally, we will show that the mapping class group acts freely on marked

bordered fatgraphs, and we will give an algorithm to associate a minimal generating

set for the fundamental path groupoid to a marked bordered fatgraph. In Chapter 5,

this will allow us to define a marked bordered fatgraph complex (Theorem 5.5) with a

natural Mod(S)-action, giving us an infinite presentation of a mapping class groupoid

in terms of moves on bordered fatgraphs.

We will use this presentation in Chapter 6 to give a finitely generated presentation

of the same groupoid in terms of chord slides on chord diagrams whose chords are the

minimal set of generators for the fatgraph. This will induce an infinite presentation of

the mapping class group. Sections 4.1-2 follow [God07].

4.1 Defining n-bordered Fatgraphs

4.1.1 Fatgraphs

First, we establish a convention for formally describing graphs.

Definition 4.1. A combinatorial graph G consists of two sets, V (G) and ξor(G), and
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4.1. DEFINING N -BORDERED FATGRAPHS

Figure 4.1: An example of a fatgraph.

two maps, v : ξor(G) → V (G) and an involution i : ξor(G) → ξor(G) that fixes no

elements.

We interpret the set V (G) as the vertices of the graph, and ξor(G) as the oriented

edges. Then v sends an oriented edge e to the vertex it points to, and i sends an

oriented edge to the same edge pointing in the opposite direction. As shorthand, we

use the notation e = i(e). To avoid ambiguity, ac, for instance, is i(a)i(c) (that is, the

order does not reverse as it does with inverses).

We assume a basic knowledge of graph theory. For full definitions, see [Die00]. Our

definition of a graph is equivalent to Diestel’s definition of a graph, by sending one of

our edges e to the edge (v(e), v(e)). Our notation, however, allows us to easily refer to

an edge with a particular orientation.

Definition 4.2. A morphism of combinatorial graphs, ψ : G → G̃, is a map of sets

ξor(G) ∪ V (G) → ξor(G) ∪ V (G) such that for any oriented edge e of G̃, ψ−1(e) is a

single oriented edge of G, and for any vertex v of G̃, ψ−1(v) is a tree.

Definition 4.3. A fatgraph Γ is a connected combinatorial graph with a permutation

σ of the oriented edges ξor(Γ) that restricts to a cyclic ordering of the edges pointing

to each vertex.

Given an oriented edge e, we say i ◦ σ(e) is the consecutive edge. This is the next

edge in the ordering around v(e) but pointing away from the vertex rather than towards

it.

Definition 4.4. A fatgraph morphism is a morphism of combinatorial graphs that

respects the cyclic ordering on edges at a vertex.

We can visualise the edge orderings in a fatgraph by immersing the graph into the

plane such that going anticlockwise around a vertex in the plane agrees with σ. For
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Figure 4.2: A fatgraph with two boundary cycles, each coloured.

example, see Figure 4.1. When we draw fatgraphs, we will draw them such that this is

their cyclic ordering.

Definition 4.5. A boundary cycle of a fatgraph Γ is a cycle of consecutive oriented

edges, that is, a cycle of the permutation i ◦ σ.

For example, see Figure 4.2, which has boundary cycles outlined in blue and pink.

4.1.2 Bordered Fatgraphs

We wish to consider a subclass of fatgraphs that arises as the dual of quasi-triangulations.

Definition 4.6. A bordered fatgraph is a fatgraph with an ordering on the boundary

cycles satisfying the following conditions.

• First, there is precisely one univalent vertex in each boundary cycle, called the

tail vertex. The single edge incident to it is called the tail.

• All vertices that are not tail vertices are trivalent.

A bordered fatgraph is n-bordered if it has n boundary cycles.

Figure 4.2 is an example of a twice-bordered fatgraph. In Theorem 5.5, we will

show that it suffices to consider these n-bordered fatgraphs to get a presentation of

Mod(S). To prove this, we will need a generalisation of a bordered fatgraph, where

some edges have been collapsed.

Definition 4.7. A collapsed n-bordered fatgraph is a fatgraph satisfying the conditions

for an n-bordered fatgraph, save that it may have vertices with valency more than three.

Given a collapsed bordered fatgraph, we can define a preferred orientation on the

edges. This will mean the dual graph, described in Section 4.3 is a directed graph, and

in particular is a subset of the fundamental path groupoid. We define this orientation

as follows.
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Definition 4.8. Let Γ be a collapsed n-bordered fatgraph. Suppose e is an (unoriented)

edge of Γ. The preferred orientation of e is the orientation in which we first traverse it

in the following procedure.

Starting at the first tail vertex, follow the first boundary cycle around the graph

until you return to this vertex. Then repeat this for the second through nth tail vertices

in order.

Lemma 4.9. There is at most one fatgraph isomorphism between any two collapsed

bordered fatgraphs that preserves the ordering of the boundary cycles.

Proof. Note the inverse of such a fatgraph morphism also preserves the ordering of the

boundary cycles.

First, we show that the only automorphism of a collapsed bordered fatgraph fixing

the boundary cycle ordering is the identity. Such an automorphism must preserve the

valency of the vertices (as every edge is sent to exactly one edge), so in particular sends

the set of tail vertices to the set of tail vertices.

The ith boundary cycle is a cycle of i ◦ σ. The elements of this cycle are mapped

bijectively to another cycle of i ◦ σ, which must be the same cycle by the preservation

of the ordering on boundary cycles. Then once we find the image of one element in the

cycle, we have determined the images of all the elements in the cycle (as the relationship

of consecutive edges is preserved). Now, the unique tail vertex in this boundary cycle

must be sent to a tail vertex, so in particular is sent to the tail vertex of this boundary

cycle. Thus, the map is the identity on the ith boundary cycle for all i, so is the identity

on the entire fatgraph.

Now, suppose there were two isomorphisms fixing the boundary cycles, φ1 and φ2,

from Γ1 to Γ2. Then φ−1 ◦ ψ : Γ1 → Γ1 is an automorphism that is not the identity, a

contradiction.

We now define a morphism of collapsed bordered fatgraphs as a forest collapse.

Definition 4.10. Let Γ be an n-bordered fatgraph. Let F ⊂ Γ be the union of a

pairwise disjoint set of trees of the graph (a forest), such that F does not contain any

of the tails. The forest collapse of F acts by collapsing each connected component of

F to a vertex.

An example of a forest collapse is shown in Figure 4.3.

Definition 4.11. A morphism of collapsed bordered fatgraphs ψ : Γ1 → Γ2 is a com-

position of forest collapses and boundary cycle-preserving isomorphisms.

We define an equivalence relation on these morphisms as follows.
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Figure 4.3: A morphism of collapsed twice-bordered fatgraphs, collapsing the forest in

red.

Definition 4.12. We say ψ1 : Γ1 → Γ̃1 is equivalent to ψ2 : Γ2 → Γ̃2 if there exist

isomorphisms θ : Γ1 → Γ2 and θ̃ : Γ̃1 → Γ̃2 such that the following diagram commutes.

Γ1 Γ̃1

Γ2 Γ̃2

ψ1

ψ2

θ θ̃

From here, all isomorphisms between collapsed bordered fatgraphs will be boundary

cycle order-preserving isomorphisms. We will say a collapsed bordered fatgraph to mean

an equivalence class of collapsed bordered fatgraphs, up to one of these isomorphisms.

Remark 4.13. We can more generally define a collapsed bordered fatgraph morphism

as a fatgraph morphism preserving the boundary cycle ordering. On equivalence classes

of these fatgraphs, this is equivalent to our definition of these fatgraph morphisms being

forest collapses [God07, Lemma 3].

In the following lemma, we show we can compose (equivalence classes of) morphisms

of collapsed bordered fatgraphs in a well-defined manner.

Let ψ : Γ1 → Γ2 and φ : Γ3 → Γ4 be collapsed bordered fatgraph morphisms,

with Γ2 and Γ3 in the same equivalence class. Then there is a (unique) isomorphism

θ between Γ2 and Γ3. We define the composition of the equivalence classes of these

morphisms, [φ] ◦ [ψ], to be the equivalence class of the composition

Γ1
ψ−−−−→ Γ2

θ−−−−→ Γ3
φ−−−−→ Γ4.

Lemma 4.14. This composition is well-defined.

Proof. We give the case of two equivalent morphisms Γ1 → Γ2, as the case for Γ3 → Γ4

is very similar. Let ψ : Γ1 → Γ2 and ψ̃ : Γ̃1 → Γ̃2 be equivalent morphisms, with

θi : Γi → Γ̃i the unique isomorphisms showing equivalence.
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Suppose ψ : Γ3 → Γ4 with Γ3 and Γ2 isomorphic so composition is well-defined. As

Γ2
∼= Γ̃2, there is a (unique) isomorphism θ̃ : Γ̃2 → Γ3. Then we wish to show that the

following diagram commutes.

Γ1 Γ2 Γ3 Γ4

Γ̃1 Γ̃2 Γ3 Γ4

ψ θ
∼=

φ

ψ̃ θ̃
∼=

φ

θ1
∼= θ2

∼= id id

The rightmost square commutes trivially, and the leftmost commutes as ψ and ψ̃ are

equivalent morphisms. Then as θ̃ is the unique isomorphism Γ̃2 → Γ3, we have θ̃ =

θ ◦ θ−1
2 since this is also an isomorphism between these fatgraphs. Thus, the middle

square commutes, so φ ◦ θ ◦ ψ and φ ◦ θ̃ ◦ ψ̃ are equivalent morphisms.

4.2 Marked bordered fatgraphs

Let Σg,n be the genus g orientable surface with n boundary components, with a fixed

ordering on the boundary components and a marked point on each boundary compo-

nent. We will now view n-bordered fatgraphs as embedded in Σg,n for some g, and

use this to construct a category of these embedded fatgraphs, EFatg,n, with a natural

action of Mod(Σg,n).

Suppose we embed an n-bordered fatgraph as a spine in a surface with n boundary

components, which we will formally define in Definition 4.16. Let the number of vertices

of Γ be V , and the number of edges be E. We can view the surface as a thickened

version of the fatgraph, motivating a definition of the genus of the fatgraph. We can

construct the surface as a neighbourhood of the fatgraph as follows. We thicken each

edge of the fatgraph to a rectangle with four edges, two of which are on the boundary,

and each vertex to a triangle with three edges and three vertices. We can then calculate

2− 2g − n = χ(ΣΓ) = 3V − (3V + 2E) + (V + E) = V − E = χ(Γ).

This motivates the following definition.

Definition 4.15. The genus of an n-bordered fatgraph Γ is the number g such that

χ(Γ) = 2− 2g − n.

We will restrict our attention to the set of (isomorphism classes of) collapsed n-

bordered fatgraphs of genus g, Fatg,n. Then these are precisely the collapsed bordered

fatgraphs that embed into Σg,n as a spine, that is so that the complement of the

embedding is n disjoint contractible pieces.
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4.2. MARKED BORDERED FATGRAPHS

a b a b

(a) A genus one once-bordered fatgraph, Γ.

a b a b(b) Marking 1 of Γ.

a b a b

(c) Marking 2 of Γ.

Figure 4.4: Two different markings of the same once-bordered fatgraph.

Definition 4.16. A marking of a collapsed bordered fatgraph Γ ∈ Fatg,n is a boundary-

fixing isotopy class of embeddings p of Γ in Σg,n satisfying the following conditions.

First, the embedding sends the ith tail vertex to the marked point on the ith boundary

component. Second, the embedding sends the remainder of the graph to the interior of

Σg,n. Finally, the complement of the image of a representative of p is a set of n disjoint

contractible pieces.

A marked bordered fatgraph is (Γ, φ) where Γ is a bordered fatgraph and φ is a

marking of Γ.

Figure 4.4 shows two different markings of the same once-bordered fatgraph.

Note that Mod(Σg,n) acts on marked collapsed bordered fatgraphs by composition

with the marking. This fixes the bordered fatgraph. (The markings are defined up

to isotopy, as is Mod(Σg,n), so this action is well-defined.) The morphisms of these

objects are defined as follows.

Definition 4.17. A morphism of marked collapsed bordered fatgraphs is defined as

follows.

Let (Γ1, p1) be a marked collapsed bordered fatgraph. Let [φ] : Γ1 → Γ2 be a

morphism of collapsed bordered fatgraphs. Let φ be a representative of this morphism

as a forest collapse. Then the associated marked collapsed bordered fatgraph morphism

φ̃ : (Γ1, p1) → (Γ2, p2) is defined as taking Γ1 to Γ2 by φ, and sending the marking p1

to the marking p2 such that

Γ1
φ−→ Γ2

p2−→ Σg,n
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4.3. DUALS AND THE FUNDAMENTAL PATH GROUPOID

(a) Before the forest collapse. (b) After the forest collapse.

Figure 4.5: A morphism of marked bordered fatgraphs, collapsing the forest in red.

is homotopy equivalent to p1.

Figure 4.5 shows an example.

We now define the marked bordered fatgraph category for Σg,n.

Definition 4.18. The marked bordered fatgraph category for Σg,n, EFatg,n, is defined

as follows. The objects of this category are (isomorphism classes) of n-bordered genus g

fatgraphs with markings (up to isotopy). The morphisms are marked bordered fatgraph

morphisms, as defined above.

We have shown composition of these morphisms is well-defined on the bordered

fatgraphs, and as the action on the marking is entirely characterised by the action

on the bordered fatgraph, composition is well-defined on marked bordered fatgraphs.

Thus we have the following result.

Lemma 4.19. The category EFatg,n is well-defined.

In Chapter 5 we will further consider this category and the action of Mod(Σg,n) on

it. This will allow us to construct a presentation of Mod(Σg,n) generated by moves on

a fatgraph. However, we will first discuss the dual of a marked bordered fatgraph, as

we will need some results on it to convert the fatgraph presentation to one in chord

slides.

4.3 Duals and the fundamental path groupoid

Viewed as an embedded graph in Σg,n, a marked n-bordered fatgraph admits a dual

graph. Before we discuss the complex we get from the marked bordered fatgraph

category, we prove some results involving this dual. This will give us a canonical way

of picking a generating set for the fundamental path groupoid from each fatgraph, and

a simple proof that Mod(Σg,n) acts freely on marked bordered fatgraphs.
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4.3. DUALS AND THE FUNDAMENTAL PATH GROUPOID

Figure 4.6: The orientation of the dual edges relative to the orientation of the graph

edges. The black edge is in the graph and the green edge is its dual.

Definition 4.20. Let G be a directed graph embedded in a surface S, such that S−G
is a disjoint union of contractible components. Then the dual graph of G is the graph

defined as follows. For each component of the complement (a face of the graph), place

a vertex in this component. For each edge e of G, we add an edge between the vertices

of the faces that e separates such that this edge passes once through e and through no

other edges of G, and this edge has the orientation relative to e shown in Figure 4.6.

Now, we consider the dual graph of a marked bordered fatgraph Γ. We view Γ as

embedded in Σg,n, with its edges equipped with their preferred orientation (as defined

in Definition 4.8). This allows us to easily distinguish different markings.

For example, Figure 4.7 shows the duals of the two markings in Figure 4.4. We will

use these duals to demonstrate that the markings are not the same. Let a and b be

the generators of the fundamental group as drawn in Figure 4.7. Around the boundary

cycle, the order of the edges is grey, blue, red, purple then green. Then the marking in

Figure 4.4b has dual edges (in this same order) b−1aba−1, ab−1aba−1, aba−1, ba−1 and

a−1. In contrast, the dual edges of the marking in Figure 4.4c are b−1aba−1, aba−1,

ba−1, a−1 and b−1.

4.3.1 Characterising the dual

Let (Γ, p) be a marked n-bordered fatgraph. Recall that each vertex in an n-bordered

fatgraph is either univalent or trivalent.

As this fatgraph has n boundary components, which give n components in its com-

plement in Σg,n, its dual is a graph with n vertices. Each component of the complement

of Γ contains exactly one boundary component. Thus, without loss of generality, we

may place each vertex of the dual graph on a boundary component. For example,

Figure 4.8 shows the dual of a once-bordered fatgraph which has one vertex, while

Figure 4.9 shows the dual of a twice-bordered fatgraph which has two vertices.

As all the faces of the surface from the original fatgraph are contractible, the dual

faces are contractible or contain a boundary component. The dual faces come in two
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a b a b

(a) The dual of the marking in Figure 4.4b.

a b a b

(b) The dual of the marking in Figure 4.4c.

Figure 4.7: The duals of the two markings in Figure 4.4.

Figure 4.8: On the right, a quasi-triangulation of Σ1,1 from taking the dual of the

marked once-bordered fatgraph on the left. Preferred orientations of edges are marked

with arrows, giving us the illustrated orientations of the edges of the dual graph.
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Figure 4.9: Top: a marking of a twice-bordered genus one fatgraph. Bottom: a quasi-

triangulation of Σ1,2 from taking the dual of this fatgraph. Note the dual has two

vertices and the resulting faces are all triangles, as we expect. We have not marked

orientations.
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types. First, for every trivalent vertex we have a contractible triangle. Second, for each

tail vertex we have a monogon containing one boundary component.

We will use the term quasi-triangulation of Σg,n to refer to a graph cutting Σg,n into

(a) contractible triangles and (b) monogons containing one boundary component that

deformation retract to the boundary. The dual graph of a marked bordered fatgraph

in Σg,n is a quasi-triangulation.

We already have that Σg,n is equipped with n marked points. Let {pi} be an addi-

tional n distinct marked points, the dual points, with one on each boundary component.

Note that for any marking, there is one dual point in each of the n faces of the surface.

When we take the dual, let the point from the ith face of the marking be the dual point

on the ith boundary component.

Definition 4.21. The groupoid Π1(Σg,n, {pi}) is the full subgroupoid of the funda-

mental path groupoid consisting of paths f such that both endpoints of f are in {pi}.

Remark 4.22. As the duals of the edges are each homotopy classes of paths between

the n marked dual points, we view the dual edges of the graph as elements of the

fundamental path groupoid.

Definition 4.23. Let (Γ, p) be a marked bordered fatgraph. The dual marking of (Γ, p)

is a map Π : ξor(Γ)→ Π1(Σg,n, {pi}) taking each oriented edge, viewed as embedded in

Σg,n, to the edge dual to it in the dual graph, viewed as an element of the fundamental

path groupoid.

We give some properties of the map Π : ξor(Γ)→ Π1(Σg,n, {pi}).

Lemma 4.24. A dual marking Π : ξor(Γ) → Π1(Σg,n, {pi}) satisfies the following

properties.

1. (orientation respecting) For e ∈ ξor(Γ), Π(e)Π(e) is the identity at the initial

point of Π(e).

2. (face contractability) For each trivalent vertex of Γ, v, with e ∈ ξor(Γ) such that

v(e) = v, Π(e)Π(σ(e))Π(σ2(e)) is the identity at the initial point of Π(e).

3. (fundamental path groupoid generation) The image of Π generates Π1(Σg,n, {pi}).

4. (tail-fixing) The map Π sends the ith tail to the homotopy class of the ith boundary

component based at the ith marked dual point.

Proof. The first property follows since reversing the orientation of an edge reverses the

orientation of the edge dual to it.

The second condition is equivalent to saying that the duals of the edges incident

to v bound a contractible face in the surface. As all the faces of the surface from the
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original fatgraph are contractible, the dual faces are contractible or contain a boundary

component. By construction, the faces containing a boundary component are precisely

the duals of the tail vertices, so since v is not a tail vertex, we have the result.

For the third condition, we wish to show that Π(ξor(Γ)) generates Π1(Σg,n, {pi}).
All the triangular faces of the quasi-triangulation are contractible, so any path through

one of these is homotopic to a path along the boundary of the face. Although the

monogons are not contractible, any path through a monogon is homotopic to a path

entering and leaving the dual point on its boundary. The piece of this path within the

monogon is then homotopic to a path making some number of circuits around the edge

of the monogon.

For the final property, we have required that any marking sends all the graph but

the vertices of the tails to the interior of the surface. Now, the dual of the ith tail is a

homotopy class of paths characterised by the following conditions.

1. It passes through the ith tail.

2. It intersects no other edges of graph.

3. It begins and ends at a fixed point on the ith boundary component.

As the ith boundary component satisfies these conditions, the dual edge of the tail is

the homotopy class of this boundary component.

Remark 4.25. As Π is injective, we identify an edge e ∈ ξor(Γ) with Π(e).

By considering the action of Mod(Σg,n) on the dual of the marking, we have the

following result.

Proposition 4.26. The group Mod(Σg,n) acts freely on marked genus g n-bordered

fatgraphs.

Proof. Let φ : Σg,n → Σg,n be a mapping class, and Γ a marked genus g n-bordered

fatgraph. Suppose that φ fixes the dual of Γ, up to homotopy, as a set. We wish to

show that φ is the identity.

As the isotopy class φ fixes the boundary components pointwise, φ has some repre-

sentative that fixes a neighbourhood of the boundary components. We assume φ fixes

each pointwise of the monogons with one boundary component in the dual pointwise.

In particular, φ fixes the duals of each of the tails pointwise.

Let e be an oriented edge in the dual graph that is fixed by φ, where we furthermore

know that φ sends one of the faces e borders to itself. Let this face be U , and the other

face e borders be L.

As φ is a homeomorphism and sends the set of edges to itself, it sends each face

from the quasi-triangulation to another face. Since φ is continuous, it sends L to either
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U or L (since the image of L must have the image of e, which is e, as one of its edges).

Then as φ is injective, it sends L to L. Furthermore, it fixes the orientation of L since

e is sent to itself as an oriented edge. As L is sent to itself, up to orientation, and e

is sent to itself, the edge following e around the boundary of L is sent to itself as an

oriented edge. Thus the edges of L are fixed. Now, φ|L is a homeomorphism of L that

is isotopic to the identity on the boundary. Thus by the Alexander trick (Lemma 2.11),

φ is isotopic to the identity on L.

By induction, φ is isotopic to the identity on all faces. We are inducting in from the

tails of the fatgraph. At each step, we take a edge where we know φ fixes its dual edge

and the dual of one of its adjacent vertices. By the inductive step, we have that φ fixes

the dual of its other adjacent vertex, as well as the duals of the other edges incident

to that vertex. As the fatgraph is connected, when this terminates we will have shown

that φ fixes the duals of the whole graph.

Thus, φ is isotopic to the identity on all faces of the quasi-triangulation, so is the

identity in the mapping class group.

4.3.2 Adding a boundary component to a surface

In [Ben10], Bene works with marked once-bordered fatgraphs (which he calls bordered

fatgraphs). To give a feel for how these differ from our bordered fatgraphs, we define

a local move that takes a marked n-bordered fatgraph to a marked (n + 1)-bordered

fatgraph. This move will add a boundary cycle and one tail within the boundary cycle.

The move corresponds to adding a boundary component at a given location on the

surface. We illustrate the move in Figures 4.10-4.12.

If we fix the subgraph corresponding to this new boundary cycle to the one in

Figure 4.10, there are six choices in how we add this subgraph to the fatgraph. The

vertex we add this subgraph to is fixed, as the new boundary component is in a certain

face of the dual marking that corresponds to a certain vertex of the fatgraph.

To add the subgraph, we first pick where out of three options we will add it in the

cyclic ordering of edges around the vertex, as shown in Figure 4.11. This creates a

four-valent vertex, which we can expand in two distinct ways, as in Figure 4.12. For

an illustration of this, see Figure 5.1.

4.3.3 Picking a minimal generating set for Π1(Σg,n, {pi})

One sees easily that a dual marking determines a generating set for Π1(Σg,n, {pi}). In

this section, we give a method to canonically choose a minimal generating subset. This

minimal set of generators will later determine a canonical form of the graph as a chord

diagram (Theorem 6.18).

First, we give the number of vertices and edges of any n-bordered genus g fatgraph.
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(a) The subgraph. (b) The dual of the subgraph.

Figure 4.10: A subgraph corresponding to adding a puncture.

(a) Option 1 (b) Option 2 (c) Option 3

Figure 4.11: The three options in the cyclic ordering around the vertex where we can

glue on the subgraph.

Lemma 4.27. Let Γ be an n-bordered genus g fatgraph. Then Γ has V vertices and E

edges, where

V = 4n+ 4g − 4 and

E = 6g + 5n− 6.

Proof. From the definition of genus (Definition 4.15), V −E = χ(Γ) = 2−2g−n. Also,

there are precisely n univalent vertices, and V − n trivalent ones. Thus E = 3V−2n
2 .

The results follow.

Now, we give a procedure for picking a minimal generating set for the fundamental

path groupoid, extending [ABP09, §3].

Definition 4.28. Let Γ be an n-bordered fatgraph. The greedy maximal tree of Γ, TΓ,

is the tree in Γ defined as follows.

Start at the first tail vertex. From this vertex, follow the first boundary cycle. At

each edge e, if {e}∪TΓ does not contain a cycle, add e to TΓ. Then repeat this process
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(a) Option 1 (b) Option 2 (c) The dual of option 1

Figure 4.12: The two ways of expanding the four-valent vertex from Figure 4.11.

for the second tail, and then the third, and so on. Now, remove all tails but the first

from TΓ.

Remark 4.29. Before we remove the tails, TΓ is a maximal tree in G, so is connected.

As all the tails were leaves of TΓ, TΓ is still connected after removing tails, and contains

an edge touching every vertex except for the tail vertices.

For p a marking of Γ, let X(Γ,p) be the set of duals of the edges of Γ not in TΓ.

Proposition 4.30. The subset of the dual edges, X(Γ,p), is a minimal generating set

for the fundamental path groupoid.

Proof. First, note that the fundamental group of Σg,n is the free group on 2g + n − 1

generators. One choice of minimal generating set for this group is a generating set

for the fundamental group at the first basepoint, together with edges from the first

basepoint to each other basepoint. This is of size (2g+ n− 1) + (n− 1) = 2g+ 2n− 2.

Now, the edge set of a maximal tree in Γ is of size V −1 = 4n+4g−5 (Lemma 4.27).

Let |ET | be the number of edges in TΓ. As n − 1 tails were removed from a maximal

tree to make TΓ, we have

|ET | = (4n+ 4g − 5)− (n− 1) = 3n+ 4g − 4.

Then X(Γ,p) contains all edges but those in TΓ, so (from Lemma 4.27)

|X(Γ,p)| = E − |ET | = 2g + 2n− 2.

As X(Γ,p) is the size of a minimal generating set for Π1(Σg,n, {pi}), it suffices to show

that X(Γ,p) in fact generates this groupoid. Viewing the dual edges of G as elements

of Π1(Σg,n, {pi}), as Π(ξor(Γ)) generates Π1(Σg,n, {pi}), it suffices to show that X(Γ,p)
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generates the dual edges of Γ. To show this it suffices to show that X(Γ,p) generates

the dual edges of TΓ.

We show this by induction. View TΓ as being rooted at the first tail. Let e be a

leaf of TΓ. As the only tail in TΓ is the first one, one end of e is at a vertex which has

two non-tree edges ending at it. Let these edges, whose duals are in X(Γ,p), be x1 and

x2. Recall we identify an edge of the graph with its dual. Now, by face-contractability,

for some indexing of x1 and x2, ex1x2 is the identity at the starting point of the dual

of e. Therefore e = x−1
2 x−1

1 . Thus, e is in the set generated by XG.

By induction, all of TΓ is in the set, as required.

Thus a marked bordered fatgraph Γ has an associated generating set, X(Γ,p), for

Π1(Σg,n, {pi}). For example, Figure 4.13a shows Γ− TΓ for the fatgraph in Figure 4.9,

which is the edges whose dual edges form the generating set. Figure 4.13b shows X(Γ,p)

for this marked fatgraph, the dual edges of Γ− TΓ.

Note that acting by Mod(Σg,n) on the marked fatgraph does not alter which edges

correspond to generators. Consider the action of Mod(Σg,n) on minimal generating sets

of the fundamental path groupoid. Then this action is the same as that induced by

the action of Mod(Σg,n) on marked n-bordered fatgraphs. This equivalence is shown

in the following commutative diagram for φ ∈Mod(Σg,n).

(Γ, p)

X(Γ,p) Π1(Σg,n, {pi})

(Γ, φ ◦ p) X(Γ,φ◦p)

Π1(Σg,n, {pi})

φ

inclusion

inclusion

φ
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Boundary 1

Boundary 2

Boundary 1

Boundary 2

(a) The subgraph of the marked bordered fat-

graph Γ in Figure 4.9 that is Γ− TΓ.Boundary 1

Boundary 2

Boundary 1

Boundary 2

(b) The dual edges of a, XΓ.

Figure 4.13: The canonical generating set for Π1 from Figure 4.9.
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Chapter 5

A presentation of the mapping

class group in terms of fatgraphs

We have a natural action of Mod(Σg,n) on EFatg,n, and in this chapter will derive from

it an infinite presentation of the mapping class group (Corollary 5.12). The generators

of this presentation will be moves on (unmarked) n-bordered fatgraphs.

Having defined a marked bordered fatgraph, we now define the marked bordered

fatgraph complex. This is the classifying space of EFatg,n (Definition 4.18). Similarly

to Chapter 3, we will examine the action of Mod(Σg,n) on this complex to derive a

presentation whose generators are paths in the complex.

5.1 The marked bordered fatgraph complex

Definition 5.1. Let C be a category. The classifying space |C| of C is the geometric

realisation of the nerve of C.

As a CW-complex, |C| has one vertex for every object of C. If A, B are objects,

there is an edge between A and B for every morphism A→ B.

Now we describe the higher dimensional faces. Suppose f : A→ B and g : B → C

are composable morphisms. For every such pair, there is a face [A,B,C] corresponding

to the following triangle.

A B

C

f

g ◦ f
g

Similarly, suppose f0, . . . , fn are morphisms such that fn◦· · ·◦f1◦f0 is well-defined.

Then there is an n-simplex with edges (in order) f0, f1, . . . , fn, fn ◦ · · · ◦ f0.
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Figure 5.1: A Whitehead move.

Note that as defined, we have many degenerate simplices. For example [f, id, f ] is

a 2-simplex for any f . As an abstract collection of simplices rather than a complex,

this is a simplicial set. The category theoretic concepts in Definition 5.1 are discussed

formally in [Rez18]. In particular, see Remark 3.3 for a discussion of the nerve as we

use it here.

From Godin and Harer, we have the following theorem on the homotopy class of

|EFatg,n|.

Theorem 5.2 ([God07; Har86]). The complex |EFatg,n| is homotopy equivalent to

Techmüller space, which is homeomorphic to a ball. Therefore its 2-skeleton is connected

and simply connected.

Since we wish to consider paths between vertices in this complex, we will only

consider its 2-skeleton. We will show that it suffices to consider vertices corresponding

to fatgraphs with all vertices trivalent or univalent (Theorem 5.5).

First, we define an elementary move on a bordered fatgraph.

Definition 5.3. Let Γ be a bordered fatgraph. Let e be a non-tail edge of Γ. The

Whitehead move on e, W (e), is the collapse of e, forming a four-valent vertex, followed

by the expansion of this vertex into the unique distinct edge.

Figure 5.1 depicts an example of a Whitehead move. By performing this move in

the surface, a Whitehead move induces a map on the marking. Thus W (e) takes a

marked bordered fatgraph (Γ, p) to some marking of a (generally distinct) bordered

fatgraph (Γ′, p′). Note that Whitehead moves do not affect the homotopy type of the

graph in Σg,n. Thus for e′ ∈ ξor(Γ) with e′ 6= e, W (e) preserves the dual edge of e′.

Definition 5.4. The marked bordered fatgraph complex is the complex with the fol-

lowing cell structure.

The vertices of this complex are (uncollapsed) marked genus g n-bordered fatgraphs.

The edges of this complex are Whitehead moves. The faces are from the following two

relations. First, performing Whitehead moves on two non-adjacent edges commutes.

Second, if e and f are adjacent edges, performing Whitehead moves on e then f then

e′ then f ′ then e′′, as labelled in Figure 5.2b, is trivial.

Figure 5.2 depicts the faces associated to these relations.
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e e'

e'

e''

e''

f
f

f'

f'

f''

(a) Moves on non-adjacent edges commute.

e e'

e'

e''

e''

f
f

f'

f'

f''

(b) The pentagon relation for adjacent edges.

Figure 5.2: The two types of faces in Theorem 5.5.

Theorem 5.5 (p.11, [BKP09]). The 2-skeleton of |EFatg,n| is homotopy equivalent to

the marked bordered fatgraph complex. The homeomorphism commutes with the action

of Mod(Σg,n).

Remark 5.6. The marked bordered fatgraph complex is constructed by taking the

Poincaré dual of |EFatg,n|. The two cells of this complex correspond to collapsed

bordered fatgraphs formed by collapsing two edges of a bordered fatgraph. The two

types of cell correspond to whether or not the two edges are adjacent. Figure 5.3 shows

how the faces correspond to these collapsed bordered fatgraphs.

Notation 5.7. From here, |EFatg,n| refers to the marked bordered fatgraph complex.
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(a) Non-adjacent edges.

(b) Adjacent edges.

Figure 5.3: The two types of face from taking the Poincaré dual to |EFatg,n|. As all

of the triangles are 2-cells since they correspond to composition of three morphisms.

Remark 5.8. As shown in Proposition 4.26, the natural action of Mod(Σg,n) on

EFatg,n is free on marked bordered fatgraphs. Thus by Theorem 5.5, there is an

induced Mod(Σg,n)-action on the marked bordered fatgraph complex that is free on

the set of vertices. As the action is free, a mapping class is uniquely determined by the

image of any vertex in |EFatg,n| under its action.

Remark 5.9. A Whitehead move on e acts on the dual marking by removing the

diagonal of the quadrilateral corresponding to the two vertices on each end of e, then
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Figure 5.4: The effect of a Whitehead move on the dual.

adding the other diagonal of this quadrilateral. This is shown in Figure 5.4 for the dual

of the subgraphs in Figure 5.1.

Consider the fundamental path groupoid of this complex based at the vertices in

the cell structure. This will give us a groupoid that induces an infinite presentation of

Mod(Σg,n).

Definition 5.10. The fundamental path groupoid of EFatg,n, Π1(EFatg,n), is the

full subgroupoid of the fundamental path groupoid of the marked bordered fatgraph

complex whose elements start and end at vertices of the complex.

Proposition 5.11. The following defines an infinite presentation of Π1(EFatg,n). Let

{Γ} be the (finite) set of n-bordered genus g fatgraphs. The generators of this groupoid

are the Whitehead moves on {Γ}, starting at a fixed marking. There are three types of

relations:

1. Involution: Performing a Whitehead move twice on the same edge is the identity.

2. Commutativity: The square face. If e and f are non-adjacent edges,

W (e)W (f) = W (f)W (e).

3. Pentagon relation: The pentagonal face. If e and f are adjacent edges,

W (e)W (f)W (e′)W (f ′)W (e′′) = id .

Proof. The fundamental path groupoid is generated by the edges of this complex. As

the complex is simply-connected, two paths in the complex are the same in the groupoid

if and only if they start and end at the same points. Fix a vertex (that is, a marked

bordered fatgraph). Two words in Whitehead moves beginning at this vertex are the

same path if and only if they differ by faces in the complex, or by involution. That is,

they are the same path if and only if they differ by the relations described above.
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Note that to determine whether two paths are the same, we only need to know

the fatgraph they both start at, and not its marking. Thus a sequence of Whitehead

moves that starts and ends at the same unmarked bordered fatgraph is trivial on the

marking if and only if it is equal to a composition of the involution, commutativity and

pentagon relations. Recall that an element of Mod(Σg,n) is determined by its action of

the marking of a bordered fatgraph.

Corollary 5.12. There is an infinite presentation of Mod(Σg,n), generated by White-

head moves. Fix some n-bordered (unmarked) fatgraph Γ. The generators are all se-

quences of Whitehead moves that start and end at Γ. The relations are the involution,

commutativity and pentagon relations described in Proposition 5.11.

Composition of sequences of Whitehead moves does not correspond to composition

of the mapping classes they each represent. We show this as follows. Let (W ) be a

sequence of Whitehead moves, Γ a fatgraph, and p1 and p2 two distinct markings of

Γ. In general, (W ) considered as starting at (Γ, p1) corresponds to a different mapping

class to (W ) starting at (Γ, p2).

For example, consider Figure 4.4 from Chapter 4. Here we display two different

markings of the same fatgraph. If we perform a Whitehead move on the red edge, the

result is again the same bordered fatgraph, so we have an associated mapping class.

Figure 5.5 shows the result of this Whitehead move. To show the isomorphism between

the graphs, the embedded fatgraphs have been recoloured so their edges have the same

colours as in Figure 4.4a.

By inspecting the dual of the original markings in Figure 4.7, and comparing it to the

duals after the Whitehead move in Figure 5.5, we can see that performing a Whitehead

move on the red edge of the first marking gives us the homeomorphism acting on the

fundamental group by a 7→ a, b 7→ a−1b. However, performing a Whitehead move on

the red edge of the second marking gives us a 7→ ab, b 7→ b, which is a distinct mapping

class.

5.2 Whitehead moves and the generators of the funda-

mental path groupoid

We wish to understand how the Whitehead moves alter the canonical generating set

for the fundamental path groupoid of S described in Section 4.3.3. This will allow

us to write the Whitehead moves in terms of chord slides in Chapter 6. In all of the

figures in this section, we show the subgraph of Γ that is some edge e and the four

edges adjacent to it. These adjacent edges may be tails or not. We show both vertices

they are incident to, but not any other edges incident to those vertices.
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baba
(a) After a Whitehead move on the red

edge of Figure 4.4b.

baba

(b) The dual of a.

baba

(c) After a Whitehead move on the red edge

of Figure 4.4c.

baba

(d) The dual of c.

Figure 5.5: Performing the same Whitehead move on different markings gives a different

mapping class.
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Before we give the relevant theorem, we pause for a moment to discuss the cases

that determine the effect of W (e).

The effect ofW (e) on the generating set is determined by which of the edges adjacent

to it are generators before and after the move. Let d through h be the duals of the

edges with their preferred orientation (which we identify with the edges themselves) as

labelled in Figure 5.6, where W (e) takes the subgraph on the left to the subgraph on

the right. We identify the edges f through h with the edges in the image since their

duals and orientations do not change under the Whitehead move. The unlabelled edges

have no effect on the result. Let u through z be the vertices labelled in Figure 5.6.

We identify w, x, y and z with their images under the Whitehead move. Without loss

of generality, we assume that the sector below e is the first one traversed. This is the

sector that involves edges e and f before the Whitehead move.

The move W (e) fixes the homotopy class of the graph, and fixes the homotopy class

of all edges of the graph aside from e itself. Furthermore, as we have assumed that

the sector below e is the first one traversed, when we traverse e for the first time we

have no edges incident to v in the maximal tree. Thus we will add e to the tree, since

this will not create a loop. As e is never a generator, the edges that are generators

before the Whitehead move have the same dual before and after the move. Thus the

effect of the Whitehead move on the generators is restricted to changing which edges

are generators.

We build the maximal tree by traversing the boundary cycles of the graph. Whether

or not an edge e is a generator is determined by, when we traverse it for the first time,

there is already a path between v(e) and v(e), which are the two vertices it connects.

If there is not, we greedily add it to the tree. If there is, adding it to the tree would

create a loop, so it is a generator. The effect of the Whitehead move is to alter when

in the boundary cycle traversal the edge e or its image d connects the vertices u and v.

Whether or not an edge is a generator before and after the Whitehead move depends

on the order in which the four sectors around this edge are traversed, and whether or not

there is already a path in the maximal tree between two vertices when we traverse the

depicted edge between them. Recall that the sector below e is the first one traversed.

We assign the following numbers to the anticlockwise order in which the four sectors

are traversed:

1: 1234

2: 1243

3: 1432

4: 1342

5: 1324
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6: 1423.

The sector traversal orders are illustrated in Figure 5.7. Each of the pairs of numbers

corresponds to a sector order that differs by swapping 3 and 4. A tick on an edge

means it is a generator, and a question mark means it may be a generator depending

on other parts of the graph. Edges with neither of these must be in the maximal tree.

The preferred orientation of each edge is indicated with an arrow.

Let the first vertex in sector 2 be q. This first vertex is w in sector orders 1 and

2, y in sector orders 3 and 4, and x in sector orders 5 and 6. We define three types of

graphs depending on when we form paths in the maximal tree between z and q. Note

that the vertex z is added to the maximal tree when we traverse sector 1 both before

and after W (e). These types are as follows.

Type a: after W (e), a path is formed between z and q in the maximal tree before

we traverse the first edge of sector 2. In this type, before the Whitehead move the first

edge of sector 2 will be a generator as adding it to the maximal tree would create a

loop.

Type b: after W (e), there is not a path between z and q in the maximal tree before

we traverse the first edge of sector 2. However, before we traverse the first edge of

sector 3, there is such a path.

Type c: after W (e), there is no path between z and q in the maximal tree before

we traverse the first edge of sector 3.

As d joins z and q after we have traversed sector 1, d will be a generator after W (e)

in types b and c, but not type a.

In type b, we label an additional edge. Consider the path between u and q in the

maximal tree after W (e), which is formed in the maximal tree before we traverse sector

3. There is a unique path between q and z in the maximal tree that does not repeat

any edges. Let h be the edge in this path such that, for all other edges p in the path,

h (as an unoriented edge) is traversed in the boundary cycles after p (as an unoriented

edge). Note that h is the last edge added to this path as we form the maximal tree.

We will discuss the restrictions each type places on the generators more thoroughly

in the proof of Theorem 5.13. In the one boundary case, as in [ABP09, §3.1], there

is only one boundary cycle, so the point that the maximal tree connects the adjacent

edges does not vary. Thus, for a given sector ordering, only one type of the types s a,

b and c is possible. This gives only six cases of sector orderings and types.

With n-bordered fatgraphs we must consider eighteen cases of sector orderings and

types, up to inverses, though many of these have the same effect. We enumerate these

in Figure 5.7, which shows the order in which the four sectors are traversed, and which

edges adjacent to e may be generators before and after the Whitehead move. Each case

in this figure shows (on the left) e and the four edges adjacent to it, and then (on the

right) the result of the Whitehead move. The number of the case is the sector order
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f

gh e
d

f

gh

u v

w

y

z

x

Figure 5.6: Labelling the duals of the edges involved in the Whitehead move.

and the letter is the type. We group them as we will show they have the same effects

on the generating set, up to orientation of d.

Theorem 5.13. Performing a Whitehead move on Γ has the following effect on the

(unordered) canonical generating set for the fundamental path groupoid, XΓ, depending

on which of the cases it falls into.

1. Cases 1, 2, 3b, 4b, 5c and 6c have no effect.

2. Cases 3a and 4a replace c with d.

3. Cases 5a and 6a replace b with d.

4. Cases 5b and 6b replace h with d.

Proof. A Whitehead move has no effect on the graph up to homotopy, so it does not

change the dual marking of any edges except the one it occurs on. It can only change

the generating set by altering which edges are generators. It does this by altering

which paths between vertices are formed first, which in turn changes which edges are

incorporated into the maximal tree. Let p and r be two paths between u and v in the

maximal tree that are disjoint aside from at u and v. Suppose that p is the first path

between u and v formed in the maximal tree before the Whitehead move, but after the

Whitehead move, r is the first path formed. Then we have the following effect on the

generators. Before the move, the last edge to be added to r was a generator. After it,

the last edge to be added to p is a generator.

Note that the types a, b and c contain information about the order relative to the

sectors in which that we create the first path between q and z that does not use e. As

this path does not use e, it is invariant under the Whitehead move.

We can see the cases 1 and 2 are trivial as the move does not alter the order of

connections between vertices. After traversing 2, either before or after the Whitehead

move, we have a path in the maximal tree between u and all vertices adjacent to e aside

from y. Once we traverse sector 3, we create a path from u to y.

For cases 3a and 4a, we have q = y. Now, before the Whitehead move, c is a

generator. This is as, since this graph is type a, there is a path from y to z in the

maximal tree before we traverse the unoriented edge c. Adding c to the maximal tree
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Figure 5.7: The twelve possible cases of Whitehead moves.

would then form a loop, since when we traversed sector 1 we added a path between z

and u. In the image, as there is a path from q to z before we traverse sector 2, by the

same reasoning d must be a generator. However, c is not a generator, as traversing for

the first time (in sector 2) does not connect q and z. Thus the this move changes the

path between y and z in the maximal tree such that we form a loop in the maximal tree

when traversing d rather than c. Thus this Whitehead move takes c to d. It modifies

no other loops in the graph since all other relative orders of connection remain fixed.

For cases 3b and 4b, as the edges adjacent to e are where q and z connect first,

neither c nor d creates a loop. Furthermore, the path between q and z that is formed

before the Whitehead move by c and d is still created when we traverse sector 2. Thus

we have not altered the order of path creation, so the generating set is unchanged.

Cases 3c and 4c are impossible since there is a path from y to z that does not use

e as soon as we traverse sector 2 (which is before sector 3).

For cases 5a and 6a, similarly to in cases 3a and 4a, there is a path from x to z

before we traverse sector 2. Before the Whitehead move, adding b to the maximal tree
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would create a loop since it is the last edge in a second path between x and z. After

the Whitehead move, the last edge traversed in the path between x and z through b is

d. Thus b is replaced by d.

For cases 5b and 6b, we form a path between x and z after we traverse sector 2 but

before we traverse sector 3. The first path formed between x and z is through e. Let

h be the last edge traversed in this second path. By the reasoning at the beginning of

this proof, before the Whitehead move, h is a generator as adding it to the maximal

tree would form a loop. After the Whitehead move, however, h is not a generator. This

is as we do not connect x and z through the subgraph pictured until we traverse d in

sector 3. Thus the path through h occurs before the path in our subgraph. The relative

order of traversing paths does not change under the Whitehead move for paths that do

not pass through the vertices of the edge we perform the Whitehead move on. Before

the Whitehead move, the path through h was the first path between x and z of all the

paths that did not go through e. Thus after the Whitehead move, the path through

h is the first path between x and z. The effect of the Whitehead move is to remove

h as a generator and replace it with d, since the path through e or d is the first path

between x and z before the Whitehead move but not the first path after the move.

Finally, for cases 5c and 6c, there are no connections between x and z before sector

3 aside from that at e. Thus no change occurs. As d is traversed before the images of

any other paths, we do not alter the order of the connections between x and z.

Note that one can express d in terms of b and c by the orientability and vertex

compatability conditions to explicitly find the action on the generating set for all cases

except 5b and 6b.
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Chapter 6

Converting the fatgraph

presentation to chord slides

In this chapter, we will develop a presentation of Mod(Σg,n) whose generators are

chord slides. This presentation extends the work of Bene [Ben10] from surfaces with

connected boundary to surfaces with disjoint boundary. As noted in Chapter 1, one

could potentially use such a presentation to compute invariants in bordered Heegaard

Floer homology.

We have a presentation of Π1(EFatg,n) whose generating set is Whitehead moves, as

discussed in Chapter 5. This presentation gives us an infinite presentation of Mod(Σg,n)

with the generating set also being sequences of Whitehead moves.

In this chapter, we will define a subclass of marked n-bordered fatgraphs, the chord

diagrams. We will define a chord diagram complex Chordbg,n, and show that we have a

fully faithful functor Π1(EFatg,n)→ Π1(Chordbg,n) (Proposition 6.11). The image of a

marked bordered fatgraph Γ under this map is uniquely determined by the associated

canonical generating set for the fundamental path groupoid of Σg,n (Theorem 6.18). We

will use this result to show that the images of Whitehead moves in Π1(EFatbg,n) under

this functor are sequences of chord slides (a corollary of Theorem 6.20). Thus, we can

translate our presentation of Mod(Σg,n) with Whitehead move generators to one with

chord slide generators (Corollary 6.22). A potential application of this is the ability to

compute Heegaard Floer invariants for a 3-manifold presented as an open book with

disconnected binding. Computing these invariants does not require the relations of the

presentation.

We describe a finite but unwieldy relation set for the presentation. We then give

a simple candidate set of generating relations between chord slides, which one could

potentially show generates all the relations by checking a finite number of cases that

we did not have time to examine. Finally, we will verify that this generating set of

relations gives us a correct presentation of Mod(Σ0,2). Note that the work in [Ben10]
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Figure 6.1: An example of a chord diagram. The core is drawn in black, the chords in

red and the tails in green.

does not apply to this case as n > 1.

Comparing the results here to those in [Ben10], while many of our proofs follow

the same ideas, the proof of Theorem 6.20 is substantially more involved. Many other

results involve checking substantially more cases than in [Ben10], as our cases in The-

orem 5.13 have effects that depend on global properties of the graph whereas all argu-

ments are local in Bene’s work.

6.1 A functor from fatgraphs to chord diagram

6.1.1 Chord diagrams

Definition 6.1. A chord diagram is an immersed graph in the plane, constructed as

follows. First, take the segment [0, k] on the x-axis in the plane, which we call the core.

Each integer point (a, 0) on the core is a vertex of the graph.

For every vertex (a, 0) with a > 0, there is exactly one immersed line segment in

the graph with (a, 0) as one of its endpoints. This line segment has its other endpoint

either at another integer point on the core, in which case it is called a chord, or at

(a, 1), in which case it is called a tail. All these line segments lie in the upper half of

the plane. We further require that the line segment with an endpoint at (0, 0) is a tail.

Notation 6.2. Let c1 and c2 be oriented chords. We write c1 � c2 if the initial point

of c1 is one less than that of c2.

As a chord diagram is immersed in the plane, we can view it as a fatgraph. It has

one univalent vertex for each tail, and all other vertices are trivalent aside from (k, 0)

and (0, 0) which are bivalent.

We say a chord diagram is n-bordered if, viewed as a fatgraph, it has n boundary

components and one tail in each boundary component. If we merge the two edges inci-

dent each of the bivalent vertices, the chord diagram also satisfies the valency conditions

for an n-bordered fatgraph, and we consider it as one.

Figure 6.1 is an example of a chord diagram.

Definition 6.3. A marked n-bordered chord diagram is a marked n-bordered fatgraph

that satisfies the conditions for a chord diagram, such that the first boundary com-
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ponent starts at the tail at (0, 0). The category Chordbg,n is the full subcategory of

EFatbg,n whose objects are marked n-bordered chord diagrams, and whose morphisms

are sequences of Whitehead moves taking a chord diagram to another chord diagram.

Definition 6.4. The groupoid Π1(Chordbg,n) is the full subgroupoid of Π1(EFatg,n)

that contains all elements of Π1(EFatg,n) satisfying the following criterion. Let f

be a representative of a path in Π1(EFatg,n). Then the homotopy class of f is in

Π1(Chordbg,n) if f starts and ends at chord diagrams.

6.1.2 The branch reduction algorithm

We will now translate our presentation of Mod(Σg,n) in terms of bordered fatgraphs

and Whitehead moves to one in terms of chord diagrams and chord slides. As we have

discussed, there is a natural inclusion Chordbg,n ↪−→ EFatbg,n induced by merging the

two edges incident to the bivalent vertices in each chord diagram. From here, we will

view each chord diagram as a fatgraph by this inclusion.

We describe a fully faithful functor, the branch reduction algorithm, that is the

left inverse of this inclusion map. This extends the branch reduction algorithm for the

n = 1 case [ABP09, Lemma 5.1].

Definition 6.5. Let the greedy maximal tree TΓ of Γ be as defined in Definition 4.28.

The trunk of TΓ is defined by starting at the first tail vertex of Γ, then following the

boundary cycle until we reach an edge not in TΓ.

Note that the trunk is a line. Figure 6.2 depicts an example of the trunk of the

tree.

Given a bordered fatgraph Γ, we define a procedure to take Γ to a chord diagram

C(Γ) via Whitehead moves only on the greedy maximal tree TΓ. Denote the trunk of

TΓ by SΓ.

Definition 6.6. Let e be an edge of TΓ − SΓ such that e is incident to some vertex of

SΓ. We say that such an edge e is a subtrunk of TΓ.

Notation 6.7. For any edge e, T (e) is the subgraph of TΓ that is disconnected from

the first tail vertex in TΓ if we delete e.

As TΓ is a tree, T (e) is also a tree and is non-empty as it contains one vertex of e.

Definition 6.8 (Branch reduction algorithm [ABP09]). We order the set of subtrunks

e of TΓ by the order in which, walking from the first tail along SΓ, we pass an endpoint

of e. Then the branch reduction algorithm proceeds as follows. Take the first such e

that is not a tail. Perform a Whitehead move on this. After this, the set of subtrunks

will change. Then take the first subtrunk in this new set, and repeat this process until

there are no subtrunks remaining. The resulting fatgraph is called CΓ.
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Boundary 1

Boundary 2

Figure 6.2: Finding the trunk of a fatgraph with two boundary components and genus

two. The generators are drawn in purple, the trunk in red, and the rest of the maximal

tree in blue.

Figure 6.3 illustrates this process on a twice-bordered genus one fatgraph.

Lemma 6.9. The branch reduction algorithm halts and the resulting fatgraph is a chord

diagram.

Proof. The branch reduction algorithm increases the length of the trunk by one in each

step, so must halt. When the algorithm halts, the trunk has length equal to the number

of edges in the whole maximal tree, so we have a chord diagram.

The branch reduction algorithm induces a map from a marked n-bordered fatgraph

Γ to a marked n-bordered chord diagram C(Γ). The chord diagram is n-bordered

since n-bordered fatgraphs are closed under Whitehead moves. Now, following the

description in Chapter 5, a sequence of Whitehead moves induces an action on the

marking.

Proposition 6.10. The generating set for the fundamental path groupoid Π1(Σg,n)

associated with Γ is the same as that associated with CΓ.

Proof. At each Whitehead move when we perform the branch reduction algorithm, we

are performing a Whitehead move on an edge e in the tree, incident to a vertex where

the other two edges f1 and f2 are also in the tree. Since f1 and f2 are in the trunk,

they must be traversed before any other edge adjacent to e, as well as before e itself.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.3: Performing branch reduction on a twice-bordered genus one fatgraph. The

trunk is marked in red, and the sub-trees in blue. A Whitehead move is performed on

the first edge of the first sub-tree, drawn in aqua, at each step.

Also, e must be traversed before the other two edges adjacent to it. Figure 6.4 depicts

this situation. This is a case 1 or 2 Whitehead move as defined in Theorem 5.13, which

by the same theorem is trivial on the generating set.

Note that as all the chords and tails are in the upper half of the plane, the maximal

tree of a chord diagram is precisely the core. Thus, if we embed this chord diagram

in Σg,n, the associated generating set of Π1(Σg,n, {pi}) is the set of duals of the chords
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Figure 6.4: The possible orderings of edges in a Whitehead move in branch reduction.

and tails. We identify an edge e of Γ, not in the maximal tree, with the chord or tail

of CΓ that has the same dual.

Proposition 6.11. The map

C : EFatg,n → Chordbg,n

given by performing branch reduction on a marked bordered fatgraph Γ is a left inverse

of the inclusion Chordbg,n ↪−→ EFatg,n, and the induced map between Π1(EFatg,n) and

Π1(Chordbg,n) is a fully faithful functor.

For this proposition we interpret the fundamental path groupoids as categories,

with objects the relevant vertices of the complex and morphisms the homotopy classes

of paths between them.

Proof. First, C is trivially a left inverse of the inclusion, as the branch reduction algo-

rithm has no effect on bordered fatgraphs that are already chord diagrams.

To show that C is a functor between the fundamental path groupoids, we give a

map

CΓ1,Γ2 : HomΠ1(EFatg,n)(Γ1,Γ2)→ HomΠ1(Chordbg,n)(C(Γ1), C(Γ2)).

Suppose that (W ) : Γ1 → Γ2 is a morphism, that is a sequence of Whitehead moves.

Let W (e) be a Whitehead move and e′ be the image of e under W (e). Then the

inverse of W (e) is W (e′). Thus if (WΓ1) is the (well-defined) sequence of Whitehead

moves taking Γ1 to C(Γ1), we have a diagram

Γ1 Γ2

C(Γ1) C(Γ2)

(W )

C(W )

(WΓ1) (WΓ2)

where CΓ1,Γ2(W ) is defined by the composition

C(Γ1)
(WΓ1

)−1

−−−−−→ Γ1
(W )−−→ Γ2

(WΓ2
)

−−−−→ C(Γ2).
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x

y e

b

a

x

z = W(e)

y

b

a

x z y

(a) Before branch reduction

x

y e

b

a

x

z = W(e)

y

b

a

x z y

(b) After W (e)

x

y e

b

a

x

z = W(e)

y

b

a

x z y

(c) After full branch reduction

Figure 6.5: Illustrations for the proof of Lemma 6.12. The edges drawn in red are in

the trunk of the fatgraph.

One can then verify that this does indeed give a functor.

Now, to show that C is fully faithful, for fixed Γ1 and Γ2, we show that CΓ1,Γ2 :

HomΠ1(EFatg,n)(Γ1,Γ2) → HomΠ1(Chordbg,n)(C(Γ1), C(Γ2)) is a bijection. If (W ) is a

sequence of Whitehead moves taking C(Γ1) to C(Γ2), let C−1
Γ1,Γ2

(W ) be the map

Γ1

(WΓ1
)

−−−−→ C(Γ1)
(W )−−→ C(Γ2)

(WΓ2
)−1

−−−−−→ Γ2.

One can check this is a two-sided inverse for CΓ1,Γ2 , so the functor is fully faithful.

Lemma 6.12. Suppose that e is an edge of a bordered fatgraph Γ that is not in the

trunk. Let {ei}ni=1 be the oriented edges such that ei or ei is in the minimal generating

set for the fundamental path groupoid, and the initial vertex v(ei) of each edge is in the

subtree T (e). Order these edges in clockwise order around T (e). (Note some pairs of

these edges may be the two orientations of the same unoriented edge.)

After branch reduction, the chord diagram CΓ has e1 � · · · � en, and in the dual

marking, we have e = e1 · · · en.

Proof. We show this by induction on the depth of T (e), where e has a fixed orientation

away from the core. Note that T (e) as defined cannot contain the first tail unless e is

the first tail, and that as the branch reduction algorithm does not affect the generating
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set, the sequence e1, · · · , en corresponds to edges in a well-defined way during branch

reduction. Each step of the branch reduction algorithm is a Whitehead move on a

subtrunk. Note that this does not alter any part of the subtrees of the maximal tree

aside from the edges immediately adjacent to the subtrunk. Thus, if we perform branch

reduction up to the point where e is adjacent to the core, there is no change to T (e).

Without loss of generality, we can thus assume that e is either a subtrunk or a generator

adjacent to the core, and if e is a subtrunk, that the fatgraph is such that the next

step of branch reduction is W (e). Let x be the edge in the core that is incident to the

start point of e that is traversed first by the boundary cycle, and y the edge in the core

incident to the start point of e that is traversed second.

First, if e is a generator (that is, if T (e) is of depth 0) then T (e) contains one vertex

of e and {ei} = {e}. As e is a generator, it will be a chord or tail. Also, note that the

chord e is still incident to the endpoint of x with its preferred orientation, and that as

branch reduction does not involve performing any Whitehead moves on the core and

does not change the orientation of edges in the core, this will remain true in the chord

diagram. Similarly, the chord e is incident to the start point of y with its preferred

orientation, and this will remain true in the chord diagram.

Suppose we have shown the result for edges e′ with T (e′) having depth d. Let k be

the number of generators incident to T (e′). Suppose furthermore that for edges with

T (e′) having depth d, after branch reduction, e′1 is incident to the endpoint of x and

e′k is incident to the start point of y.

Suppose that T (e) is of depth d+ 1. We wish to show that the inductive result still

holds. Note that e is not a generator, as otherwise T (e) would be of depth 0. As e is a

subtrunk we have the order of sector traversal shown in Figure 6.5a.

After performing W (e), we have the subgraph shown in Figure 6.5b where the image

of e under the Whitehead move is labelled z. Note that T (b) and T (a) are of depth at

most d. Define {bi}mi=1 and {aj}`j=1 as with ei, so they are the generators with a vertex

in T (b) and T (a) respectively, with clockwise ordering. By induction, after branch

reduction, along the core we have b1 � · · · bm such that b1 is incident to the endpoint

of x and bm is incident to the start point of z. Also, along the core a1 � · · · a` such

that a1 is incident to the endpoint of z and a` is incident to the start point of y. We

illustrate this in Figure 6.5c. Thus, along the core we have b1 � · · · bm � a1 � · · · a`.
Furthermore, b1 is incident to the endpoint of x and a` is incident to the start point of

y. Thus the inductive result holds.

We now show that e = e1 · · · en. We show this also by induction. Fix the orientation

of all edges in T (e) as pointing towards deeper levels of the tree, that is, away from

the vertex of e that is still connected to the first tail by a path in the maximal tree

after deleting e. We have already fixed the orientations of the ei as being away from

the tree.
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Figure 6.6: Illustrating a chord slide of c, the red chord, over d, the blue chord.

For e a generator, trivially e = e1. For the inductive step, suppose that we have

e′ = e′1 · · · e′m for all e′ such that T (e′) is of depth d. Let e be an edge with T (e) of depth

d+ 1. Let a and b be the other two edges incident to its endpoint with cyclic ordering

as in Figure 6.5a, oriented away from e. By the orientation and vertex compatability

conditions of a dual marking, eab is the identity at the start point of e. Thus e = ba.

We have the depths of T (a) and T (b) at most d. By induction,

e = b1 · · · bma1 · · · a` = e1 · · · en

since the bi and aj are precisely the ei in clockwise order around T (e).

6.2 Translating Whitehead moves to chord slides

We now define an operation on chord diagrams, the chord slide, under which Chordbg,n
is closed.

Definition 6.13. Let C be a chord diagram. Let c be either a tail or chord of C, and

d a chord in C, such that an endpoint c of c and an endpoint d of d are adjacent. A

chord slide of c over d is performed by sliding the end of c from c to d, then over d.

Figure 6.6 is an example of a chord slide.

We wish to present Π1(EFatg,n) with the generators being chord slides in Chordbg,n
rather than Whitehead moves in EFatbg,n. This will extend the work of Bene [Ben10]

from n = 1 to n ≥ 1. As noted in Chapter 1, this has a number of potential applications

to low-dimensional topology.

Lemma 6.14. Any chord slide on a n-bordered chord diagram C can be written as two

Whitehead moves on the edges of C.

When n = 1, this is [Ben10, Observation 4.2].
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c

d

d

c'

(a) A piece of the original graph. The

edge c may be a tail or a chord.

c

d

d

c'
(b) After a Whitehead move on the

core between c and d (aqua).

c

d

d

c'

(c) After a Whitehead move on d (blue).

Figure 6.7: A chord slide of c over d written in terms of Whitehead moves. The resulting

chord diagram has c replaced with c′.

Proof. For a pictorial proof sketch, we direct the reader to Figure 6.7. This figure

depicts a portion of a chord diagram containing two adjacent chords, c and d. After

performing a Whitehead move on the core segment between c and d, and then a

Whitehead move on the image of d, we see we have reached a chord diagram with the

chord d and a new chord, from the endpoint of c to a point next to d. This is the

same as the result of a chord slide of c over d. Note that the Whitehead moves have

the same effect on the marking as the chord slide.

Similarly, one can check that performing a Whitehead move on the core segment

between c and d, and then one on the image of c, has the same effect as a chord slide

of d over c.

Lemma 6.15. Let b and c be oriented chords (with b possibly a tail), with orientations

fixed as in Figure 6.8. Sliding b over c fixes b considered as a dual edge, and takes c to

bc. Sliding c over b fixes the dual of c, and takes b to bc.

Proof. Figure 6.8 depicts the chord slides in this lemma, as well as the duals of the

chords with orientations as in Definition 4.6. Note that as the chord diagram is em-
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b c e

d

d

e

b c

(a) Sliding b over c

b c e

d

d

e

b c

(b) Sliding c over b

Figure 6.8: The action of chord slides on the dual.

bedded as a spine, its complement is a series of disjoint contractable components.

Let d be the image of b after the slide, and e the image of c. In the left of the figure,

we show the chords before the slide. Their duals are drawn in green. On the right, we

show the chords after the slide. We draw the dual of e with a dotted line. We see that

the dual edge of d is the same as the dual edge of b, as this is the unique homotopy class

of paths between the vertices corresponding to the faces that d separates that passes

through d once, with the relative orientation shown in Figure 4.6. The dual edge of e,

which is added as a dotted line, is homotopic to the composition of the duals of b and

c, which is bc.

By the same reasoning, the dual of b after sliding c over b is bc while the dual of c

remains fixed.

Corollary 6.16 (Figure 4.2 [Ben10]). There are six cases of chord slides where we take

chords with their preferred orientations, shown in Figure 6.9. In each case, we slide

c over d. These cases are determined by the relative order in which the three labelled

sectors are traversed. For all cases, the generator d is removed, and some word in c

and d is added. They have the following effects:

1. d 7→ cd

2. d 7→ cd
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3. d 7→ dc

4. d 7→ dc

5. d 7→ cd

6. d 7→ dc.

Remark 6.17. These cases are fully determined by local properties, in contrast to the

cases of Whitehead moves in Theorem 5.13. We can calculate the effect on the gener-

ating set of the inverses of these six cases. For the inverses of the cases in Figure 6.9,

where we slide c over d, we have:

1. d 7→ cd

2. d 7→ cd

3. d 7→ dc

4. d 7→ cd

5. d 7→ dc

6. d 7→ dc.

6.2.1 Translating Whitehead moves between chord diagrams into chord

slides

We now show that we can write any sequence of Whitehead moves between two chord

diagrams as a sequence of chord slides.

We first prove that a chord diagram is entirely determined by the associated gen-

erating set for Π1(Σg,n, {pi}).

Theorem 6.18. Let X be a choice of minimal generating set for Π1(Σg,n, {pi}). If there

exists a marked chord diagram whose associated set of generators for Π1(Σg,n, {pi}), up

to reordering and inverses, is X, then this chord diagram is unique.

To prove this, we first show that in Π1(Σg,n, {pi}) there is a unique reduced word

in a given set of generators representing any element. Here reduced means that for all

x ∈ X, the word does not contain a substring xx−1 (or x−1x).

Proposition 6.19. Let w be an element of Π1(Σg,n, {pi}). Let X be a minimal gener-

ating set for Π1(Σg,n, {pi}). Then there is a unique reduced word in X representing w.
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c       d
c       d

c       d
c       d

c       d
c       d

(a) Case 1

c       d
c       d

c       d
c       d

c       d
c       d

(b) Case 2

c       d
c       d

c       d
c       d

c       d
c       d

(c) Case 3

c       d
c       d

c       d
c       d

c       d
c       d

(d) Case 4

c       d
c       d

c       d
c       d

c       d
c       d

(e) Case 5

c       d
c       d

c       d
c       d

c       d
c       d

(f) Case 6

Figure 6.9: The six cases of chord slides. Note these are characterised by local proper-

ties, unlike Whitehead moves. Each of these slides takes the diagram on the left to the

diagram on the right by sliding c over d. From [Ben10, Figure 4.2].

Proof. Note that as Σg,n has boundary, the fundamental group is free. Thus any

element of the fundamental group is a unique reduced word in any minimal set of

group generators.

We wish to show that if two reduced words in X are equal as elements of the

fundamental path groupoid, they are equal as words. Without loss of generality, we

will only consider words that start and end at the marked point on the first boundary

component. (Otherwise, we can compose with some generators such that this is the

case.)

Now, we give a method to derive a minimal generating set for the fundamental

group from X, and write these words in terms of the fundamental group generators.

First, we can think of the elements of X as edges in a graph with n vertices on

Σg,n, where the vertices are the n points in {pi}, one on which is on each boundary

component. Pick a minimal spanning tree for this graph. Let P be the elements of X

75



6.2. TRANSLATING WHITEHEAD MOVES TO CHORD SLIDES

that are in this tree.

Now, for each basepoint k, we have a unique reduced word in elements of P that

is a path from the first basepoint to k, corresponding to the unique path from the

first basepoint to k in the minimal spanning tree. Let this path be pk. Note that the

reduced form of (pj)
−1pk is the unique reduced word in elements of P from j to k.

Write X = {x1, . . . , xp}. Let si be the start point of xi, and ei the endpoint of xi.

Now, let

X̃ = {psixip−1
ei |xi ∈ X}.

Each element of X̃ is a homotopy class of paths starting and ending at the first base-

point.

If xi is used in constructing the paths pk then psixip
−1
ei is the trivial path. Otherwise,

this word is non-trivial. If it were trivial, we would have xi = p−1
si pei . But psi and pei are

words in X−{xi}. We have then written xi in terms of the other generators, which is a

contradiction since we assumedX was minimal. Thus X̃ contains (2g+2n−2)−(n−1) =

2g + n− 1 non-trivial elements.

Now, we show that the non-trivial elements of X̃ are a minimal generating set for

the fundamental group. As |X̃| = 2g + n− 1, which is the size of such a set, it suffices

to show that X̃ does indeed generate the fundamental group.

Let φ be an element of π1(Σg,n). Then we can consider φ as an element of the

fundamental path groupoid, and write it as a word w1 · · ·wn. Let ti and fi be the start

and end-point of wi respectively. Note that fi = ti+1, and t1 = fn = 1. Now,

φ =
(
pt1w1p

−1
f1

)(
pt2w2p

−1
f2

)
· · ·
(
ptnwnp

−1
fn

)
by observing that p1 is trivial and otherwise the inserted pi elements cancel. Thus,

we can write any element of π1(Σg,n) as a word in elements of X̃, so X̃ is a minimal

generating set of the fundamental group.

Now, let w1 · · ·wn and v1 · · · vm be two reduced words in X that start and end at

the first basepoint and are equal as elements of the fundamental path groupoid. We

wish to show they are equal as words.

Considering w1 · · ·wn as an element of the fundamental group, we can write it in

terms of X̃ as

w1 · · ·wn =
(
pt1w1p

−1
f1

)(
pt2w2p

−1
f2

)
· · ·
(
ptnwnp

−1
fn

)
.

The ith character in this will be trivial if and only if wi is used in constructing the

paths pk. Removing all such entries by letting (ni) be the subsequence of indices such

that wni is not used in the paths pk, we have

w1 · · ·wn =
(
ptn1

wn1p
−1
fn1

)(
ptn2

wn2p
−1
fn2

)
· · ·
(
ptnk

wnk
p−1
fnk

)
.
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We know that this word in X̃ contains no trivial characters. Furthermore, it is

reduced. If it were not, we would have some substring of w1 · · ·wn of the form

wjα1 · · ·αpwk

where the αi are used to build the paths pk, and wj and wk are not. This converts to(
ptjwjp

−1
fj

)(
ptkwkp

−1
fk

)
upon concatenation, such that

(
ptjwjp

−1
fj

)
=
(
ptkwkp

−1
fk

)−1
.

Now, if wj 6= w±1
k , this gives us an expression for wk in terms of the other generators,

a contradiction. If wj = wk, we know tj = tk and fk = fj . Then (ptjwjp
−1
fj

)2 is the

trivial loop at 1, which is a contradiction as the fundamental group of a surface with

boundary is free. Finally, if wj = w−1
k , fj = tk. But then the the path α1 · · ·αp is from

fj to tk which is trivial, so the original word contained a substring wjw
−1
j , which is a

contradiction as we assumed it was reduced.

Thus, this word in X̃ is reduced.

Now, by the same argument, if si and ei are the start and end-points of vi respec-

tively,

v1 · · · vm =
(
ptm1

vm1p
−1
fm1

)(
ptm2

vm2p
−1
fm2

)
· · ·
(
ptmk

vmk
p−1
fmk

)
.

and this is a reduced word in X̃.

Now, as w1 · · ·wn = v1 · · · vm as elements of the fundamental path groupoid, they

are equal in the fundamental group. Thus(
ptn1

wn1p
−1
fn1

)
· · ·
(
ptnk

wnk
p−1
fnk

)
=
(
ptm1

vm1p
−1
fm1

)
· · ·
(
ptmk

vmk
p−1
fmk

)
.

As the fundamental group of a surface with boundary is free, there is a unique reduced

form of any element. Thus, these are equal as words in X̃. We have

ptni
wnip

−1
fni

= ptmi
vmip

−1
fmi

with each word having the same number of characters. The same reasoning used in

showing the word in X̃ was reduced implies that, wni = vmi for all i.

Once we have determined the vmi , the elements between them are determined, as

these are the paths from the endpoint of vmi to the start-point of vmi+1 in the elements

{α}. Thus, w1 · · ·wn = v1 · · · vm as words in X, as required.

Using this proposition, we can now show that chord diagrams are determined by

their associated generating set (up to inverses and reordering).

Proof of theorem. Note that for a chord diagram Γ, the associated set of generators X

is the set of duals of the chords, and duals of all tails but the first.
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By the orientation and vertex compatibility conditions on the dual marking, we can

read off a word in the generators equal to the dual of the first tail as follows. From the

first tail, walk along the core. At each vertex, append the generator of its chord or tail,

oriented pointing away from the vertex.

For example, if we label the chords in Figure 6.3 as ci from right to left, and the

second tail as t2, we find that the dual of the first tail t is given by

t = c1c2c3c2t2c3c1c4c5c4c5.

Observe that this word is reduced, as if it were not, the start and end of a chord

would be adjacent. Then this chord would contain a boundary component with no tail,

which is impossible by the definition of an n-bordered fatgraph.

Now, by Proposition 6.19, there is a unique such reduced word. Thus any chord

diagram with this generating set, up to reordering and inverses, must have chords

corresponding to these generators in this order. But this determines a chord diagram

and its marking, as required.

We now prove that chord slides generate all sequences of Whitehead moves between

chord diagrams, generalising Theorem 5.3, [Ben10] from n = 1 to n ≥ 1.

Theorem 6.20. Let W (e) : Γ1 → Γ2 be the Whitehead move on an edge e of Γ1. The

associated morphism CW (e) : CΓ1 → CΓ2 in Π1(Chordbg,n) has a representative which is

a sequence of chord slides from CΓ1 → CΓ2.

This representative is a series of chord slides along one chord, which is incident to

a leaf of T (b) or T (c) before the branch reduction.

In the proof of this theorem, if e is an oriented edge, then e is the edge with no

assigned orientation.

Proof. We have shown that a chord diagram is determined entirely by the associated

generating set of the fundamental path groupoid, and there is a unique morphism in

Π1(Chordbg,n) between any two chord diagrams. Thus it suffices to show that for any

Whitehead move, there is a sequence of chord slides that has the same effect on the

fundamental path groupoid generating set. We break the Whitehead moves into cases

as in Theorem 5.13.

In cases 1, 2, 3b, 4b, 5c and 6c the move has no effect, so this is the trivial morphism.

Let b and c be oriented edges defined as follows. The oriented edges b and c are

the unoriented edges b and c as labelled in Figure 5.6 with orientations pointing away

from e, the edge we perform the Whitehead move on. Note that b and c, if they are

in the tree, are not in the trunk. This is as the first sector traversed around the edge e

does not involve either of them. Let {bi}mi=1 be the oriented edges whose initial vertex
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is in the tree T (b), ordered such that bi � bi+1, as in Lemma 6.12. Recall from the

lemma that

b = b1 · · ·bm.

Similarly, for {ci}ni=1 the generators whose initial vertices are in T (c), ordered such

that ci � ci+1, we have

c = c1 · · · cn.

Consider cases 3a and 4a. In these cases, c is a generator and is replaced by d in

the generating set. Let d be d with its preferred orientation. We can write d in terms

of b and c by using the orientability and vertex compatibility conditions on the dual

marking. Then 3a replaces c with bc and 4a replaces c with bc. If we slide the bi over

c, we find that this chord slide has the same effect.

This slide would be impossible only if some bi = c. However, if this were the case,

we would be replacing c in the generating set by xcyc for x and y sequences of the form

bjbj−1 · · · . This does not give us a generating set for the fundamental path groupoid.

If it did, we would be able to write c as a word in the bi and xcyc. As x is a word in

the bi, we would equivalently be able to write c as a word in cyc and the bi. But this

is impossible. We know there is a unique reduced form of any word in the fundamental

path groupoid in a set of generators. Any concatenation of cyc with some bi creates

a reduced word with an equal number of copies of c and c. Thus we can never have a

reduced word with one copy of c, so in particular c is not generated by this set. Thus

this set does not generate the fundamental path groupoid, which is a contradiction.

Next, consider cases 5a and 6a. In these cases, b is a generator and is replaced by

d. As with the previous case, we can write d in terms of b and c. If we slide the cj

over b, one can check that (with preferred orientations) this has the desired effect. By

the reasoning in case 3a/4a, this is always possible.

Finally, we consider cases 5b and 6b separately. Let x be defined as in Theorem 5.13,

with its preferred orientation. Let d be d with its preferred orientation. We know that

x 7→ d under the Whitehead move. Furthermore, we can write d as a word in the bi

and cj . As the set of generators both generates the fundamental path groupoid of S

and is minimal, we can show that x = bi or x = cj for some i or j. If not, the set of

generators after the Whitehead move is not minimal. This is as d is a word in bi and

cj , so if we have removed none of these generators, we can write the generator d as a

word in the other generators. This is a contradiction.

For case 5b, we traverse the sectors in the order 1324 going anticlockwise. Then d =

cb. After branch reduction, we arrive at a chord diagram where c1, . . . , cn,b1, . . . ,bm

are adjacent (by Lemma 6.12). Suppose we slide all the cj and bi over x, aside from

of course x itself. Note that some of these slide from the left and some from the right.

However, as all chords are oriented away from the core, by Lemma 6.15, these chord
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slides take x to the concatenation of all these chords (including x itself) along the core,

which is

c1 · · · cnb1 · · ·bm = d

as required. By the reasoning in case 3a/4a, this is always possible.

Finally, for case 6b, we traverse the sectors in the order 1423 going anticlock-

wise. We have d = bb. After branch reduction, we arrive at a chord diagram where

c1, . . . , cn,b1, . . . ,bm are adjacent (by Lemma 6.12). Sliding all of these over x, we

take x to the concatenation of all these chords along the core, which is d. However,

the preferred orientation of x after the chord slide is towards the core, so the dual of x

with its preferred orientation is d. As shown previously, this slide is always possible.

In any of the cases of this procedure, we slide a series of chords over the chord

associated to b, c or x (which is equal to bi or cj) in CΓ1 . All of these are incident

to leaves of either T (b) or T (c) (as for example if b is a generator, T (b) is a vertex of

b).

The following statement is then a straightforward corollary, as sequences of White-

head moves between chord diagrams can be written as chord slides, and the morphisms

in Π1(Chordbg,n) are precisely these sequences of Whitehead moves.

Corollary 6.21. The morphisms of Π1(Chordbg,n) are generated by chord slides.

6.3 Presenting the mapping class group in chord slides

As a corollary of Proposition 5.11 and Corollary 6.21, we have the following result.

Corollary 6.22. The group Mod(Σg,n) has an (infinite) presentation as follows. Fix

an n-bordered (unmarked) chord diagram. The generators are all sequences of chord

slides beginning and ending at this chord diagram. The relations are described as fol-

lows. Two such sequences of chord slides are equivalent if, when converted to White-

head moves by Lemma 6.14, the sequences of Whitehead moves differ by the relations

in Proposition 5.11.

To give an explicit presentation of Π1(Chordbg,n), we wish to characterise a finite

generating set of relations for chord slides.

Remark 6.23. We know that the relations in Π1(Chordbg,n) are the images of relations

in Π1(EFatg,n) under the branch reduction functor. The relations in Π1(EFatg,n) are

generated by the square, pentagon and involutivity relations. To prove a finite set of

relations between chord slides generates all relations, it suffices to show that the finite

set generates the image of these classes of relations between Whitehead moves.

Proposition 6.24. The groupoid Π1(Chordbg,n) has a finite relation set.

80



6.3. PRESENTING THE MAPPING CLASS GROUP IN CHORD SLIDES

Proof. By Lemma 4.27, for fixed n and g, every n-bordered genus g fatgraph has the

same number of edges and vertices. There are a finite number of graphs satisfying these

two conditions up to the cyclic ordering of edges around vertices. Once we fix such a

graph, there are a finite number of possible cyclic orderings around each edge. Thus

there are a finite number of n-bordered genus g fatgraphs.

There are a finite number of Whitehead moves possible for each such fatgraph. Thus,

for an unmarked n-bordered genus g fatgraph, there are a finite number of involutivity,

square and pentagon relations that start with a Whitehead move on this graph. These

relations generate all relations between Whitehead moves. Thus the images of this finite

set of relations under the branch reduction algorithm generates all relations between

chord slides in Π1(Chordbg,n), as required.

However, we wish to find a finite generating set of chord slide relations that is easier

to describe. Consider the set of relations between chord slides in Figure 6.10. We will

conjecture that these generate all of the relations and give an partial proof of this result.

Using Lemma 6.15, one can verify that each of these relations holds between chord

slides. The last three can be interpreted as follows. The left and right pentagons

are relations showing that two different ways of sliding two chords over one chord are

equivalent. Adjacent commutativity shows that sliding chords over the two sides of

a single chord commutes. We have another relation that we can derive from this set,

Opposite End Commutativity, shown in Figure 6.11, which is that slides of the two

ends of a single chord commute.

Lemma 6.25. Opposite end commutativity follows from the I, T, L and R relations.

Proof. Figure 6.12 depicts the derivation. We observe that we can write the right

pentagon relation in terms of the triangle and left pentagon relations, as well as one

copy of opposite end commutativity.

Remark 6.26. Not all chords in these relations can be tails, since we cannot slide over

tails. The list of chords that could be tails is as follows:

1. Involutivity: b

2. Triangle: no chords

3. Commutativity: a, c

4. Left Pentagon: c

5. Right Pentagon: a

6. Adjacent Commutativity: a, c

7. Opposite End Commutativity: no chords
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(a) I: Involutivity

(b) T: Triangle (c) C: Commutativity

(d) L: Left Pentagon

(e) R: Right Pentagon

(f) A: Adjacent Commutativity

Figure 6.10: A set of relations between chord slides.
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As we do not slide over any of these chords, we can replace them with multiple

chords, as in the following lemma.

Lemma 6.27. In these relations, we can replace the following chords with multiple

chords:

1. Involutivity: b

2. Commutativity: a, c

3. Left Pentagon: c

4. Right Pentagon: a

5. Adjacent Commutativity: a and c.

Proof. We show each of these by induction. For involutivity, suppose that the relation

holds where we replace b with m chords. Then by the image in Figure 6.13a, it holds

when we replace b with m + 1 chords. This is as the involutivity relation for m + 1

chords factors as the involutivity relation for m chords and the relation for one chord.

For commutativity, we must induct on two variables. As shown in Figure 6.13b, if

the relation holds when we replace a with m chords and b with n chords, it holds when

we replace a with m + 1 chords and b with n as it factors as commutativity with m

and n chords and commutativity with one and n chords. By involutivity, we have the

relation for m+ 1 and n chords. By the symmetry of a and b, it holds when we replace

a and b with any number of chords.

For the multiple chord left pentagon, as shown in Figure 6.13c, the relation for

m+1 strands decomposes into the pentagon on one strand, the pentagon on m strands

and the commutativity relation for m strands. As all our relations hold if we flip

them horizontally, showing that the multiple chord left pentagon holds implies that the

multiple chord right pentagon holds. The figure giving the derivation would be a mirror

image of that for the left pentagon, with left pentagons replaced by right pentagons.

Finally, for the multiple chord adjacent end commutativity, we must again induct

on two variables. As shown in Figure 6.13d, if the relation holds when we replace a

with m chords and c with n chords, it holds when we replace a with m+ 1 chords and

c with n chords. By the symmetry of a and c, it holds for all m and n.

For the connected boundary case, Bene shows that this set of relations generates

all the relations between chord slides. In fact, the relation A can be derived from T, L

and R, using a commutative diagram that does not hold if both a and c in A are tails.

Theorem 6.28 (Theorem 6.2, [Ben10]). For n = 1, the relations I, C, L, R and T in

Figure 6.10 generate all relations between sequences of chord slides in Π1(Chordbg,1).
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Figure 6.11: Opposite end commutativity

R

L

T

O
T

Figure 6.12: Derivation of opposite end commutativity

We conjecture that for the n-boundary case, this is still a generating set.

Conjecture A. The relations in Figure 6.10 generate all relations between sequences

of chord slides in Π1(Chordbg,n).

We did not prove this conjecture. However, we reduced the proof to checking a

finite number of cases. In the following results, we describe the progress we made so

far.

We introduce some notation for the following proofs. We sometimes conflate chord

endpoints and oriented chords. When we do this, c as an endpoint is the initial point

of c the oriented chord. If c is an oriented chord, c is the same chord with no assigned

orientation.

For all of the figures referenced for the inductive steps in these proofs, our notation

is as follows. Coloured lines represent some number of chords that have adjacent
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I

I

CC

(a) The inductive step for multiple

chord involutivity.

I

I

CC

(b) The inductive step for multiple chord commutativity.

(c) The inductive step for the multiple chord left pentagon.
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(d) The inductive step for the multiple

chord adjacent commutativity.

Figure 6.13: The inductive steps for the multiple chord relations. The green line

represents m chords with adjacent endpoints at the drawn point where they touch the

core. They may have non-adjacent endpoints at their other end. Similarly, the red

lines represents n chords with adjacent endpoints at one end.

endpoints. Black lines represent a single chord. We label arrows with the Whitehead

move they are the image of. When the image of a Whitehead move is a number of

consecutive chord slides, the image is the labelled arrow and the unlabelled arrows that

consecutively follow it.

Lemma 6.29. The images of involutivity relations between Whitehead moves are gen-

erated by the involutivity relations between chord slides.

Proof. One Whitehead move, by Theorem 6.20, corresponds in chords slides to a slide

of some number of chords along (possibly both sides of) a single chord. The inverse

of this move corresponds to sliding these chords back along the single chord, as this

reverses the effect on the generating set. By the multiple chord version of involutivity,

this is trivial as a chord slide.

Next, we consider the commutativity relations.

Proposition 6.30. Let y and z be non-adjacent edges. Suppose that W (y) and W (z)

are both not of type 5b or 6b. Then the image of the commutativity relation between

these Whitehead moves is generated by chord slide relations I, C, T, L, R and A.

Proof of proposition. If W (y) is trivial on the generating set, is the trivial morphism in

chord slides, so the commutativity relation reduces to involutivity. We hence assume

W (y) and W (z) are not trivial on the generators. Thus without loss of generality, by

Theorem 6.20, in chord slides, W (y) corresponds to sliding some set of oriented chords

{yi}ni=1 over a chord y0 such that either y0 � y1 � · · · � yn, or y1 � · · · � yn � y0.
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The corresponding result holds for W (z), which in chord slides is the slide of some set

of chords {zj}mj=1 over a chord z0.

Furthermore, y0 is adjacent to y in Γ, and z0 is adjacent to z in Γ. Thus since y and

z are not adjacent, as oriented edges, y0 6= z0. By Theorem 5.13, one can check that

y0 6= z0. If this were the case, we would have a contradiction in the order in which the

sectors are traversed, since we know that the core is traversed before all other sectors.

Thus, y0 6= z0 as unoriented chords.

Note that the {yi} is the set of generating edges whose start point is in T (y′) for

some y′ adjacent to y, since we are not in case 5b or 6b. Similarly {zi} is the set of

generating edges whose start point is in T (z′) for z′ adjacent to z. By the definition of

T (e), if T (y′) and T (z′) are not disjoint, either T (y′) ⊆ T (z′) or T (z′) ⊆ T (y′).

We consider the possible cases. Note that if yi = zj , by opposite end commutativity,

the slides of the two ends commute with each other. Thus so long as i and j are not 0,

so we never slide over these chords, this does not affect the relation in the chord slides.

First, suppose that T (y′) and T (z′) are not disjoint, so T (y′) ⊆ T (z′) or T (z′) ⊆
T (y′). Without loss of generality, we suppose T (y′) ⊆ T (z′). As the branch reduction

algorithm preserves the clockwise ordering of the generators around a subtree of the

maximal tree (Lemma 6.12), if y1 = zj , yi = zj+i−1. That is, the yi are nested in

the zj . We show the relation follows from the chord slide relations L, R, O and I by

induction.

Before we analyse this case, we give a restriction on the nesting. We must have

y0 = zj for some j. (Recall that j 6= 0.) We show this as follows. If m = n,

T (y′) = T (z′). But then we must have y′ = z′, since T (e) is the unique maximal

subtree of the maximal tree whose root is the vertex of e that is disconnected from

the first tail in the maximal tree if we remove e. Note that by the translation of the

Whitehead move into chord slides, y is incident to the start point of y′ oriented away

from the core in the maximal tree. However, so is z. Thus y and z share a common

vertex, a contradiction. Otherwise, m > n, so T (y′) is a proper subset of T (z′). As y

and y′ are adjacent, the smallest subtree of the maximal tree that contains T (y′) but

is not T (y′) also contains the common vertex of y and y′. We know that z′ is not equal

to y, as z′ and z are adjacent but y and z are not adjacent. Thus T (z′) contains T (y)

as a proper subtree, and so contains both vertices of y, one of which is the start point

of y0. Thus y0 is one of the zj .

We have four base cases. Suppose that m = 2 and n = 1. These possible nested

cases are as follows:

1. z0 � z1 = y0 � z2 = y1

2. z1 = y0 � z2 = y1 � z0

3. z0 � z1 = y1 � z2 = y0
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4. z1 = y1 � z2 = y0 � z0.

We draw the corresponding relation for each of these in Figure 6.17.

We see that the first case is the left pentagon, the second is the left pentagon inverse,

the third is the right pentagon inverse, and the fourth is the right pentagon.

Now, we give the inductive step. We know the yi are nested in the zj . There are

four positions of y0 and z0 to consider, as each may be before or after the chords that

slide along it on the core. As for every relation, the same relation flipped left to right

is also a relation, it suffices to consider only the cases where y0 is to the left of the yi.

For the induction, we have three variables. These are the index of the zj such that

y0 = zj , the number of chords m, and the number of chords n.

We show these inductive steps in Figure 6.18. We go through the first in detail.

This is the case where we have z0 before the zj along the core, and we wish to increase

the number of chords of zj before y0 by one. Suppose that we have the commutativity

relation for the j such that zj = y0 being at most r, n up to q and m− j−n+1 (which

is the number of chords used in W (z) not used in W (y) to the right of y0) up to p. We

wish to show it for j at most r + 1. Suppose we take m − j − n + 1 = p, j = r + 1

and n = q. Now, as shown in the figure, the commutativity relation in chord slides

decomposes into a copy of the multichord disjoint commutativity relation, and a copy

of the inductive relation with m− j − n+ 1 = p, j = r + 1 and n = q. The remaining

figures give us the induction on the remaining variables. Thus we have the result.

If T (z′) and T (y′) are not nested, the oriented chords {yi}ni=1 and {zj}mj=1 are

disjoint.

We split this into subcases. First, if the unoriented chords yi are disjoint from the

unoriented chords zj and z0, and also the unoriented chords zj are disjoint from y0, by

multichord disjoint commutativity we have the result. Otherwise, we must have one of

the following situations.

If yi = z0, we are in the nested situation or else e and f are adjacent, so we do not

consider this case further.

If yi 6= z0 and zj 6= y0, we may have some yi equal to some zj as unoriented chords.

We show we have this relation by induction. For the base case, suppose m = n = 1, and

y1 = z1. As in the nested case, we have four possibilities here depending on whether y0

is before or after y1 along the core, and similarly for the zi. By symmetry, without loss

of generality we assume that y0 is after y1 along the core. We show the two remaining

base cases in Figure 6.19. These are both the O relation.

For the inductive step, we consider two cases. By the symmetry of y and z, it

suffices to add chords to the zj . The first is when we add a chord to the zj such that its

other orientation is not in the yi. As shown in Figure 6.20a, this decomposes into the

C relation and the inductive relation with m fixed and n reduced by one. The second

is when we add a chord to the zj whose other orientation is in the yi. As shown in
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Figure 6.20b, this decomposes into two copies of the inductive relation with n reduced.

We depict the cases where z0 � z1 and yn � y0. The case where y0 � y1 is very

similar, and follows from the same relations. Thus by induction, this relation holds for

all m and n.

Finally, we have the case where yi = z0 or zj = z0. By Lemma 5.5, [Ben10], we

cannot have both be the case simultaneously for chord slides coming from Whitehead

moves not of type 5b or 6b. Thus without loss of generality, yi = zj . Now, after we

perform W (f), we are in the nested situation for W (e). Thus by the previous case, we

have the relation.

For the pentagon classes of relations between Whitehead moves, the image of this

relation in chord slides depends on the relative order in which we traverse the sectors

around the two edges. Recall that the pentagon relation is illustrated in Figure 5.2b.

We label our cases by the anticlockwise relative ordering of traversal of their sectors,

up to cyclic permutation.

For the cases beginning with the label 12, at least three of the moves are of type

1 or 2 which are trivial. Thus the only relation we can see is involutivity, and we can

check that in all cases this relation is sufficient to give the pentagon relation.

Of the 24 possible cases, we have checked the following nine. We list the cases and

the relations that they follow from. In general, they follow from the multiple chord

versions of the relations listed here.

Case Follows from relations

12345 Trivial

12354 Trivial

12435 I

12453 I

12534 I

12543 I

13254 I, A

13452 I

13542 I

We give an example of checking one of these relations to show the scope of the work

involved.

Lemma 6.31. The pentagon relation of type 13254 follows from the candidate set of

chord slide relations.

Proof. We show the pentagon relation for this case in Figure 6.14a.

Note that W (e) is of type 5, W (e′) is type 3, W (f ′) is type 5 and the other two

moves are trivial on the generating set so are the trivial morphism in chord slides.
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We have three cases. First, if W (e) is of type 5a, we have that W (e′) is of type

3a and W (f ′) is of type 5a. For W (e′), this is as before we traverse sector 3, there is

already a connection between sector 1 and sector 2. As sector 3 and sector 1 share an

edge, this is type a of the case 3 move. For W (f ′), as W (e) is of type 5a, there is a

connection between sector 1 and sector 2 through some of g, a, b and c, but not e or f ,

before we traverse 2. Thus this move is type 5a also. By these conditions, b must be a

generator. Then their effects are as follows: W (e) : b 7→ e′ = cb, W (e′) : e′ 7→ f ′ = dcb,

and W (f ′) : f ′ 7→ b. Figure 6.14b shows the translation of these moves on generators to

chord slides, following the translation from Theorem 6.20. From this theorem, each of

the edges a, b, c, d and g, under branch reduction, becomes a series of chords where the

composition of the duals is equal to the dual of the original edge. We represent these

multiple adjacent chords with coloured edges. We see this is multiple chord involutivity.

Second, if W (e) is of type 5b, we have W (e′) of type 3a, and W (f ′) of type 5b. On

the generators, they have the effect of W (e) : h 7→ e′ = cb, W (e′) : e′ 7→ f ′ = dcb, and

W (f ′) : dcb 7→ h. By the definition of h in Theorem 5.13, h is some bi or cj and is not

a tail. Figure 6.14c shows the translation of these moves on generators to chord slides,

following the translation from Theorem 6.20. We depict the case where h is some bi.

The case where it is cj is very similar, and differs only be a relabelling. We see this

relation is multiple chord adjacent end commutativity.

Finally, if W (e) is of type 5c, we have W (e′) of type 3b and W (f ′) of type 5c. Thus

all the moves are trivial. Thus, in all cases, we show the relation follows from the chord

slide relations A and I, as required.

To show that this candidate set of relations generates all the relations, the work

remaining is the following. First, one must show the commutativity relation follows

for type 5b and 6b moves. The author suggests that showing it holds for the inverse

of these moves would be simpler. This would be sufficient since if a and b commute,

a−1 and b commute. If W (e) is an inverse move, in its image in chord slides, the single

chord we slide over is the image of e itself. This allows one to restrict the adjacency

possibilities between the moves.

Second, one must check the remaining fifteen cases of pentagon relations. This work

is time-consuming but straightforward.

6.3.1 A chord slide presentation of Mod(Σ0,2)

We verify that Conjecture A correctly predicts a presentation for the annulus. The

number of n-bordered genus g chord diagrams grows rapidly with both n and g. For

example, with n = 2 and g = 1, there are three chords and one tail. In a chord diagram

for this twice-bordered torus, there are five vertices at which we may place the second

tail. Then there are five choices as to which vertex we pair the first chord with and
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Case 5

Case 2

Case 3

Case 5

Case 2

(a) The pentagon relation case 13254.

Case 5

Case 2

Case 3

Case 5

Case 2

(b) In chord slides if W (e) is case 5a.

Case 5

Case 2

Case 3

Case 5

Case 2

(c) In chord slides if W (e) is case 5b.

Figure 6.14: The Whitehead move pentagon relation for case 13254.
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between one and two choices for which vertex we pair the second chord with. Thus

there are at least 25 such chord diagrams, which is already rather large to feasibly use

in computations.

(a) A twice-bordered genus

zero chord diagram.

(b) A marking of the fat-

graph on the annulus.

(c) The marking after a

chord slide.

Figure 6.15: A marked chord diagram for the annulus.

(a) The dual of the gen-

erators for Figure 6.15b.

(b) The dual of the gen-

erators for Figure 6.15c.

Figure 6.16: The generators of the fundamental path groupoid for the annulus before

and after the chord slide.

A more feasible example with more than one boundary component is the annulus

with the chord diagram shown in Figure 6.15. As there is only one chord, the only

possible chord slide on this diagram is to slide the second tail around the chord in

one of the two directions (which are inverses of each other). One can check that

this does not change the chord diagram, and the action on the marking is shown in

Figure 6.15c. In this case, Mod(Σ0,2) is then generated by these two chord slides, c1

and c2. By involutivity, c−1
1 = c2. This shows that the mapping class group of the

annulus, Mod(Σ0,2), is the free group on one element, which is isomorphic to Z.

As shown in Figure 6.16, which depicts the action on the marking, performing this

chord slide once corresponds to a Dehn twist about a curve parallel to the boundary

components. This is the classical generator of the mapping class group of the annulus.

In this case, we can observe that performing this chord slide n times corresponds

to n Dehn twists about this curve, so this presentation is the same as the classical one.
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(a) z0 � z1 = y0 � z2 = y1

(b) z1 = y0 � z2 = y1 � z0
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(c) z0 � z1 = y1 � z2 = y0

(d) z1 = y1 � z2 = y0 � z0.

Figure 6.17: The base cases for nested commutativity.
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induction

induction

C

C

(a) We have z0 to the left of the zj . We add one chord

to zl, which increases the index of y0 in the zj .

induction

induction

C

C

(b) Adding a chord to the zr.

95



6.3. PRESENTING THE MAPPING CLASS GROUP IN CHORD SLIDES

induction

induction

induction

(c) Adding one to n, which is the chords in

ys.

induction

induction

induction

(d) We have z0 to the right of the zj . We

add one chord to zl.

C

induction

induction

C

(e) Adding one to n, which is the chords in

ys.

(f) Adding a chord to the zr.

C

induction

induction

C

(g) Adding one to n, which is the chords in

ys.

Figure 6.18: The inductive step for the nested case. The coloured lines may be multiple

chords or tails. The black lines are a single chord or tail. The edge that we add for the

inductive step is the black line whose other end is not shown. In the first three images,

z0 is on the left; in the second three, it is on the right. In order of endpoints from left

to right, excluding the single black chord that we do not slide over and z0, the chords

are zl, zk = y0, ys and zr. All of the yi are in the zj .
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(a) z1 � z0 (b) z0 � z1

Figure 6.19: The base cases for commutativity for yi 6= z0, zj 6= y0 and the oriented

chords disjoint but yi = zj .
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Cinduction

induction

induction

(a)

Cinduction

induction

induction

(b)

Figure 6.20: The inductive step for commutativity for yi 6= z0, zj 6= y0 and the oriented

chords disjoint but yi = zj . In the inductive step, we add zm. The coloured lines

represent multiple chords, all of which are one of the yi or zj . Not all of the multiple

chords are in both the yi and zj .
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