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Introduction

Classically, for a finite group G and a representation V over C with character χ, we

define the Frobenius-Schur indicator, as

ν(V ) =
1

|G|
∑
g∈G

χ(g2).

If V is an irreducible representation, then this indicator helps us to determine the

flavour of duality of V . Specifically, the Frobenius-Schur theorem states that ν(V )

could only be 1, −1, or 0, and if

• ν(V ) = 1: V is symmetrically self-dual

• ν(V ) = −1: V is antisymmetrically self-dual

• ν(V ) = 0: V is not self-dual

A great deal of work has been done to generalize the Frobenius-Schur(FS) indicators

for Hopf algebras (see [LM00], [KSZ06], [MN05], [Sch04], [NS08]) and for categories (see

[FS03], [FGSV99]). This culminated in the definition of generalized FS indicators for

pivotal categories (see [NS07]) and a formula of generalized FS indicators for spherical

fusion categories, given by Ng and Schauenberg in [NS10].

In broad terms, the generalized FS indicators for fusion categories are the traces

of generalized rotation operators on homspaces in the category. Generalized rotation

operators have been studied extensively and play an important role in the study of

subfactor planar algebra. V. Jones used these rotations to show that certain quadratic

tangles are linearly independent [Jon12] and to construct annular structures of subfac-

tors [Jon01], which played a crucial part in the classification of subfactors of index at

most 5 (see [JMS14] for an overview).

Generalized FS indicators have proven to be a useful tool for analyzing fusion cate-

gories. One important application is in the proof of the congruence subgroup conjecture

for spherical fusion categories, which states that the kernels of the modular represen-

tations of modular categories are congruence subgroups of SL2(Z) (see [NS10]). The

confirmation of this conjecture provides important insight on the relationship between

rational conformal field theories and modular categories.
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Generalized FS indicators are also useful for classification purposes, as they can

be used to create bounds and have nice number theoretic properties. It was used by

Bruillard, Ng, Rowell and Wang to show rank finiteness of modular tensor categories,

which is that, up to equivalence, there are only finitely many modular categories of any

fixed rank [BNRW16]. Furthermore, the indicators have been used to classify fusion

categories of small rank (see [Ost14], [Lar15]).

The focus of this thesis is to give a self-contained derivation of the generalized

Frobenius-Schur indicator formulas for spherical fusion categories given in [NS10]. This

thesis will be presented as follows. The first two chapters give an introduction to the

language of monoidal categories, focusing mostly on the theory needed in the remainder

of the thesis. Specifically, chapter 1 defines pivotal and semisimple monoidal categories

and chapter 2 defines braided monoidal categories, modular data and the Drinfeld

center. In chapter 3, we define the induction functor to the Drinfeld center, and give a

formula for the generalized Frobenius-Schur indicators in terms of the inductor functor

and modular data of the center. Finally, in chapter 4, we follow the work of Barter, C.

Jones and Tucker in [BJT16] and use the indicator formula to construct special torus

link invariants for modular categories.



Chapter 1

Introduction to monoidal

categories

There is a plethora of adjectives used to classify and describe tensor categories. This

chapter, along with the next, introduces some of this language. In section 1.1 we give

the definitions of monoidal categories and monoidal functors, as well as provide an

explanation of string diagrams. Section 1.2 introduces pivotal categories and section

1.3 extends on this and defines spherical categories. Section 1.4 focuses on semisimple

categories and makes some important observations about dimensions of simple objects

in semisimple categories. Section 1.5 gives an introduction to dual pairings and presents

the two basis, dual basis pairs we need for the proof of the indicator formula.

Note that throughout this thesis we assume our categories are essentially small.

1.1 Monoidal categories

We first introduce the notion of a monoidal category, which is the categorification of a

monoid.

Definition 1.1. A monoidal category is a category C with the following additional

information:

1. tensor product : a bifunctor ⊗ : C × C → C

2. associator : a family of natural isomorphisms

αU,V,W : (U ⊗ V )⊗W ∼−→ U ⊗ (V ⊗W )

for U, V,W ∈ C

3. unit : an object 1 ∈ C

3
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4. left and right unitors: natural isomorphisms

λV : 1⊗ V ∼−→ V

ρV : V ⊗ 1
∼−→ V

for all V ∈ C

such that they satisfy the following conditions:

• For all W,X, Y, Z ∈ C, we have the commutative diagram

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y⊗idZ αW⊗X,Y,Z

αW,X⊗Y,Z αW,X,Y⊗Z

idW⊗αX,Y,Z

.

(pentagon axiom)

• For all V,W ∈ C, we have the commutative diagram

(V ⊗ 1)⊗W V ⊗ (1⊗W )

V ⊗W

α

ρ⊗id id⊗λ . (triangle axiom)

We now give a brief explanation of why we require the pentagon and triangle ax-

ioms. Recall that in a monoid, we write the expression for an element, m1 ◦ ... ◦mn,

of the monoid without specifying a parenthesization. This is because multiplication in

the monoid is associative. Similarly, we could also add and delete copies of the identity

element. As an analogue of the associativity condition of monoids, given two paren-

thesization of V1 ⊗ ... ⊗ Vn, X1 and X2, in the monoidal category, we require that all

isomorphisms composed of α, ρ, λ from X1 to X2 to be equal. In other words, we have

a canonical isomorphism between X1 and X2, By the MacLane Coherence Theorem1

this is equivalent to showing that the triangle and pentagon axioms are satisfied.

We can also categorify morphisms between monoids.

Definition 1.2. Let (C,⊗, α, 1, λ, ρ) and (C′,⊗′, α′, 1′, λ′, ρ′) be monoidal categories.

A monoidal functor from C to C′ is a pair (F, J) where

F : C → C′
1For a proof, see [EGNO15].
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is a functor and

JX,Y : F (X)⊗′ F (Y )→ F (X ⊗ Y )

is a family of natural isomorphisms such that:

• F (1) is isomorphic to 1′

• For X,Y, Z ∈ C, we have the commutative diagram

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ (F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

JX,Y ⊗′idF (Z)

α′
F (X),F (Y ),F (Z)

idF (Z)⊗′JY,Z

JX⊗Y,Z JX,Y⊗Z

F (αX,Y,Z)

.

(monoidal structure axiom)

Definition 1.3. A monoidal functor (F, J) is an equivalence of monoidal categories

if F : C → C′ is an equivalence of categories. In this case, we also say C and C′ are

monoidally equivalent.

It can become complicated wrangling with unitors and associators. However, some-

times we are lucky and all unitors and associators are in fact identities. In this case,

we have a strict monoidal category.

Definition 1.4. A monoidal category C is strict if

V ⊗ 1 = V = 1⊗ V , (V ⊗W )⊗ Z = V ⊗ (W ⊗ Z)

for all V,W,Z ∈ C and all components of α, ρ, λ are identities.

It is a well-known theorem of MacLane2 that every monoidal category is monoidally

equivalent to a strict monoidal category. Therefore, given any non-strict monoidal

category, we can replace it with a strict one as long as we are only concerned with

monoidal categories up to monoidal equivalence. Thus in all later definitions3, we will

simplify notation and assume that our monoidal categories are strict.

Now we introduce a diagrammatic calculus for morphisms in a strict monoidal

category. We denote a morphism f : V → W by a box labelled by f with strings

labelled by V and W .

2For a proof, see [EGNO15].
3Except when we define braided tensor categories in section 2.1, where the unitors and associators

are included for completeness and consistency with the literature.
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W

V

f

Note that we read the string diagrams optimistically, that is, upwards. When f is

the identity, we just write it as a string without any boxes.

V

V

id :=

V

V

Composition of morphisms is denoted by vertical composition of the string diagrams.

For example, given f : X → Y and g : Y → Z, we write g ◦ f : X → Z as:

g ◦ f =

X

Z

g

f

Y

Tensor product of morphisms is denoted by horizontal juxtaposition of the string

diagrams, for example, given f : X → Y and h : W → Z, we write f ⊗ h : X ⊗W →
Y ⊗ Z as:

f ⊗ h =

X

Y

W

Z

f h

One advantage of using string diagrams is that most intuitive manipulations of the

strings are allowed and correspond to extra structures in the monoidal category4. For

example, one can imagine morphisms as beads on strings, which can be shifted up or

down the strings freely5.

4This statement is kept deliberately vague. We will make more sense of it in the later sections, once

we have defined more structures on monoidal categories.
5For further details on the coherence of the string diagram calculus, the reader should consult

[Mue10] for an overview and [JS91], [FY92] for comprehensive explanations.
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Lemma 1.5. Given f : V →W , and g : X → Y , we have

W

V

f

Y

X

g

=

W

V

f

Y

X

g . (1.1)

Proof. Since the tensor product is a bifunctor, we know that for morphisms h, k, l,m

with the appropriate domains and codomains, we have

(h⊗ k) ◦ (l ⊗m) = (h ◦ l)⊗ (k ◦m).

Then substituting h for f , g for m, and k, l for identities give us

(f ⊗ idY ) ◦ (idV ⊗ g) = f ⊗ g = (idW ⊗ g) ◦ (f ⊗ idX).

which is precisely what the diagram says.

1.2 Pivotal categories

Motivated by the concept of duals in the category of vector spaces, pivotal categories

gives us a way of defining duals of objects. Note that many varying definitions exist

and we follow the approach taken in [Mue03a], that is, we give the definition of a strict

pivotal category. It can be shown that theorems for strict pivotal categories can be

translated into results for general pivotal categories, up to inserting some isomorphisms

[Mue03a].

Definition 1.6. A strictly pivotal category is a strict monoidal category C with:

1. duals on objects: A map Obj(C)→ Obj(C) when sends V 7→ V such that

V = V, V ⊗W = W ⊗ V , 1 = 1.

2. evaluation and coevaluation: For all V ∈ C, we have morphisms

εV : V ⊗ V → 1

ιV : 1→ V ⊗ V

such that both

V = V ⊗ 1 V ⊗ V ⊗ V 1⊗ V = V

V = 1⊗ V V ⊗ V ⊗ V V ⊗ 1 = V

idV ⊗ιV εV ⊗idV

ιV ⊗idV idV ⊗εV
(1.2)
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are equal to idV .

3. coherence of objects: For all V,W ∈ C we have the following commutative trian-

gles:

1 V ⊗ V

V ⊗W ⊗ V ⊗W = V ⊗W ⊗W ⊗ V

ιV

ιV⊗W idV ⊗ιW⊗idV

1 V ⊗ V

V ⊗W ⊗ V ⊗W = V ⊗W ⊗W ⊗ V

εV

εV⊗W idV ⊗εW⊗idV

4. coherence of morphisms: For all morphisms s : V → W the following composite

morphisms are equal:

W = W ⊗ 1 W ⊗ V ⊗ V W ⊗W ⊗ V 1⊗ V = V

W = 1⊗W V ⊗ V ⊗W V ⊗W ⊗W V ⊗ 1 = V

idW⊗ιV idW⊗s⊗idV εW⊗idV

ιV ⊗idW idV ⊗s⊗idW idV ⊗εW

(1.3)

Graphically, we denote εV as

1

V V

εV :=

VV

.

Similarly, we denote ιV as

1

V V

ιV :=

V V

.
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Sometimes, to avoid clutter in the string diagrams, we may choose to only label the

middle of the string instead of the ends. For example, we can also denote εV as

V or V .

Then (1.2) can be graphically denoted as:

V

=

V

V

=

V

And (1.3) can be represented as:

V

W

s =
V

W

s

Furthermore, ε and ι give us a way of defining morphisms of C(V ,W ) from mor-

phisms in C(W,V ), a technique we will make frequent use of in chapter 3.

Definition 1.7. Given a pivotal category C and s ∈ C(V,W ), define s ∈ C(W,V ) as:

W

V

s :=

W

V

s (1.4)

Remark 1.8. By (1.3), we know we could have equivalently defined s to be:

W

V

s :=

W

V

s (1.5)
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1.3 Spherical structure

Definition 1.9. Given V an object in a strict pivotal category C, and f ∈ End(V ) we

can define the left categorical trace of f as follows:

1 V ⊗ V V ⊗ V 1
ιV f⊗IdV εV (1.6)

Diagrammatically, the left categorical trace, denoted by trL(f), is

trL(f) = f V . (1.7)

Similarly, we define the right categorical trace, denoted by trR(f), to be

trR(f) = fV . (1.8)

When taking the categorical trace, if the domains are codomains are compatible,

the order in which we compose the morphisms does not matter.

Lemma 1.10. For a pivotal category C, f ∈ C(V,W ), and g ∈ (W,V ), we have:

trL(f ◦ g) = trL(g ◦ f)

trR(f ◦ g) = trR(g ◦ f)

Proof. To prove trL(f ◦ g) = trL(g ◦ f), we need to show that

g

f

W

V

=

f

g

V

W

. (1.9)

By repeated use of (1.2), we have that

g

f

W

V

= g

f

W

V =

W

V
g

f
. (1.10)
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Observe that by (1.3) and (1.2),

W

V

g =

V

W

g =

W

V

g . (1.11)

Combining the two facts above gives us (1.9). Similarly, one can show that trR(g ◦
f) = trR(g ◦ f).

Definition 1.11. A pivotal category C is spherical if for all objects V ∈ C and mor-

phisms s ∈ End(V ), trR(f) = trL(f). When this is the case, we drop the letters R and

L and just use the notation tr(f).

Definition 1.12. For V an object in a spherical category C, the dimension of V ,

denoted by dV , is defined by

dV = tr(idV ).

1.4 Semisimple categories

To define a semisimple category, we have to first define a k-linear category, which can

be thought of as an enrichment over k-vector spaces6. That is, instead of thinking of

the homspaces just as sets, we require them to be vector spaces. Note that for the rest

of the thesis, we only work with the case where k is an algebraically closed field with

characteristic 0.

Definition 1.13. Let k be a field. A category C is a k-linear category if it satisfies the

following:

• all homspaces are finitely generated k-vector spaces

• compositions of homspaces are k-linear

We now define the concept of direct sums and simple objects in a k-linear category.

Definition 1.14. For a k-linear category C and X1, . . . , Xn objects in C, the direct sum

of X1, . . . , Xn exists if there are Y ∈ C, vi ∈ C(Xi, Y ), and v
′
i ∈ C(Y,Xi) such that:∑

i∈[1,...,n]

vi ◦ v
′
i = idY

v
′
i ◦ vj = δi,j idXi

(1.12)

Then we say Y is a direct sum of X1, . . . , Xn. The category C has direct sums if

the direct sum of W,Z exists for all W,Z ∈ C.
6Note that one could let k to be a commutative ring, and think about k-modules instead.
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Definition 1.15. In a k-linear category C, an object V ∈ C is simple if End(V ) = k idV .

At last, we define semisimple categories.

Definition 1.16. A k-linear category C is semisimple if:

• it has direct sums

• all idempotents split, that is, for all f = f · f ∈ End(X), there exists Y ∈ C and

u : Y → X, u′ : X → Y such that u′ · u = idY and u · u′ = f

• the simple objects are mutually disjoint, that is, let the set of simple objects be

{Xi}i∈I , then C(Xi, Xj) ' δi,j k

• for all Y, Z ∈ C, the map by composition:⊕
i∈I
C(Xi, Z)⊗k C(Y,Xi)→ C(Y, Z)

is an isomorphism.

Remark 1.17. Furthermore, if C is a monoidal category, we also require that 1 is a

simple object for semisimplicity.

For C a semisimple category, we denote the set of simple objects in C by Irr(C). It

can be shown that every object in a semisimple category is isomorphic to a finite direct

sum of simple objects7. As a consequence of this, for any X ∈ C, we have that

X '
⊕

Y ∈Irr(C)

Y nY (1.13)

where nY = dim(C(Y,X)).

In particular, whenX = A⊗B forA,B ∈ Irr(C), we can define the fusion coefficients

NY
A,B = dim(C(A⊗B, Y )),

which satisfy

A⊗B '
⊕

Y ∈Irr(C)

Y NY
A,B .

Now we prove some lemmas for semisimple, pivotal categories.

Lemma 1.18. Let C be semisimple, pivotal category and J ∈ Irr(C). Then J ∈ Irr(C).
7We won’t prove this here. In Cor. 1.27, however, we give a proof for the case when C is a semisimple

category with finitely many simple objects.
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Proof. We can define a linear isomorphism Φ : End(J) → End(J) as the map that

sends

J

J

f 7→

J

J

f . (1.14)

This map has an inverse that sends

J

J

g 7→

J

J

g . (1.15)

It is easy to check that Φ is in fact a vector space isomorphism, so End(J) ' End(J) =

k idJ .

Lemma 1.19. For a semisimple, pivotal category C, and J ∈ C, we have

dJ = dJ

d1 = 1.

Proof. By definition of dimension and sphericality of C, we have

dJ = trL(idJ) = J = trR(idJ) = dJ . (1.16)

For the second equation, observe that since C is a k-linear category, for all X ∈ C,
we have

dX = d1⊗X = d1dX . (1.17)

Therefore d1 = 1.

Lemma 1.20. For a semisimple, pivotal category, and L, J ∈ Irr(C), Hom(L ⊗ J, 1)

is one-dimensional if L = J and zero otherwise.

Proof. By a similar argument as in Lemma 1.18, we know that Hom(LJ, 1) ∼= Hom(L,1⊗
J) = Hom(L, J). Since L, J are simple objects, by definition, Hom(L, J) is one-

dimensional if and only if L = J .
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We can also require there to be only finitely many simple objects.

Definition 1.21. A monoidal category C is finitely semisimple if it is semisimple and

has a finite number of isomorphism classes of simple objects. A monoidal category C
is fusion if it is finitely semisimple and pivotal.

Definition 1.22. The categorical dimension, D, of a spherical fusion category C is

D =
∑

L∈Irr(C)

d2
L.

1.5 Dual pairings

Let C be a semisimple category and k be an algebraically closed field with characteristic

0. Since the homspaces are vector spaces, we can give a basis. The goal of this section

is to review of the concept of dual pairing, which is a gadget that generates a dual basis

from a basis. Moreover, we highlight two dual pairings we use in the latter chapters.

Definition 1.23. Let V and W be vector spaces over a field k. Then a bilinear map

〈 , 〉 : V ×W → k is non-degenerate if it satisfies:

• if v ∈ V is such that for all w ∈W , 〈v, w〉 = 0, then v = 0

• if w ∈W is such that for all v ∈ V , 〈v, w〉 = 0, then w = 0

Definition 1.24. For V and W vector spaces over a field k, a dual pairing of V with

W is a non-degenerate bilinear map 〈 , 〉 : V ×W → k.

Theorem 1.25. Let V and W be finite dimensional vector spaces over a field k and

〈 , 〉 : V ×W → k

is a dual pairing of V with W . Then there is an isomorphism from V to W ∗, which

sends v to λv where λv(w) = 〈v, w〉.

For a proof, see [Gar09]. Thus, given {vi} a basis of V , the dual pairing provides a

corresponding dual basis {wi} of W ' V ∗, given by the equation 〈vi, wj〉 = δij . Now

we prove some properties of finitely semisimple categories which will help us to define

our first dual pairing.

Theorem 1.26. For a finitely semisimple category C and L ∈ Irr(C), define

〈 , 〉 : C(Y,L)⊗k C(L, Y )→ k (1.18)

to be the bilinear map that sends g ⊗k f to c where g ◦ f = c · idL. This map is

non-degenerate.
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Proof. Suppose there exists v ∈ C(L, Y ) such that for all w ∈ C(Y,L), 〈w, v〉 = w◦v = 0.

By semisimplicity, for x ∈ End(Y ), there exist fJ ∈ C(Y, J) and gJ ∈ C(J, Y ) such that

x '
∑

J∈Irr(C)

gJ ◦ fJ .

Consider the morphism ∑
J∈Irr(C)

gJ ◦ fJ ◦ v,

as L, J are simple objects, C(L, J) = 0 if L 6= J , so most of the terms in the sum will

be zero and we are left with gL ◦ fL ◦ v. By assumption, fL ◦ v = 0, thus x ◦ v = 0 for

all x ∈ End(Y ). Let x = idY . Then we have that 0 = idY ◦ v = v.

By a similar argument, one can show that if there exists w ∈ C(Y,L) such that for

all v ∈ C(L, Y ), 〈w, v〉 = 0, it must be the case that w = 0.

Corollary 1.27. In a finitely semisimple category C, every object can be written as a

finite direct sum of simple objects.

Proof. Let {β} be a basis of C(Y,L), which we will denote as β ∈ B(Y, L). Observe

that the dual pairing above gives a dual basis {β∗} ∈ C(L, Y ). Since β ◦ α = δα,β idL,

it suffices to show that ∑
L∈Irr(C)
β∈B(Y,L)

β∗ ◦ β = idY .

Let

g =
∑

L∈Irr(C)
β∈B(Y,L)

β∗ ◦ β.

Then it suffices to show that for all f ∈ C(Z, Y ), f ′ ∈ C(Y,Z), we have that g ◦ f = f

and f ′ ◦ g = f ′.

By semisimplicity, there exist wJ ∈ C(J, Y ) and vJ ∈ C(Z, J) such that

f '
∑

J∈Irr(C)

wJ ◦ vJ .

Consider

g ◦
∑

J∈Irr(C)

wJ ◦ vJ ,

it is easy to see that for, L 6= J the term is zero as L, J are simple objects. Thus

we are left with ∑
L∈Irr(C)
β∈B(Y,L)

β∗ ◦ β ◦ wL ◦ vL.
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By writing wL in terms of β∗ ∈ B(L, Y ), we see that,∑
L∈Irr(C)
β∈B(Y,L)

β∗ ◦ β ◦ wL = wL.

Therefore, g ◦ f = f . By a similarly argument, one can show that f ◦ g = f .

Thus, for this dual pairing, we have a nice expression of the identity morphism in

terms of a basis and its dual basis.

Corollary 1.28. Let C be a finitely semisimple category and X,Y ∈ C. For each

L ∈ Irr(C), pick a basis of C(X ⊗ Y,L). Let the dual pairing be the map

〈 , 〉 : C(L,X ⊗ Y )⊗k C(X ⊗ Y, L)→ k (1.19)

that sends f ⊗k g to c where g ◦ f = c · idL. Then

X

X

Y

Y

=
∑

L∈Irr(C)
α∈B(XY,L)

YX

L

α∗

YX

α

. (1.20)

Remark 1.29. The fact that the RHS of (1.20) does not depend on the choice of basis

stems from the linearity of hom-spaces in C. It is well-known that if {αi} and {βj} are

two different bases for C(X ⊗ Y, L), then
∑

i αi ⊗k α
∗
i and

∑
j βj ⊗k β

∗
j represent the

same element in C(X ⊗ Y, L)⊗k C(L,X ⊗ Y ). Consider the map

Γ : C(X ⊗ Y,L)× C(L,X ⊗ Y )→ C(X ⊗ Y,X ⊗ Y ) (1.21)

which sends f × g to the following morphism

YX

L

g

YX

f

.

Since C is a k-linear category, Γ is in fact a k-linear map. Therefore

Γ(
∑
L

αi × α∗i ) = Γ(
∑
j

βj × β∗j )
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and the definition does not depend on the basis. In general, in a k-linear category, if

we define a morphism using the sum of some basis and dual basis, then the definition

does not depend on the choice of basis. This observation is extremely useful and we

frequently use this in the proofs that follow to choose a convenient basis.

Note that the pairing 〈 , 〉 requires L to be a simple object. When this is not the

case, we use another dual pairing defined as follows. Let C be a fusion category. For

X,Y ∈ C, define the bilinear map

( , ) : C(X,Y )⊗k C(Y,X)→ k (1.22)

be the map that sends β ⊗ α to c, where

c =

X

Y

α

β

. (1.23)

It is easy to check that ( , ) is non-degenerate by decomposing X,Y into direct sums of

simple objects.

Remark 1.30. A remark on notation: instead of explicitly stating the dual pairing,

we annotate with either an asterisk or a star to differentiate between the two pairings.

For instance, let {β} be a basis for the vector space V , then {β∗} is the dual with

respect to 〈 , 〉 and {β?} is the dual with respect to ( , ).

Lastly, we recall the definition of the trace of a linear operator. Note that by remark

1.29, this definition does not depend on the choice of basis.

Definition 1.31. Let C be a k-linear category. For a linear map T : C(X,Y )→ C(X,Y )

and a basis {α} of C(X,Y ), the trace of T is

Tr(T ) :=
∑

α∈B(X,Y )

(Tαi, α
?
i )

where {α?i } is the corresponding dual basis under the dual pairing ( , ).
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Chapter 2

Braided monoidal categories

This chapter continues the introduction to the language of monoidal categories. In

section 2.1 we define braided monoidal categories and braided monoidal functors. In

section 2.2 we define twists for pivotal, braided tensor categories and elaborate on

twists of simple objects when the category is also semisimple. In section 2.3 we discuss

modular categories. In particular, we define the s and t matrices and present the

Verlinde formula. Finally, in section 2.4 we define the Drinfeld center.

2.1 Braided monoidal categories

Braided monoidal categories capture in categorical terms what happens when we com-

mute the terms in a tensor product. This is done by specifying a family of natural

isomorphisms σV,W : V ⊗W →W ⊗ V , which is referred to as the braiding.

Definition 2.1. A braided monoidal category is a monoidal category C equipped with

a family of natural isomorphisms

σV,W : V ⊗W ∼−→W ⊗ V

satisfying the hexagon axioms, that is, for all X,Y, Z ∈ C

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

σX,Y⊗Z

αY,Z,XαX,Y,Z

σX,Y ⊗idZ

αY,X,Z

idY ⊗σX,Z

19
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(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

σX⊗Y,Z

α−1
Z,X,Yα−1

X,Y,Z

idX⊗σY,Z

α−1
X,Z,Y

σX,Z⊗idY

commutes.

The hexagon axioms ensure that the braiding is in fact a good one, in the sense

that it is compatible with the tensor product. One way to see this is as follows. For

strict tensor categories, the hexagon axioms simplify to the following conditions:

σX,Y⊗Z = (idY ⊗ σX,Z) ◦ (σX,Y ⊗ idZ)

σX⊗Y,Z = (σX,Z ⊗ idY ) ◦ (idX ⊗ σY,Z)
(2.1)

In our graphical notation, we denote σV,W as a crossing of the strings of the following

type

V

W

W

V

σV,W =:

VW

WV

, (2.2)

and we denote σ−1
V,W as a crossing of the strings of the following type

W

V

V

W

σ−1
V,W

=:

V W

W V

. (2.3)
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Then (2.1) can be expressed as:

XY Z

Y ZX

=

XZ

Z

Y

YX

XYZ

ZXY

=

X

X

Y

YZ

Z

(2.4)

Since the braiding is natural, we can also move morphisms up and down the string

like beads. For example, for U, V,W ∈ C, f ∈ C(U, V ) we have

VW

WU

f
=

VW

WU

f

, (2.5)

and

WV

UW

f

=

WV

UW

f

. (2.6)

We can extend on the definition of monoidal functor when the functor also behaves

well with the braiding.

Definition 2.2. Let (C,⊗, α, 1, λ, ρ) and (C′,⊗′, α′, 1′, λ′, ρ′) be braided monoidal cat-

egories with braiding σ and σ′ respectively. A monoidal functor (F, J) from C to C′ is

called braided if for all X,Y ∈ C, we have the commutative diagram

F (X)⊗′ F (Y ) F (Y )⊗′ F (X)

F (X ⊗ Y ) F (Y ⊗X)

JX,Y

σ′
(F (X),F (Y ))

JY,X

σ(X,Y )
.
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If F is also an equivalence of categories, then C and C′ are braided monoidally

equivalent.

2.2 Twists

Once we have a braided structure, we can define the notion of twists.

Definition 2.3. For a pivotal, braided tensor category C and V ∈ C. We can define

the twist of V , denoted by θV , as the composition of the following morphisms:

V = V ⊗ 1 V ⊗ V ⊗ V V ⊗ V ⊗ V V ⊗ 1 = V
idV ⊗ιV σV,V ⊗idV idV ⊗εV

In our graphical notation, θV is interpreted as a twist in the string:

V

V

θV :=

V

V

Now we prove that twists allow morphisms to pass through them.

Lemma 2.4. Let C be a pivotal braided tensor category and f ∈ C(X,Y ). Then

Y

X

θY

f

Y =

Y

X

θX

f

X . (2.7)

Proof. This is a simple computation using the functoriality of the braiding and the

observation

X

Y

f =

X

Y

f . (2.8)
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Remark 2.5. Furthermore, one can show that, for C a pivotal braided tensor category

and V,W ∈ C, we have

V

V

W

W

θV⊗W =

V W

V W

θV θW

. (2.9)

For readers familiar with the notion of ribbon categories, observe that this is the

ribbon relation. In fact, for semisimple categories, spherical braided structures uniquely

define ribbon structures of C1.

For a semisimple category C and L ∈ Irr(C), we can identify θL with a scalar as

HomC(L,L) ' k.

Definition 2.6. Let C be a semisimple, pivotal, braided category. Given L ∈ Irr(C),
we define θL ∈ k as follows:

L

= θL

L

Now we prove some useful lemmas which tell us how the different twists relate with

each other.

Lemma 2.7. For C a braided spherical fusion category, and L ∈ Irr(C), we have:

1.

L

=

L

2.

L

= θ−1
L

L

Proof. Since L ∈ Irr(C), there exists c1, c2 ∈ k such that

L

= c1

L

(2.10)

1See [EGNO15] Prop. 8.10.12.
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L

= c2

L

. (2.11)

Now take the trace of (2.10) and (2.11), since C is spherical, we know that the two

traces must be equal, so c1 = c2.

To prove the second statement, observe that by the first statement, we have

L

=

L

. (2.12)

By functoriality of the braiding, we have

L

=

L

. (2.13)

By the properties of the pivotal structure, we know that

L

=

L

. (2.14)

Since L is simple, then it must be that case that

L

= θ−1
L

L

.

2.3 Modular categories

In this section, we define modular data for premodular categories and give a definition of

modular categories. Then we present some of the key theorems for modular categories.
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Note that this section only contains the theorems needed for later chapters, for a more

nuanced introduction to modular categories and complete proof of theorems, consult

[BJ00].

First we define premodular categories.

Definition 2.8. A monoidal category C is a premodular category if it is semisimple,

spherical and braided.

For a premodular category C and simple objects L, J ∈ Irr(C), we can define s̃LJ ∈
k = End(1, 1) by

s̃LJ :=

L J

. (2.15)

Observe that

s̃L1 = dL. (2.16)

Also, by remark 2.5 and decomposing L ⊗ J into simples, we can alternatively

express s̃LJ as,

s̃LJ = θ−1
L θ−1

J

∑
K∈Irr(C)

NK
LJ
θKdK . (2.17)

Thus by (2.17), one can show that

s̃LJ = s̃JL = s̃LJ = s̃J L (2.18)

by observing C(L ⊗ J,K), C(J ⊗K,K), C(L ⊗ J,K) and C(J ⊗ L,K) are isomorphic

as vector spaces, where the isomorphisms are given by some suitable compositions of

braiding and morphisms from the pivotal structure.

We can collect this information in the form of a matrix, giving us the s̃ matrix. In

a similar fashion, we can define the t and c matrices.

Definition 2.9. For a premodular category C we define the following matrices

s̃ := (s̃LJ)

t := (tLJ)

c := (cLJ),

with entries indexed by L, J ∈ Irr(C) and

tL,J := δL,JθL

cL,J := δL,J .
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Definition 2.10. A premodular category C is modular if is finitely semisimple and s̃

is invertible.

When C is modular, we can normalize s̃ by

s :=
s̃√
D

where D is the categorical dimension.

The s, t, and c matrices of a modular category satisfy nice relations.

Theorem 2.11. For a modular category C, we have:

(st)3 =

(
p+

p−

) 1
2

s2

s2 = c

ct = tc

c2 = 1

where

p+ :=
∑

L∈Irr(C)

θLd
2
L

p− :=
∑

L∈Irr(C)

θ−Ld
2
L

and are non-zero.

From the relations above, one can show that the s and t matrices give a projective

representation of the modular group, SL2(Z), hence the name modular categories. The

s and t matrices provide a surprisingly large amount of information about the category.

In particular, we can use them to calculate the fusion coefficients. This is done using

the Verlinde formula.

Theorem 2.12 (Verlinde formula). For a modular category C, we have

NK
LJ =

∑
R∈Irr(C)

sLRsJRsKR
s1R

. (2.19)

2.4 Drinfeld center

For a strict tensor category C, one can construct the Drinfeld center, denoted by Z(C),
out of half-braidings.

Definition 2.13. A half-braiding on X ∈ C is a family of isomorphisms {eX(Y ) :

XY → Y X}Y ∈C satisfying:
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1. naturality : For all Y,Z ∈ C and all morphisms f ∈ C(Y,Z),

eX(Z) ◦ (idX ⊗ f) = (f ⊗ idX) ◦ eX(Y ). (2.20)

2. braid relation: For all Y, Z ∈ C,

eX(Y Z) = (idY ⊗ eX(Z)) ◦ (eX(Y )⊗ idZ). (2.21)

As with braidings, we denote half-braiding by crossings of the strings. To avoid any

confusion between braidings and half-braiding, we follow a similar convention to that

in [JB10]2, and denote strings coming from objects in the center by double green lines.

Therefore, any strings that cross under the double green line should be interpreted as

a half-braiding. Note that, for convenience, we sometimes label the double green line

with the underlying object in the category, rather than the object in the center. For

example, We can express the naturality and braid relations of half-braiding using the

following diagrammatic equations:

XZ

YX

f

=

XZ

YX

f

(2.22)

XY Z

Y ZX

=

XZ

Z

Y

YX

(2.23)

Now we define the Drinfeld center of a tensor category.

Definition 2.14. The Drinfeld center Z(C) is a category with objects (X, eX) where

X ∈ C and eX is a half braiding of X. Given objects (X, eX), (Y, eY ), we define

HomZ(C)((X, eX), (Y, eY )) as the set of morphisms f ∈ C(X,Y ) satisfying for all Z ∈ C,

YZ

ZX

f

=

YZ

ZX

f

. (2.24)

2We differ from [JB10] by having the green strings on top in the braiding rather than under.
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Remark 2.15. A point on notation: sometimes we may write a morphism f ∈ C(V,W ),

as follows

(V, eV )

W

f .

This allows us to encode the half-braiding of (V, eV ) ∈ Z(C) diagrammatically even

though f is a morphism in the category.

We can give Z(C) a strict monoidal structure. Let the tensor product be

(X, eX)⊗ (Y, eY ) = (XY, eXY ) (2.25)

where

eXY (Z) = (eX(Z)⊗ idY ) ◦ (idX ⊗ eY (Z)), (2.26)

and the unit be (1, e1) where e1(X) = idX . In fact, one can do more, [Mue03b] showed

that Z(C) inherits more structures from C and is in fact modular.

Theorem 2.16 ([Mue03b] Thm. 1.2). Let k be an algebraically closed field, and C a

spherical fusion category with categorical dimension D 6= 0. Then Z(C) is a modular

category.



Chapter 3

Generalized Frobenius-Schur

indicators

As every object/morphism in Z(C) corresponds to an object/morphism in C, we can

define the forgetful functor

F : Z(C)→ C

which sends (X, eX) to X and morphisms in Z(C) to the underlying morphisms in C.
We now have the language to give the formal definition of the generalized Frobenius-

Schur indicators.

Definition 3.1. For a spherical fusion category C, n ∈ N, X ∈ C and W ∈ Z(C), we

define the rotation operator

ρWn,X : C(F (W ), X⊗n)→ C(F (W ), X⊗n)

as the following map

...

W

X⊗n

Definition 3.2. The generalized Frobenius-Schur indicator, denoted by νWn (X), is de-

fined as the trace of the rotation operator, that is,

νWn (X) := Tr(ρWn,X).

The aim of this chapter is to derive a formula for the generalized Frobenius-Schur

indicators in terms of modular data of the center. This formula is given in [NS10] as

29
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Cor. 5.6, here we give a direct and self-contained proof. Roughly speaking, we do this

by extending the adjunction between the forgetful and induction functor to construct

a suitable algebra isomorphism between morphisms in the category and morphisms in

the center. Then, using this isomorphism, we find a way of expressing the trace of the

rotation operator in terms of the categorical trace of some morphism in the Drinfeld

center.

The outline of this chapter is as follows. Section 3.1 is dedicated to defining the

induction functor to the Drinfeld center. Section 3.2 gives a proof of the fact that the

induction functor is left adjoint to the forgetful functor. Then in section 3.3, we extend

the bijection of hom-sets from the adjunction into an algebra isomorphism. In section

3.4 we prove some useful equalities between traces of morphisms. Finally, in section

3.5 we present a closed formula for the generalized Frobenius-Schur indicators.

Note that for simplicity, we abbreviate tensor product as concatenation, for exam-

ple, XY := X ⊗ Y .

3.1 Induction to the Drinfeld center

The goal of this section is to define the induction functor to the Drinfeld center, fol-

lowing the approach taken in [JB10].

First we define a special half-braiding for objects i(X) ∈ C. For X ∈ C, define i(X)

as

i(X) =
⊕

J∈Irr(C)

JXJ.

Then we define a half-braiding for objects of the form i(X) ∈ C. For

ei(X)(Z) :

 ⊕
J∈Irr(C)

JXJ

Z → Z

 ⊕
J∈Irr(C)

JXJ

 ,

we let the L, J component be

Z J X J

L X L Z

(ei(X)(Z))
L,J

:=
∑

β∈B(LZ,J)

√
dL√
dJ

Z J

L

β̂∗

X

X

J

L Z

β (3.1)

where
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Z J

L

β̂∗ :=

L

Z J

β∗ . (3.2)

Remark 3.3. Once again this does not depend on the choice of basis by remark 1.29,

and we remind the reader that the dual basis is with respect to the dual pairing 〈 , 〉
defined in Theorem 1.26.

Remark 3.4. For simplicity, we shorten ei(X)(Z)L,J to just eL,J when the half-braiding

can be easily deduced from the string labels.

Now we prove that ei(X) is indeed a half-braiding.

Theorem 3.5. For a spherical fusion category C and X ∈ C, we have that (3.1) defines

a half braiding of i(X).

Proof. To show that ei(X) is an isomorphism, we give an inverse, which has components:

J X J Z

Z L X L

e−1
L,J

=
∑

ε∈B(JZ,L)

√
dL√
dJ

J

Z L

ε′

X

X

J Z

L

ε∗ (3.3)

where

J

Z L

ε′ :=

J

Z L

ε (3.4)

We claim that for L,K simple objects in C,

∑
J∈Irr(C)

eJK ◦ e−1
LJ = δKL · idZLXL. (3.5)
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Observe that

eJK ◦ e−1
LJ =

∑
β∈B(JZ,K)
ε∈B(JZ,L)

√
dL√
dK

X

X L

ε∗

K

J ZJ

Z K

Z L

ββ̂∗

ε′

. (3.6)

Since K,L are simple, eJK ◦ e−1
LJ = 0 unless K = L. Furthermore, by definition of

dual basis, for εi, εj ∈ B(JZ,L), εi ◦ ε∗j = δi,j idL, therefore

eJL ◦ e−1
LJ =

∑
ε∈B(JZ,L)

X

X L

L

J

Z L

Z L

ε̂∗

ε′

. (3.7)

By remark 1.29, if we can find some choice of basis of β ∈ C(JZ,L) such that β′ is

a basis of C(ZL, J) and β̂ is the dual basis of β′ with respect to the pairing 〈 , 〉, then

(3.5) follows from Cor. 1.28.

First observe that we can construct a linear isomorphism between C(JZ,L) and

C(ZJ,L) using ε, ι and scalar multiplication, thus, for β ∈ B(JZ,L),

√
dJ√
dL

L

Z J

β′

is a basis of C(ZJ,L).

We claim that

√
dJ√
dL

Z J

L

β̂∗
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is the corresponding dual basis. To show this, we observe that since J is simple, for

βi, βj in the basis of C(JZ,L) there exists some c ∈ k such that,

dJ
dL

β̂∗1

L

L

Z J

β2
′

= c L .

Taking the categorical trace of LHS gives

LHS =
dJ
dL

β2

β∗1

L

Z
J

=
dJ
dL

β2

β∗1

L

ZJ . (3.8)

By lemma 1.10, we know that this is just the same as trL(βi ∗ ◦βj), so the LHS is

0 when βi 6= βj and dJ when i = j. Since the categorical trace of the LSH is just c dL.

Therefore c = 0 when i 6= j and c = 1 when i = j.

Therefore, by making a good choice of basis, we have deduced∑
L∈Irr(C)

eJK ◦ e−1
LJ = δKL · idZLXL.

A similar argument can be applied to show∑
L∈Irr(C)

e−1
JK ◦ eLJ = δKL · idLXLZ .

To show naturality, we need that for all W,Z ∈ C, f ∈ C(Z,W ), and for all L, J ∈
Irr(C), we have

∑
β∈B(LW,J)

W J

L

β̂∗

X

X

J

L

W

Z

β

f

=
∑

ε∈B(LZ,J)

Z

W J

L

ε̂∗

X

X

J

L Z

ε

f

. (3.9)
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Since {ε} forms a basis of C(LZ, J), then for each β ∈ B(LW, J), there exists

cε,β,J ∈ k such that

J

L

W

Z

β

f

=
∑

ε∈B(LZ,J)

cε,β,J

J

L Z

ε . (3.10)

Similarly, since {β∗} forms a basis of C(J, LW ), there exists dε,β,J ∈ k such that

Z

L W

J

ε∗

f

=
∑

β∈(LW,J)

dε,β,J

L W

J

β∗ . (3.11)

Thus, we have

Z

W J

L

ε̂∗

f

=
∑

β∈(LW,J)

dε,β,J

W J

L

β̂∗ . (3.12)

Since {β} and {ε} are bases of C(LW, J) and C(LZ, J) respectively, by Cor. 1.28

L

L

Z

W

f =
∑

J∈Irr(C)
β∈B(LW,J)

L W

J

β∗

L

W

Z

β

f

=
∑

J∈Irr(C),
ε∈B(LZ,J)

W

L Z

f

J

L Z

ε∗

ε

. (3.13)
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Substituting (3.10) and (3.12) into (3.13) then pre-composing and post-composing

with ε∗ and β give us

cε,β,J = dε,β,J .

Thus we have proven (3.9).

To prove the braid relations, let α ∈ B(LY,K) and β ∈ B(KZ, J), then the L, J

component of (idY ⊗ eX(Z)) ◦ (eX(Y )⊗ idZ) is

∑
K∈Irr(C),

α∈B(LY,K),
β∈B(KZ,J)

√
dL√
dJ

K

L ZY

J

α

β

X

X

K

Y JZ

L

β̂∗

α̂∗

. (3.14)

By semisimplicity, the set consisting of

K

L ZY

J

α

β

where K ranges over all simple objects in C and α ∈ B(LY,K), β ∈ B(KZ, J) form

a basis of C(L⊗ (Y Z), J), with the corresponding dual basis given by

K

L ZY

J

α∗

β∗
.

Since C is pivotal, we have
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K

L

ZY J

α∗

β∗
=

K

Y JZ

L

β̂∗

α̂∗

.

Thus the L, J component of (idY ⊗ eX(Z)) ◦ (eX(Y ) ⊗ idZ) is equal to the L, J

component of eX(Y Z) by remark 1.29. Therefore the braid relations are satisfied.

Now we have all the ingredients needed to define the induction functor I : C → Z(C).
For X ∈ C, let

I(X) = (i(X), ei(X))

where

i(X) =
⊕

J∈Irr(C)

JXJ

and ei(X) is as defined in Section (3.1).

We define I for morphisms. Let f : X → Y , then I(f) : I(X) → I(Y ) has L, J

component 0 if L 6= J , and has component

L

L

Y

X

f

L

L

(3.15)

if L = J .

It is easy to see that I(f) is indeed a morphism in Z(C). Since the only non-zero

components are I(f)LL for all L ∈ Irr(C), this is equivalent to showing that for all

L, J ∈ Irr(C) and Z ∈ (C) we have
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Z J Y J

L Y L

Z

eLJ

L X L

I(f)LL

=

Z J Y J

J X J

Z

I(f)LL

L X L

eLJ

. (3.16)

An easy substitution of the half-braiding definition shows that the above equality must

hold. It is also immediately obvious that I(f ◦ g) = I(f) ◦ I(g). This confirms that I

is in fact a functor.

3.2 Adjoint to the forgetful functor

This section shows that the forgetful functor F : Z(C) → C is in fact biadjoint to I.

We first prove a useful lemma which helps us understand the relationship between the

different components gK : V → KXK of a morphism g ∈ Z(C)(V, I(X)).

Lemma 3.6. Let g : V → I(X) be a morphism in Z(C), and gK : V → KXK be the

K-th component of g, then

KXK

V

gK =
√
dK

K X

V

g1

K

. (3.17)

Proof. Since g is a morphism in the center, we know g must satisfy the following

K I(X)

V

g

K

=

K I(X)

V

g

K

. (3.18)

Picking the 1-th component of (3.18), we have
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K X

V

g1

K

=
∑

L∈Irr(C)

K 1 X 1

L X L

K

eL1

V

gL

=
∑

L∈Irr(C)
β∈B(LK,1)

√
dI√
d1

K 1 X 1

L L

K

β̂∗

V

gL

β
.

(3.19)

Since K and L are both simple, C(LK,1) is one-dimensional if L = K and zero

otherwise. Therefore the evaluation map, εI , and the coevaluation map, ιI can be used

to give a basis and dual basis of C(LK,1) = C(LL,1):

β :=
1√
dK

εK

β∗ :=
1√
dK

ιK

Substituting for the basis and dual basis simplifies (3.19) to

K X

V

g1

K

=
1√
dK

K X

KV

gK . (3.20)

Composing with ιK gives us the desired equality.

This lemma is crucial in proving that the induction and forgetful functor are biad-

joint as it gives us a way of constructing a canonical bijection of hom-sets.

Theorem 3.7. The induction functor I : C → Z(C) is right adjoint to the forgetful

functor F : Z(C)→ C.

Proof. We need to show that for all V ∈ Z(C) and X ∈ C, there exists a natural

isomorphism

Φ : C(F (V ), Y )→ Z(C)(V, I(Y )).

For f ∈ C(F (V ), Y ), we define Φ(f) : V → I(Y ) component-wise as follows

Φ(f)1 = f (3.21)
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KYK

V

Φ(f)K =
√
dK

K Y

V

f

K

(3.22)

We first show that for all f ∈ C(F (V ), Y ), Φ(f) is a morphism in the center. This

is equivalent to checking that for all W ∈ C,

W I(Y )

V

Φ(f)

W

=

W I(Y )

V

Φ(f)

W

. (3.23)

Observe that the K-th component of the RHS of (3.23) can also be written as:

∑
L∈Irr(C)

√
dL

W K

V

f

Y K

W

L L

eL,K
(3.24)

Using α ∈ B(KW,L), we can produce the following basis and dual basis of C(LW,K):

L W

K

β :=

√
dK√
dL

K

L W

α∗ (3.25)

L W

K

β∗ :=

√
dK√
dL

K

L W

α (3.26)

Substituting the basis into (3.24) gives us
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√
dK

∑
L∈Irr(C)

α∈B(KW,L)

Y

V

K

W

KW

α α∗
fL

. (3.27)

By the pivotal structure of the category, we have

L

W K

α =

L

KW

α . (3.28)

By the above fact, and that we can pull α under the half-braiding, (3.27) becomes

√
dK

∑
L∈Irr(C)

α∈B(KW,L)

Y

V

K

W

KW

L
α

α∗
f

. (3.29)

Since α form a basis of (KW,L), by Cor. 1.28, we know (3.27) is equal to

√
dK

K Y

V

f

KW

W

, (3.30)

which is the same as the K-th component of the LHS of (3.23), so Φ(f) is a mor-

phism in the center.

By Lemma 3.6, we know that every morphism in Z(C)(V, I(Y )) is uniquely deter-

mined by its 1-th component, thus Φ is a bijection.
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To show that the map is natural, we show that for all Y, Y ′ ∈ C, V, V ′ ∈ Z(C),
f ∈ C(Y, Y ′), g ∈ Z(C)(V ′, V )

C(F (V ), Y ) Z(C)(V, I(Y ))

C(F (V ′), Y ′) Z(C)(V ′, I(Y ′))

Φ

(F (g),f) (g,I(f))

Φ

commutes. That is, for all h ∈ C(F (V ), Y ), we want

Φ(f ◦ h ◦ F (g)) = I(f) ◦ Φ(h) ◦ g. (3.31)

Since the morphisms on both sides are in Z(C)(V ′, I(Y )) ⊆ C(F (V ′), I(Y )), we can

compare the K-th component, which is in C(F (V ′),KY K). By the definition of I, we

can derive that

(I(f) ◦ Φ(h))K = (I(f)K,K ◦ Φ(h))K = Φ(f ◦ h)K . (3.32)

So the K-th component of the RHS is

√
dK

K Y

V

f

h

g

K

. (3.33)

The K-th component of the LHS, by the definition of Φ, is

√
dK

K Y

V

f

h

F (g)

K

. (3.34)

Since g is a morphism in the centre we can move F (g) down the half-braiding, so

we get that it is equal to the RHS.
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Remark 3.8. In fact, I is biadjoint with F . By flipping the diagrams in proof upside

down, we can also show that I is left adjoint to F . That is, we can construct a natural

isomorphism

Ψ : C(Y, F (V ))→ Z(C)(I(Y ), V )

for V ∈ Z(C) and X ∈ C as follows:

Let f ∈ (Y, F (V )). Define

Ψ(f)1 = f (3.35)

KYK

V

Ψ(f)K =
√
dK

K Y

V

f

K

. (3.36)

By a similar argument as before, we can show that our definition of Ψ is indeed

good.

3.3 The tube algebra on C(i(X), X)

Pick X ∈ C. Recall that the adjunction in section 3.2 gives us a bijection of sets by

Φ−1:

C(i(X), X) = C(FI(X), X) ' Z(C)(I(X), I(X))

Since we are working in k-linear categories, Φ is also compatible with addition

and multiplication by scalars. Thus to produce an algebra isomorphism, it suffices to

specify a multiplicative structure on C(i(X), X). This gives rise to the tube algebra on

C(i(X), X). The construction of the tube algebra is due to [Ocn94].

Definition 3.9. Given X ∈ C, we define the tube algebra of X as

Tube(X) = C(i(X), X) =
⊕

J∈Irr(C)

C(JXJ,X),

which inherits the additive structures of homspaces from C. Given f, g ∈ C(i(X), X),

define multiplication g · f as
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g · f :=
⊕

L∈Irr(C)

∑
K,J∈Irr(C)
α∈B(JK,L)

√
dK
√
dJ√

dL

X

X

X

L L

K K

J J

gK

fJ

α α∗

(3.37)

where the notation α defined in 1.7.

Remark 3.10. It can also be shown that multiplication in the tube algebra is associa-

tive by applying remark 1.29.

Theorem 3.11. Let C be a spherical fusion category and X ∈ C. Then Φ defines an

algebra isomorphism between Tube(X) and Z(C)(I(X), I(X)).

Proof. Let f, g ∈ C(I(X), I(X)). It suffices to show

Φ−1(g ◦ f) = Φ−1(g) · Φ−1(f). (3.38)

Observe that

Φ−1(g) · Φ−1(f) =
⊕

L∈Irr(C)

∑
K,J∈Irr(C)
α∈B(JK,L)

√
dK
√
dJ√

dL

X

X

X

L L

K K

J J

gK,1

fJ,1

α α∗

. (3.39)

On the other hand, we know

Φ−1(g ◦ f) =
∑

K∈Irr(C)

X

K X K

gK,1

I(X)

fK

=
∑

K∈Irr(C)

√
dK

X

K X K

gK,1

I(X)

f1

. (3.40)
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Substituting the definition of the half-braiding into (3.40) gives

Φ−1(g ◦ f) =
⊕

L∈Irr(C)

∑
K,J∈Irr(C)
β∈B(LK,J)

√
dK

√
dL√
dJ

X

X

X

L L

K K

J J

gK,1

fJ,1

β̂∗ β

. (3.41)

For {α} a basis for C(JK,L), we can give a basis {β} for C(LK, J) by letting

L K

J

β :=

√
dJ√
dL

J

L K

α∗ . (3.42)

It is easy to check that the corresponding dual basis {β∗} is

L K

J

β∗ :=

√
dJ√
dL

J

L K

α . (3.43)

Substituting (3.42) and (3.43) into (3.41) gives us the expression in (3.39). So we

are done.

3.4 Tying the strings together

Now we prove some useful facts about the relationship between the categorical traces

of morphisms in C(i(X), X) and Z(C)(I(X), I(X)). This gives us the key ingredients

we need for the indicator formula.

Theorem 3.12. Let C be a spherical fusion category, X ∈ C and f ∈ C(i(X), X). Then



3.4. TYING THE STRINGS TOGETHER 45

Φ(f)

I(X)

= D f1

X

(3.44)

where f1 ∈ C(X,X) denotes the 1-th component of f and D is the categorical dimension

of C.

Proof. First rewrite i(X) as
∑

L LXL, and observe that since L, J are both simple

objects, C(L, J) is one-dimensional if L = J and is 0 otherwise, therefore we only need

to consider the terms when L = J . Then using sphericality of C, we get

Φ(f)

I(X)

=
∑

L∈Irr(C)
Φ(f)LL

XL L

. (3.45)

Applying Lemma 3.6 and the definition of the half-braiding, we get

∑
L,K∈Irr(C)
β∈B(LL,K)

√
dL

√
dL√
dK

X

ββ̂∗

fK

K

L

K L

. (3.46)

Since C is pivotal,

K

L

β =

K

L

β .

As β is a morphism from 1 to K, C(LL,K) must be one-dimensional when K = 1

and 0 otherwise. So it is only necessary to consider the term when K = 1. Picking

the basis of C(LL,1) to be 1√
dL
εL and the corresponding dual-basis to be 1√

dL
ιL and
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substituting this into (3.46) gives us

Φ(f)

I(X)

=
∑

L∈Irr(C)

L L

f1

X

=
∑

L∈Irr(C)

d2
L f1

X

. (3.47)

We want to find a way of expressing trace of morphisms involving half-braidings

in terms of C(i(X), X). To do this, we first have to prove a lemma on how the half-

braidings split under direct sums.

Lemma 3.13. Let C be a spherical fusion category, W ∈ Z(C) and X ∈ C. We have

eW (i(X)) =
⊕

L∈Irr(C)

eW (LXL). (3.48)

Proof. Since i(X) is a direct sum, there exist projections πL : i(X) → LXL and

coprojections αL : LXL→ i(X) such that for L, J ∈ Irr(C), the following holds:

πL · αJ = δL,J idL (3.49)

∑
L∈Irr(C)

αL · πL = idi(X) (3.50)

By (3.50) and the naturality of the half-braiding eW , we have

eW (i(X)) =
∑

L∈Irr(C)

Wi(X)

i(X)W

πL

LXL

αL

=
∑

L∈Irr(C)

Wi(X)

i(X)F (W )

πL
LXL

αL

LXL =
⊕

L∈Irr(C)

eW (LXL).

(3.51)

Now we give an explicit computation of Φ−1 on a specific morphism in Z(C)(I(X), I(X)).

As we will find out in the next section, this is a key ingredient for constructing the mor-

phism in the center whose categorical trace is the Frobenius-Schur indicator.
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Theorem 3.14. Let C be a spherical fusion category. For X ∈ C and W ∈ Irr(Z(C)),

Φ


⊕

L∈Irr(C)

∑
α∈B(F (W ),L)

1√
dL

X

X

L L

α α∗

W


=

I(X)

I(X)

W (3.52)

where α is defined in definition 1.7.

Proof. By the braid relation and lemma 3.13,

I(X)

I(X)

W =
⊕

L∈Irr(C)

∑
J∈Irr(C)

β∈B(I⊗F (W ),J)

√
dL√
dJ

X

X

JJ

L L

W

ββ̂∗
. (3.53)

Since Φ−1 sends f ∈ Z(C)(I(X), I(X)) to the morphism f1 ∈ C(i(X), X), we can

let J = 1. Therefore, for {α} a basis of (F (W ), L) then we can define {β} a basis of

C(L⊗ F (W ),1) and a corresponding dual basis as follows:

L W

1

β :=
1√
dL

L W

α∗ (3.54)

L W

1

β∗ :=
1√
dL

L W

α . (3.55)
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Using the basis and dual basis defined above gives us

Φ−1



I(X)

I(X)

W


=

⊕
L∈Irr(C)

∑
α∈B(F (W ),L)

1√
dL

X

XL L

W

α∗α
.

(3.56)

By naturality of the half-braiding, we know we can slide morphisms under the

braiding, giving us

Φ−1



I(X)

I(X)

W


=

⊕
L∈Irr(C)

∑
α∈B(F (W ),L)

1√
dL

X

XL L

W

α∗α

. (3.57)

Since W ∈ Irr(Z(C)), by a similar reasoning as in Lemma 2.7, we know that the

two twists will cancel each other, giving us the statement we want.

Corollary 3.15. Let C be a spherical fusion category, X ∈ C, W ∈ Irr(Z(C)), and f ∈
C(i(X), X). Suppose also that we denote the Kth component of f by fK ∈ C(KXK,X),

then

1

D

I(X)

W

Φ(f)

=
∑

L∈Irr(C)
α∈B(F (W ),L)

1√
dL

X

fL

α α∗

L LX

W

(3.58)

where D is the categorical dimension of C.
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Proof. By Theorem 3.11 and 3.14, we know

Φ−1



I(X)

I(X)

W

Φ(f)



=
⊕

K∈Irr(C)

∑
L,J∈Irr(C)

α∈B(F (W ),L)

β∈B(JK,L)

1√
dL

√
dL
√
dJ√

dK

X

X

L L

K K

α α∗

β β∗

fJ

W

J J

.

(3.59)

Now consider the 1-th component of the morphism above, C(JL,K) is non-zero if

and only if L = J . In particular, C(LL,1) is one-dimensional, so we can pick 1√
dL

εL
to be a basis and 1√

dL
ιL to be the corresponding dual basis. Then, an easy calculation

using Theorem 3.12 gives us the statement we are after.

3.5 A formula for the Frobenius-Schur indicators

In this section, we show that by finding a morphism f such that Φ(f) = θnI(X), Cor.

3.15 gives us an expression of the generalized Frobenius-Schur indicators in terms of

morphisms in the center.

First, we define qX ∈ C(i(X), X) and show that qX = Φ−1(θI(X)).

Definition 3.16. Let C be a spherical fusion category. For X ∈ C, define qX ∈
C(i(X), X) by specifying the components (qX)L ∈ C(LXL,X) to be

(qX)L =
∑

β∈B(X,L)

1√
dL

L X L

X

β∗

β

.

Theorem 3.17. Let C be a spherical fusion category and X ∈ C. Then

Φ−1(θI(X)) = qX .
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Proof. Recalling the definition of the twist, we have

I(X)

I(X)

=

i(X)

i(X)

ei(X)

i(X)

. (3.60)

By Lemma 3.13, we know that the half-braiding only has diagonal components,

therefore

θI(X) =
⊕

L∈Irr(C)

∑
J∈Irr(C)

JXJ

LXL

ei(X)

JXJ

. (3.61)

Taking the component J = 1 and writing out the half-braiding, we get

Φ−1(θI(X)) =
⊕

L∈Irr(C)

∑
γ∈B(LX,1)

√
dL√
d1

X 1

L L

1

X

γ̂∗ γ . (3.62)

For {β} a basis of C(X,L), we can define a basis {γ} of C(LX,1) and a corresponding

dual basis as follows:

L X

1

γ :=
1√
dL

L X

β (3.63)

L X

1

γ∗ :=
1√
dL

L X

β∗ . (3.64)

Substituting for the basis and dual basis gives us the statement we have set out to

prove.
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Lemma 3.18. Let C be a spherical fusion category and X ∈ C. Then

Φ−1(θnI(X)) =
⊕

L∈Irr(C)

∑
β∈B(X

n
,L)

1√
dL

L L

X

X

X
n−1

β β∗ . (3.65)

Proof. By Theorem 3.11, we know

Φ−1(θnI(X)) = Φ−1(θI(X))
n (3.66)

where the LHS is multiplication in the tube algebra. Further observe that by Theorem

3.17, we know

Φ−1(θI(X))
n = (qX)n. (3.67)

Then the rest follows from a straight forward computation.

Finally, we give a formula for the generalized Frobenius-Schur indicators!

Theorem 3.19 (Generalized FS indicators formula, [NS10]). Let C be a spherical fusion

category, X ∈ C, W ∈ Irr(Z(C)). Then

νWn (X) =
1

DC

∑
Y ∈Irr(Z(C))

s̃(W,Y ) θ
n
Y dim(C(F (Y ), X))

where DC is the categorical dimension of C.

Proof. By the definition of the trace of a linear operator,

νWn (X) = Tr(ρWn,X) =
∑

γ∈B(F (W ),Xn) γ

W

X

Xn−1

γ?

. (3.68)
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Now observe that by Cor. 3.15 and Lemma 3.18,

1

D

I(X)

W

θnI(X)

=
∑

L∈Irr(C)
α∈B(F (W ),L)

β∈B(X
n
,L)

1

dL

X

α α∗

LL

W

X
n−1

β̃ β∗

.

(3.69)

For all L ∈ Irr(C) and α ∈ B(F (W ), L), β ∈ B(X
n
, L), we define γ a basis of

C(F (W ), Xn) and a dual basis (with respect to the second dual pairing ( , ) in chapter

1) by letting:

Xn

W

γ =:
1√
dL

W

X Xn−1

L

βα (3.70)

W

Xn

γ? =:
1√
dL

XXn−1

W

β∗ α∗

L

(3.71)

Substituting (3.70) and (3.71) into (3.69) gives us

1

D

I(X)

W

θnI(X)

=
∑

γ∈B(W,Xn)

γ

W

X

X(n−1)

γ?

. (3.72)

By sphericality and a similar argument to the one in Theorem 3.14, we know that

we can move the X strand down to match the diagram in (3.68). Therefore,
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Tr(ρWn,X) =
1

D

I(X)

W

θnI(X)

. (3.73)

By Theorem 2.16, we know that Z(C) is semisimple, so we can express I(X) as a

direct sum of simple objects in Z(C), that is

I(X) =
⊕

Y ∈Irr(Z(C))

(Y )nY (3.74)

where nY is the number of times Y appears in the direct sum of I(X). By (1.13), we

know

nY = dim(Z(C)(Y, I(X))).

Since I is right adjoint to F , we know

nY = dim(C(F (Y ), X)).

For each Y ∈ Irr(Z(C)) and j of nY copies of Y in I(X), we have a projection πY,j ∈
Z(C)(I(X), Y ) and coprojection αY,j ∈ Z(C)(Y, I(X)), such that

idI(X) =
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

αY,j ◦ πY,j . (3.75)

Therefore,

I(X)

W

θnI(X)

=
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

I(X)

W

θnI(X)

πY,j

αY,j

Y
. (3.76)

Since πY,j and αY,j are morphisms in Z(C), we can slide them up and down any

half-braiding. Furthermore, by Theorem 2.4, πY,j ◦ θnI(X) = θnY ◦ πY,j , so we have
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Tr(ρWn,X) =
1

D
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

I(X)

W

θnY

πY,j

αY,j

Y

. (3.77)

By, Lemma 1.10, we can move πY,j up to the top, giving us

Tr(ρWn,X) =
1

D
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

I(X)

W

θnY

πY,j

αY,j

Y

. (3.78)

From the definition of finite sum, we know πY,j ◦ αY,j = idY . Since Y is a simple

object of Z(C), we can rewrite the twists in terms of θY by definition 2.3, we have

Tr(ρWn,X) =
1

D
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

θnY

W Y

=
1

D
∑

Y ∈Irr(Z(C))
j∈[1,2,...,nY ]

s̃W,Y θ
n
Y .

(3.79)

Since nY = dim(C(F (Y ), X)), we have the statement we want.

Remark 3.20. Though we assumed that W is a simple object in Z(C). One can easily

generalize this formula for any object in Z(C) by decomposing it into a direct sum of

simples.
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Remark 3.21. One can also define the higher generalized Frobenius-Schur indicators,

νWn,k(X) as

νWn,k(X) = Tr((ρWn,X)k) (3.80)

The formula we gave in Thm. 3.19 calculates the higher generalized Frobenius-Schur

indicators for k = 1. In the following chapter, we develop a method of calculating the

higher generalized Frobenius-Schur indicators when n is prime. For a complete formula

for the higher generalized Frobenius-Schur indicators, see [NS10].



56 CHAPTER 3. GENERALIZED FROBENIUS-SCHUR INDICATORS



Chapter 4

Link invariants for torus knots

It is well-known that we can obtain oriented ribbon link invariants from braided spher-

ical fusion category. For a braided spherical fusion category C and X an object in the

category, we can interpret the oriented link diagram by thinking of it as a string dia-

gram with the strings labeled by X. Then we obtain a morphism in C(1,1) ∈ k which

can be identified with a number in k and is invariant under the Reidemeister moves. In

practice, calculating the link invariants is a computationally hard process and requires

us to know a lot about the category C. This chapter presents a way of generating

link invariants of special torus knots using the higher Frobenius-Schur indicators for

modular categories. In section 4.1 we give a way of generating some of the higher

Frobenius-Schur indicators from the indicator formula using Galois actions. In section

4.2 we discuss a simplification of the indicator formula when the category is modular.

In section 4.3 we introduce torus knots and derive a method for generating torus knot

invariants from modular data of modular categories. In section 4.4 we present some

calculations for link invariants for Drinfeld centers of pointed fusion categories. Finally,

section 4.5 gives some concluding remarks.

4.1 Higher Frobenius-Schur indicators

Recall in chapter 3 we defined the higher generalized Frobenius-Schur indicators νWn,k(X)

as

νWn,k(X) = Tr((ρWn,X)k). (4.1)

Now we give a method of computing some of the higher FS indicators νWn,k(X) from

νWn (X). First we observe that the generalized rotation operator is diagonalizable.

Lemma 4.1. For spherical fusion category C, W ∈ Irr(Z(C)) and

ρWn,X : C(F (W ), Xn)→ C(F (W ), Xn)

57
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the rotation operator, we have

(ρWn,X)n = θ−1
W idF (W ),Xn . (4.2)

Proof. Let f ∈ C(Xn, F (W )). Since C is pivotal, we have

(ρWn,X)n(f) =

W

Xn

f =

W

Xn

f . (4.3)

We can pass f under the half-braiding, giving us

(ρWn,X)n(f) =

W

Xn

f = θ−1
W

W

Xn

f . (4.4)

Since k is an algebraically-closed field with characteristic 0, we know that ρWn,X is

diagonalizable1. Furthermore, let {α} be an eigenbasis of ρWn,X with eigenvalues {λW,α}.
Picking an nth root of θW , then the set

Λ = {θ
1
n
WλW,α}α∈B(F (W ),Xn)

consists only of nth roots of unity.

As the trace of ρWn,X is the sum of the eigenvalues, we have

νWn (X) =
∑

α∈B(F (W ),Xn)

λW,α,

and furthermore

νWn,k(X) = tr((ρWn,X)k) =
∑

α∈B(F (W ),Xn)

λkW,α.

Let ξ = e
2πi
n . Then θ

1
n
W ν

W
n (X) is an element in the n-cyclotomic field Q[ξ]. Since

Q[ξ] is a Galois extension for Q, for gcd(n, k) = 1, we have an element ϕk of the Galois

group, also known as the Frobenius map, which raises ξ to the k-th power. Thus we

have

1This can be shown using representation theory: ρWn,X induces a representation of Z/nZ, since the

group is finite, the representation is unitarizable and therefore ρWn,X is diagonalizable.
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ϕk(θ
1
n
W ν

W
n (X)) =

∑
α∈B(F (W ),Xn)

(θ
1
n
WλL,α)k = θ

k
n
W ν

W
n,k(X).

In particular, when n is prime, then any choice of k would be coprime to n, so in

this case, we can compute all higher Frobenius indicator using Galois actions.

Remark 4.2. Whilst we focus on the case of n being prime, a similar process can be

done when n is not prime, for details, see Prop. 1.2. in [BJT16].

If we know all higher Frobenius-Schur indicators, by applying the Galois actions or

otherwise, then we can explicitly compute the eigenvalues. Let xl be the number of

times ξl appears in Λ, where

Λ = {θ
1
n
WλW,α}α∈B(F (W ),Xn).

Then we can use the discrete Fourier transform2 to find the multiplicities xl, given by

xl =
1

n

n∑
k=1

θ
k
n

(W,eW )ν
W
n,k(X)ξ−lk. (4.5)

Then the eigenvalues of ρWn,X are ξlθ
−1
n
W with multiplicity xl.

4.2 Drinfeld centers of modular categories

The formula given in Theorem 3.19 requires us to know the s and t matrices for the

Drinfeld center, as well as the forgetful functor multiplicities. In general, it is difficult

to write down the s and t matrices for the center, or even know what the simple objects

are! When C is modular, however, we can derive the the modular data for Z(C) from

the modular data for C. In this section, we explore the implications of this, and give a

formula for the generalized FS indicators in purely in terms of the modular data of the

category. First we introduce some notation.

Definition 4.3. Let C be a braided monoidal category, with the braiding given by

the family of natural isomorphisms σVW : VW → WV . Define C̃ to be the braided

monoidal category with the inverse braiding σ−1
WV : VW →WV .

Remark 4.4. To highlight the difference between C and C̃, we decorate objects and

morphisms in C with tildes.

Definition 4.5. Let A and B be k-linear categories. Define the tensor product, A�B,

to be the category consisting of the following:

• objects are finite direct sums of the form
⊕

iAi �Bi with Ai ∈ A and Bi ∈ B
2For an explanation of the discrete Fourier transform, see the appendices.



60 CHAPTER 4. LINK INVARIANTS FOR TORUS KNOTS

• morphisms between objects are defined by:

HomA�B(
⊕
i

Ai �Bi ,
⊕
j

A
′
j �B

′
j) =

⊕
i,j

A(Xi, X
′
j)⊗k B(Yi, Y

′
j )

Remark 4.6. If A and B are semisimple categories, it is easy to see that the only

objects in A� B satisfying End(
⊕

iAi �Bi) =
⊕

i,j A(Xi, Xj)⊗k B(Yi, Yj) ' k are of

the form L�K where L,K are simple objects in C.

Theorem 4.7 ([Mue03b] Theorem 7.10). Let C be a braided monoidal category. Define

the functor G : C � C̃ → Z(C) as follows:

• on objects: send X� Ỹ to (X⊗Y, eX⊗Y ), where for W ∈ C , eX⊗Y (W ) is defined

to be

(σXW ⊗ idY ) ◦ (idX ⊗ σ−1
WY ),

which can be represented diagrammatically as

X

X

Y

Y

W

W

• on morphisms: sends f � g̃ to f ⊗ g

If C is modular, then G yields a braided monoidal equivalence between C � C̃ and

Z(C).

Under this equivalence, we can view the forgetful functor F : Z(C)→ C as

F : C � C̃ → C

which sends X � Ỹ to X ⊗ Y and f � g̃ to f ⊗ g.

Now that we have an equivalence between a category we understand better and the

Drinfeld center, we can write down information about the center in terms of information

about the category.

Theorem 4.8. For a modular category C, we have

DZ(C) = D2
C

where DZ(C) is the categorical dimension for the Drinfeld center, Z(C), and DC is

the categorical dimension of the category, C.
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Remark 4.9. Though we asked for C to be a modular category, this statement also

holds for spherical fusion categories in general.

Proof. This is a straight forward computation. Since isomorphism classes of simple

objects in Z(C) just correspond to J � K̃ for J,K ∈ Irr(C), then

DZ(C) =
∑

J,K∈Irr(C)

d2
J�K̃

=
∑

J,K∈Irr(C)

d2
Jd

2
K = D2

C . (4.6)

Theorem 4.10. For a modular category C, we have

sA�B̃,C�D̃ = sA,CsB,D (4.7)

where sA�B̃,C�D̃ is an entry of the s matrix for C� C̃, and sA,CsB,D is an entry for

the s matrix for C.

Proof. Writing out the definition for the s entry gives us that

s̃A�B̃,C�D̃ =

A� B̃ C � D̃

=

A B CD

.

(4.8)

Since the braiding is functorial, we can move inner diagram involving B,D outside of

the A,C diagram. Then we can use sphericality to show that the RHS is equal to

s̃A,C s̃B,D. (4.9)

Now we normalize the s matrices. By theorem 4.8, we have

sA�B̃,C�D̃ =
s̃A�B̃,C�D̃√
DZ(C)

=
s̃A�B̃,C�D̃

DC
=
s̃A,C√
DC

s̃B,D√
DC

= sA,CsB,D. (4.10)

Theorem 4.11. For a modular category C, we have

θA�B̃ =
θA
θB

. (4.11)

Proof. Similar to the proof Theorem 4.10. We first write out the definition of the twist

then use functoriality of the braiding to manipulate the strings to produce the desired

diagram.
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Now we derive a simplification for the FS indicators for modular categories. For

X ∈ C and L� M̃ ∈ Irr(Z(C)), by Theorem 3.19, we know

νL⊗M̃n (X) =
1

DC

∑
J,K∈Irr(C)

s̃L�M̃,J�K̃θ
n
J�K̃

dim(C(F (J � K̃), X)). (4.12)

Then using Theorems 4.10, 4.11 and the fact F (J � K̃) = J ⊗K, we have

νL⊗M̃n (X) =
∑

J,K∈Irr(C)

sLJsMK

θnJ
θnK

dim(C(J ⊗K,X)). (4.13)

By the Verlinde formula (Theorem 2.12), we have

νL⊗M̃n (X) =
∑

J,K,R∈Irr(C)

sLJsMK ·
θnJ
θnK
·
sJRsKRsXR

s1R
. (4.14)

To evaluate the formula, we still need a way of finding the duals of simple objects,

Theorem 2.11 tells us that this information can be found in the square of the s matrix.

Thus, for modular categories, we have a way of writing the Frobenius-Schur indicators

solely in terms of the s and t matrices of the category.

4.3 Torus knots

This section gives a brief introduction to torus knots and assumes knowledge of link

invariants. Readers without a background in knot theory should consult [Ada04] for a

more comprehensive introduction to torus knots and link invariants.

In short, a torus knot is a knot that lies on an unknotted torus. They can be

completely characterized by how many times the knot crosses the meridian and the

longitude of the torus. We call a torus knot an (n,m)-torus knot if it crosses a meridian

curve n times and a longitude curve m times3. We can also view the (n,m)-torus knot

as the closure of the following braid
...

n strands



m

(4.15)

3Note that this characterization is not faithful, it can be shown that the (m,n) and (n,m)-torus

knots are in fact the same knot. Also. not all choices of m and n produce torus knots, we require

gcd(n,m) = 1.
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where by closure of a braid B we mean

B

...

(4.16)

the loop obtained when we connect the leftmost top string with the leftmost bottom

string, the second leftmost string with the second bottom leftmost string and so on.

Let C be braided spherical fusion category and pick an object X ∈ C. If we label

an oriented link with the object X ∈ C, then we have a string diagram representing a

morphism in C(Xn, Xn). It can be shown that this morphism in invariant under the

Reidemeister moves, giving us an oriented ribbon link invariant. In our case, we have

that the torus link invariant, denoted by Tmn,X , is the categorical trace of the following

morphism in C(Xn, Xn):  X

X

...

Xn−1

Xn−1


m

(4.17)

Since C is finitely semisimple, then for L ∈ Irr(C), and α a basis of C(L,Xn), we

have that Tmn,X is the categorical trace of

∑
L∈Irr(C)

α∈B(L,Xn)



X

...

α

Xn−1

L

...
α∗

Xn



m

. (4.18)
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If the linear operator µLn,X : C(L,Xn)→ C(L,Xn)

µLn,X :=

X

...

L

Xn−1

(4.19)

is diagonalizable, then for {β} is an eigenbasis of µLn,X with eigenvalues {λ′L,β}, we

have

Tmn,X =
∑

L∈Irr(C)
β∈B(L,Xn)

(λ′L,β)m tr





...

β

Xn

L

...

β∗

Xn



m
=

∑
L∈Irr(C)

β∈B(L,Xn)

(λ′L,β)mdL . (4.20)

Remark 4.12. Since there are (n − 1)m undercrossings and no overcrossings in the

the (n,m) torus knot, the writhe of the knot is −(n−1)m. Then we can also normalize

the invariant by θ
(n−1)m
X to obtain a oriented knot invariant, denoted by T̃mn,X , where

T̃mn,X = θ
(n−1)m
X

∑
L∈Irr(C)

β∈B(L,Xn)

(λ′L,β)mdL. (4.21)

To show µLn,X is diagonalizable, we first show a relationship between µLn,X and ρ
(L,σ)
n,X

where

ρ
(L,σ)
n,X : C(L,Xn)→ C(L,Xn)

is the rotation operator
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ρ
(L,σ)
n,X =

...

X

L

Xn−1

(4.22)

and σ is the braiding coming from the braided structure of C.

Lemma 4.13. We have the following relationship between ρ
(L,σ)
n,X and µLn,X :

ρ
(L,σ)
n,X = θ−1

X µLn,X (4.23)

Proof. Since the half braiding of (L, σ) is also a braiding in C,

ρ
(L,σ)
n,X =

...

X

L

Xn−1

=

X

...

L

Xn−1

= θ−1
X µLn,X . (4.24)

In Lemma 4.1, we showed that generalized rotation operators are diagonalizable,

thus µLn,X is also diagonalizable. Also, for {α} an eigenbasis of ρ
(L,σ)
n,X with eigenvalues

{λL,α}, then {α} is an eigenbasis µLn,X with eigenvalues {θXλL,α}. In particular, we

know that the eigenvalues for µLn,X are {θXθ
−1
n
L ξl} with multiplicity xl ∈ N where

xl =
1

n

n∑
k=1

θ
k
n
L ν

L�1̃
n,k (X)ξ−lk. (4.25)

Since (L, σ) can be viewed as L� 1̃ in C � C̃, by our work in section 4.2, we have

νL�1̃
n (X) =

∑
J,K,R∈Irr(C)

sLJs1K ·
θnJ
θnK
·
sJRsKRsXR

s1R
. (4.26)

When n is prime, this is all we need to use the Frobenius map to find the higher FS

indicators.

Furthermore, observe that

dL = s̃L,1 =
√
DCsL,1,
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Therefore, by (4.20), we can write the torus link invariant to be,

Tmn,X =
∑

l∈[1,....,n]
L∈Irr(C)

xl(θXθ
− 1
n

L ξl)m
sL,1√
DC

. (4.27)

Substituting (4.25), we also have

Tmn,X =
1

n
√
DC

∑
l∈[1,....,n]
k∈[1,....,n]
L∈Irr(C)

θ
k
n
W θ

m
Xθ
−m
n

L νL�1̃
n,k (X)sL,1ξ

l(m−k). (4.28)

4.4 Torus link invariants for Drinfeld centers of pointed

fusion categories

Using the computer algebra system GAP[GAP17], we implemented algorithms that

calculate both the torus ribbon link invariants and the normalized version. The com-

puter code is included in the appendices. We computed some invariants using modular

data for Drinfeld centers of pointed fusion categories given in [Gru17]. This led to some

interesting observations.

For example, consider the twisted quantum double of the alternating group A4,

Rep(Dω2A4).

There are 18 equivalence classes of simple objects in the category4. We observed

that for a given choice of simple object X, T̃m11,X is always the same for m ∈ [1, ..., 10].

Specifically, it is given by(
1 1 1 3 4 4 4 3 3 3 3 4 4 4

)
where the J-th entry gives the invariant for the J-th simple object in the modular data.

When n = 3, however, we notice that not all invariants are the same, specifically,

we have (
1 1 1 3 4 4 4 3 3 3 3 4 4 4

1 1 1 3 16 16 16 3 3 3 3 16 16 16

)

where the LJ-th entry gives T̃L3,J . Thus for most choices of simple objects, T̃ 1
3,X 6= T̃ 2

3,X .

We believe this is related to the conductor of the category, that is, the order of the t

matrix.

4.5 Concluding remarks

There are several directions for further research. First is to calculate the FS indicators

and link invariants for well-known modular categories. For example, it would be inter-

4 For the s and t matrices for this category, see the appendices.
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esting to calculate the torus link invariants for the extended Haagerup category, which

is not currently known.

Another direction is to generalize the algorithm to allow composite values for n, and

to improve overall efficiency in order to calculate invariants for categories with bigger

modular data. Then we can consider questions such as:

1. Is the normalized link invariant always integral for Drinfeld centers of pointed

fusion categories?

2. What is the relationship between the conductor and the variations in the normal-

ized torus invariants?
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Appendix A

Discrete Fourier transform

When we have a integral weighted sum of roots of unity, and the sums of the powers of

the roots of unity with the same weighting, we can use the discrete Fourier transform

to calculate the weights.

Theorem A.1. Let ξ = e
2πi
n be the primitive n-th root of unity, and for each ξk an

integral weight xk, suppose we know Xj where

Xj =

n∑
k=1

xkξ
kj (A.1)

Then

xl =
1

n

n∑
k=1

Xkξ
−lk. (A.2)

Proof. Substituting the definition of Xk into the RHS gives us

1

n

n∑
k=1

n∑
j=1

xjξ
(j−l)k.

Now consider
∑n

j=1 xjξ
(j−l)k with respect to a fixed k. The l = j term contributes

n∑
k=1

xl = nxl

to the sum.

When l 6= j,

n∑
k=1

xjξ
k(j−l) = xjξ

k(j−l) · 1− ξn(j−l)

1− ξj−l
= xjξ

k(j−l) · 1− 1

1− ξj−l
= 0.

Thus the RHS is indeed equal to xl.
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A
p
p
e
n
d
ix

B

M
o
d
u
la
r
d
a
ta

fo
r
R
ep
(D

ω
2
A
4)

s
:=

                              1 1
2

1 1
2

1 1
2

1 4
1 3

1 3
1 3

1 4
1 4

1 4
1 4

1 3
1 3

1 3
1 1
2

1 1
2

1 1
2

1 4
1 3
e

2
π
i

3
1 3
e

2
π
i

3
1 3
e

2
π
i

3
1 4

1 4
1 4

1 4
1 3
e

4
π
i

3
1 3
e

4
π
i

3
1 3
e

4
π
i

3

1 1
2

1 1
2

1 1
2

1 4
1 3
e

4
π
i

3
1 3
e

4
π
i

3
1 3
e

4
π
i

3
1 4

1 4
1 4

1 4
1 3
e

2
π
i

3
1 3
e

2
π
i

3
1 3
e

2
π
i

3

1 4
1 4

1 4
3 4

0
0

0
−

1 4
−

1 4
−

1 4
−

1 4
0

0
0

1 3
1 3
e

2
π
i

3
1 3
e

4
π
i

3
0
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9
1 3
e

1
4
π
i

9
1 3
e

8
π
i

9
0

0
0

0
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9
1 3
e

1
0
π
i

9
1 3
e

4
π
i

9

1 3
1 3
e

2
π
i

3
1 3
e

4
π
i

3
0

1 3
e

1
4
π
i

9
1 3
e

8
π
i

9
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9
0

0
0

0
1 3
e

4
π
i

9
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9
1 3
e

1
0
π
i

9

1 3
1 3
e

2
π
i

3
1 3
e

4
π
i

3
0

1 3
e

8
π
i

9
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9
1 3
e

1
4
π
i

9
0

0
0

0
1 3
e

1
0
π
i

9
1 3
e

4
π
i

9
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9

1 4
1 4

1 4
−

1 4
0

0
0

−
1 4
−

1 4
3 4
−

1 4
0

0
0

1 4
1 4

1 4
−

1 4
0

0
0

−
1 4

3 4
−

1 4
−

1 4
0

0
0

1 4
1 4

1 4
−

1 4
0

0
0

3 4
−

1 4
−

1 4
−

1 4
0

0
0

1 4
1 4

1 4
−

1 4
0

0
0

−
1 4
−

1 4
−

1 4
3 4

0
0

0
1 3

1 3
e

4
π
i

3
1 3
e

2
π
i

3
0
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9
1 3
e

4
π
i

9
1 3
e

1
0
π
i

9
0

0
0

0
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9
1 3
e

8
π
i

9
1 3
e

1
4
π
i

9

1 3
1 3
e

4
π
i

3
1 3
e

2
π
i

3
0

1 3
e

1
0
π
i

9
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9
1 3
e

4
π
i

9
0

0
0

0
1 3
e

8
π
i

9
1 3
e

1
4
π
i

9
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9

1 3
1 3
e

4
π
i

3
1 3
e

2
π
i

3
0

1 3
e

4
π
i

9
1 3
e

1
0
π
i

9
−

1 3
e

4
π
i

9
−

1 3
e

1
0
π
i

9
0

0
0

0
1 3
e

1
4
π
i

9
−

1 3
e

8
π
i

9
−

1 3
e

1
4
π
i

9
1 3
e

8
π
i

9
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t
:=

                       1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

e
8
π
i

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
e

1
4
π
i

9
0

0
0

0
0

0
0

0

0
0

0
0

0
0

−
e

8
π
i

9
−
e

1
4
π
i

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1
0

0
0

0
0

0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1
0

0
0

0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
e

8
π
i

9
0

0

0
0

0
0

0
0

0
0

0
0

0
0

−
e

8
π
i

9
−
e

1
4
π
i

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
e

1
4
π
i

9
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A
p
p
e
n
d
ix

C

G
A
P

co
d
e

#
R
e
t
u
r
n
s
d
u
a
l
o
f
t
h
e
i
t
h
s
i
m
p
l
e
o
b
j
e
c
t

F
i
n
d
D
u
a
l
:
=
f
u
n
c
t
i
o
n
(
i
,
s
m
a
t
r
i
x
)

l
o
c
a
l
C
m
a
t
r
i
x
,
n
o
_
o
f
_
s
i
m
p
l
e
s
,
j
;

C
m
a
t
r
i
x
:
=
s
m
a
t
r
i
x
*
s
m
a
t
r
i
x
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

f
o
r
j
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

i
f
C
m
a
t
r
i
x
[
i
]
[
j
]
=
1
t
h
e
n

r
e
t
u
r
n
j
;

e
l
s
e

c
o
n
t
i
n
u
e
;

f
i
;

o
d
;

75
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e
n
d
;

#
R
e
t
u
r
n
t
h
e
V
e
r
l
i
n
d
e
’
s
f
o
r
m
u
l
a
N
^
k
_
{
l
j
}

V
e
r
l
i
n
d
e
:
=
f
u
n
c
t
i
o
n
(
k
,
l
,
j
,
s
m
a
t
r
i
x
)

l
o
c
a
l
r
,
s
u
m
,
d
u
a
l
_
k
,
n
o
_
o
f
_
s
i
m
p
l
e
s
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

s
u
m
:
=
0
;

d
u
a
l
_
k
:
=
F
i
n
d
D
u
a
l
(
k
,
s
m
a
t
r
i
x
)
;

f
o
r
r
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

s
u
m
:
=
s
u
m
+
s
m
a
t
r
i
x
[
l
]
[
r
]
*
s
m
a
t
r
i
x
[
j
]
[
r
]
*
s
m
a
t
r
i
x
[
d
u
a
l
_
k
]
[
r
]
/
s
m
a
t
r
i
x
[
1
]
[
r
]
;

o
d
;

r
e
t
u
r
n
s
u
m
;

e
n
d
;

#
G
i
v
e
s
t
h
e
o
r
d
e
r
o
f
t
h
e
T
m
a
t
r
i
x

G
i
v
e
O
r
d
e
r
O
f
T
:
=
f
u
n
c
t
i
o
n
(
t
m
a
t
r
i
x
)

l
o
c
a
l
i
,
n
o
_
o
f
_
s
i
m
p
l
e
s
;

i
:
=
1
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
t
m
a
t
r
i
x
)
[
1
]
;

w
h
i
l
e
n
o
t
(
t
m
a
t
r
i
x
^
i
=
I
d
e
n
t
i
t
y
M
a
t
(
n
o
_
o
f
_
s
i
m
p
l
e
s
)
)
d
o

i
:
=
i
+
1
;

o
d
;
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r
e
t
u
r
n
i
;

e
n
d
;

#
C
a
l
c
u
l
a
t
e
s
t
h
e
F
S
i
n
d
i
c
a
t
o
r
\
r
h
o
_
n
^
L
(
X
)

F
S
I
n
d
i
c
a
t
o
r
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
L
,
X
)

l
o
c
a
l
s
u
m
,
n
o
_
o
f
_
s
i
m
p
l
e
s
,
J
,
K
,
R
,
d
u
a
l
_
X
,
s
u
m
_
1
,
s
u
m
_
2
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

d
u
a
l
_
X
:
=
F
i
n
d
D
u
a
l
(
X
,
s
m
a
t
r
i
x
)
;

s
u
m
:
=
0
;

f
o
r
R
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

s
u
m
_
2
:
=
0
;

f
o
r
K
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

s
u
m
_
1
:
=
0
;

f
o
r
J
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

s
u
m
_
1
:
=
s
u
m
_
1
+
s
m
a
t
r
i
x
[
L
]
[
J
]
*
s
m
a
t
r
i
x
[
J
]
[
R
]
*
t
m
a
t
r
i
x
[
J
]
[
J
]
^
n
;

o
d
;

s
u
m
_
2
:
=
s
u
m
_
2
+
s
u
m
_
1
*
s
m
a
t
r
i
x
[
1
]
[
K
]
*
s
m
a
t
r
i
x
[
K
]
[
R
]
/
t
m
a
t
r
i
x
[
K
]
[
K
]
^
n
;

o
d
;

s
u
m
:
=
s
u
m
+
s
u
m
_
2
*
s
m
a
t
r
i
x
[
d
u
a
l
_
X
]
[
R
]
/
s
m
a
t
r
i
x
[
1
]
[
R
]
;

o
d
;

r
e
t
u
r
n
s
u
m
;

e
n
d
;
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#
G
i
v
e
s
a
n
t
h
r
o
o
t
o
f
c
y
c

#
C
y
c
h
a
s
t
o
b
e
a
r
o
o
t
o
f
u
n
i
t
y

N
t
h
R
o
o
t
O
f
C
y
c
:
=
f
u
n
c
t
i
o
n
(
c
y
c
,
n
)

l
o
c
a
l
l
i
s
t
;

l
i
s
t
:
=
D
e
s
c
r
i
p
t
i
o
n
O
f
R
o
o
t
O
f
U
n
i
t
y
(
c
y
c
)
;

r
e
t
u
r
n
E
(
l
i
s
t
[
1
]
*
n
)
^
l
i
s
t
[
2
]
;

e
n
d
;

#
G
i
v
e
n
t
h
e
a
n
u
m
b
e
r
i
n
t
h
e
n
t
h
c
y
c
l
o
t
o
m
i
c
f
i
e
l
d
,
c
o
m
p
u
t
e
s
a
l
l
o
f
t
h
e
F
r
o
b
e
n
i
u
s
m
a
p
s
a
n
d
r
e
t
u
r
n
s
a
l
i
s
t

#
W
e
n
e
e
d
n
p
r
i
m
e
f
o
r
t
h
e
e
r
r
o
r
m
e
s
s
a
g
e
t
o
w
o
r
k

F
r
o
b
e
n
i
u
s
M
a
p
:
=
f
u
n
c
t
i
o
n
(
i
n
d
,
n
)

l
o
c
a
l
l
i
s
t
,
i
,
h
i
g
h
e
r
;

l
i
s
t
:
=
[
i
n
d
]
;

i
f
C
o
n
d
u
c
t
o
r
(
i
n
d
)
=
n
o
r
C
o
n
d
u
c
t
o
r
(
i
n
d
)
=
1
t
h
e
n

f
o
r
i
i
n
[
2
.
.
n
]
d
o

h
i
g
h
e
r
:
=
G
a
l
o
i
s
C
y
c
(
i
n
d
,
i
)
;

A
p
p
e
n
d
(
l
i
s
t
,
[
h
i
g
h
e
r
]
)
;

o
d
;

e
l
s
e

P
r
i
n
t
(
"
S
O
M
E
T
H
I
N
G
W
R
O
N
G
:
Y
o
u
r
F
S
i
n
d
i
c
a
t
o
r
d
o
e
s
n
o
t
l
i
v
e
i
n
t
h
e
r
i
g
h
t
n
u
m
b
e
r
f
i
e
l
d
,
o
r
m
a
y
b
e
n
i
s
n
o
t
a
p
r
i
m
e
"
)
;

f
i
;
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r
e
t
u
r
n
l
i
s
t
;

e
n
d
;

#
P
e
r
f
o
r
m
s
t
h
e
D
i
s
c
r
e
t
e
F
o
u
r
i
e
r
t
r
a
n
s
f
o
r
m
f
r
o
m
a
l
i
s
t
o
f
s
u
m
s
o
f
p
o
w
e
r
a
n
d
n

G
i
v
e
W
e
i
g
h
t
s
:
=
f
u
n
c
t
i
o
n
(
l
i
s
t
,
n
)

l
o
c
a
l
i
,
j
,
s
u
m
,
d
i
v
i
d
e
_
s
u
m
,
o
u
t
l
i
s
t
;

o
u
t
l
i
s
t
:
=
[
]
;

f
o
r
i
i
n
[
1
.
.
n
]
d
o

s
u
m
:
=
0
;

f
o
r
j
i
n
[
1
.
.
n
]
d
o

s
u
m
:
=
s
u
m
+
l
i
s
t
[
j
]
*
(
E
(
n
)
^
(
-
j
*
i
)
)
;

o
d
;

d
i
v
i
d
e
_
s
u
m
:
=
s
u
m
/
n
;

A
p
p
e
n
d
(
o
u
t
l
i
s
t
,
[
d
i
v
i
d
e
_
s
u
m
]
)
;

o
d
;

r
e
t
u
r
n
o
u
t
l
i
s
t
;

e
n
d
;

#
C
a
l
c
u
l
a
t
e
T
_
{
n
,
X
}
^
m

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e



80 APPENDIX C. GAP CODE
T
o
r
u
s
I
n
v
a
r
i
a
n
t
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
,
X
)

l
o
c
a
l
n
o
_
o
f
_
s
i
m
p
l
e
s
,
s
u
m
,
s
u
b
s
u
m
,
L
,
l
,

i
n
d
i
c
a
t
o
r
_
s
c
a
l
e
d
,
w
e
i
g
h
t
s
,
c
a
t
_
d
i
m
;

c
a
t
_
d
i
m
:
=
1
/
s
m
a
t
r
i
x
[
1
]
[
1
]
;

s
u
m
:
=
0
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

f
o
r
L
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

s
u
b
s
u
m
:
=
0
;

i
n
d
i
c
a
t
o
r
_
s
c
a
l
e
d
:
=
F
S
I
n
d
i
c
a
t
o
r
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
L
,
X
)
*
(
N
t
h
R
o
o
t
O
f
C
y
c
(
t
m
a
t
r
i
x
[
L
]
[
L
]
,
n
)
)
;

w
e
i
g
h
t
s
:
=
G
i
v
e
W
e
i
g
h
t
s
(
F
r
o
b
e
n
i
u
s
M
a
p
(
i
n
d
i
c
a
t
o
r
_
s
c
a
l
e
d
,
n
)
,
n
)
;

f
o
r
l
i
n
[
1
.
.
n
]
d
o

s
u
b
s
u
m
:
=
s
u
b
s
u
m
+
E
(
n
)
^
(
l
*
m
)
*
w
e
i
g
h
t
s
[
l
]
;

o
d
;

s
u
m
:
=
s
u
m
+
N
t
h
R
o
o
t
O
f
C
y
c
(
t
m
a
t
r
i
x
[
L
]
[
L
]
,
n
)
^
(
-
m
)
*
s
m
a
t
r
i
x
[
L
]
[
1
]
*
s
u
b
s
u
m
;

o
d
;

r
e
t
u
r
n
s
u
m
*
(
t
m
a
t
r
i
x
[
X
]
[
X
]
^
m
)
*
(
c
a
t
_
d
i
m
)
;

e
n
d
;

#
G
i
v
e
(
n
,
m
)
t
o
r
u
s
k
n
o
t
s
i
n
v
a
r
i
a
n
t
s
f
r
o
m
a
l
l
s
i
m
p
l
e
o
b
j
e
c
t
s
i
n
t
h
e
c
a
t
e
g
o
r
y

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e

G
i
v
e
I
n
v
a
r
i
a
n
t
s
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
)

l
o
c
a
l
n
o
_
o
f
_
s
i
m
p
l
e
s
,
j
,
l
i
s
t
;
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n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

l
i
s
t
:
=
[
]
;

f
o
r
j
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

A
d
d
(
l
i
s
t
,

T
o
r
u
s
I
n
v
a
r
i
a
n
t
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
,
j
)
)
;

o
d
;

r
e
t
u
r
n
l
i
s
t
;

e
n
d
;

#
G
i
v
e
s
a
l
l
t
o
r
u
s
l
i
n
k
i
n
v
a
r
i
a
n
t
s
T
_
{
n
,
X
}
^
m

#
R
e
t
u
r
n
s
a
m
a
t
r
i
x
w
h
e
r
e
t
h
e
i
j
-
t
h
e
n
t
r
y
i
s
T
_
{
n
,
j
}
^
i

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e

G
i
v
e
A
l
l
I
n
v
a
r
i
a
n
t
s
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
)

l
o
c
a
l
m
,
l
i
s
t
;

l
i
s
t
:
=
[
]
;

f
o
r
m
i
n
[
1
.
.
n
-
1
]
d
o

A
d
d
(
l
i
s
t
,

G
i
v
e
I
n
v
a
r
i
a
n
t
s
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
)
)
;

o
d
;

r
e
t
u
r
n
l
i
s
t
;

e
n
d
;
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#
C
a
l
c
u
l
a
t
e
n
o
r
m
a
l
i
z
e
d
T
_
{
n
,
X
}
^
m

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e

U
n
f
r
a
m
e
d
_
T
o
r
u
s
I
n
v
a
r
i
a
n
t
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
,
X
)

r
e
t
u
r
n
T
o
r
u
s
I
n
v
a
r
i
a
n
t
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
,
X
)
*
(
t
m
a
t
r
i
x
[
X
]
[
X
]
)
^
(
(
n
-
1
)
*
m
)
;

e
n
d
;

#
G
i
v
e
(
n
,
m
)
n
o
r
m
a
l
i
z
e
d
t
o
r
u
s
i
n
v
a
r
i
a
n
t
s
f
r
o
m
a
l
l
s
i
m
p
l
e
o
b
j
e
c
t
s
i
n
t
h
e
c
a
t
e
g
o
r
y

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e

G
i
v
e
U
n
f
r
a
m
e
d
I
n
v
a
r
i
a
n
t
s
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
)

l
o
c
a
l
n
o
_
o
f
_
s
i
m
p
l
e
s
,
j
,
l
i
s
t
;

n
o
_
o
f
_
s
i
m
p
l
e
s
:
=
D
i
m
e
n
s
i
o
n
s
M
a
t
(
s
m
a
t
r
i
x
)
[
1
]
;

l
i
s
t
:
=
[
]
;

f
o
r
j
i
n
[
1
.
.
n
o
_
o
f
_
s
i
m
p
l
e
s
]
d
o

A
d
d
(
l
i
s
t
,

U
n
f
r
a
m
e
d
_
T
o
r
u
s
I
n
v
a
r
i
a
n
t
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
,
j
)
)
;

o
d
;

r
e
t
u
r
n
l
i
s
t
;

e
n
d
;

#
G
i
v
e
t
h
e
l
i
s
t
o
f
(
n
,
n
-
1
)
n
o
r
m
a
l
i
z
e
d
t
o
r
u
s
i
n
v
a
r
i
a
n
t
s
f
o
r
s
i
m
p
l
e
o
b
j
e
c
t
s
i
n
t
h
e
c
a
t
e
g
o
r
y

#
w
h
e
r
e
n
r
a
n
g
e
s
f
r
o
m
t
h
e
f
i
r
s
t
p
n
o
.
o
f
p
r
i
m
e
s
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G
i
v
e
U
n
f
r
a
m
e
d
I
n
v
a
r
i
a
n
t
s
A
l
t
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
p
,
j
)

l
o
c
a
l
n
,
l
i
s
t
;

l
i
s
t
:
=
[
]
;

f
o
r
n
i
n
[
1
.
.
p
]
d
o

A
d
d
(
l
i
s
t
,

U
n
f
r
a
m
e
d
_
T
o
r
u
s
I
n
v
a
r
i
a
n
t
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
P
r
i
m
e
s
[
n
]
,
P
r
i
m
e
s
[
n
]
-
1
,
j
)
)
;

o
d
;

r
e
t
u
r
n
l
i
s
t
;

e
n
d
;

#
G
i
v
e
s
a
l
l
n
o
r
m
a
l
i
z
e
d
t
o
r
u
s
i
n
v
a
r
i
a
n
t
s
T
_
{
n
,
X
}
^
m

#
R
e
t
u
r
n
s
a
m
a
t
r
i
x
w
h
e
r
e
t
h
e
i
j
-
t
h
e
n
t
r
y
i
s
n
o
r
m
a
l
i
z
e
d
T
_
{
n
,
j
}
^
i

#
W
e
r
e
q
u
i
r
e
n
t
o
b
e
p
r
i
m
e

G
i
v
e
U
n
f
r
a
m
e
d
A
l
l
I
n
v
a
r
i
a
n
t
s
:
=
f
u
n
c
t
i
o
n
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
)

l
o
c
a
l
m
,
l
i
s
t
;

l
i
s
t
:
=
[
]
;

f
o
r
m
i
n
[
1
.
.
n
-
1
]
d
o

A
d
d
(
l
i
s
t
,

G
i
v
e
U
n
f
r
a
m
e
d
I
n
v
a
r
i
a
n
t
s
(
s
m
a
t
r
i
x
,
t
m
a
t
r
i
x
,
n
,
m
)
)
;

o
d
;

r
e
t
u
r
n
l
i
s
t
;

e
n
d
;
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