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Introduction

Classically, for a finite group G and a representation V over C with character x, we

define the Frobenius-Schur indicator, as

|
v(V) = i1 > x(d?).

geG
If V is an irreducible representation, then this indicator helps us to determine the
flavour of duality of V. Specifically, the Frobenius-Schur theorem states that v (V)
could only be 1, —1, or 0, and if

e (V) =1: V is symmetrically self-dual
o (V)= —1: V is antisymmetrically self-dual
o (V) =0: V is not self-dual

A great deal of work has been done to generalize the Frobenius-Schur(FS) indicators
for Hopf algebras (see [LMO0OQ], [KSZ06], [MNO5], [Sch04], [NS08]) and for categories (see
[FS03], [FGSV99]). This culminated in the definition of generalized FS indicators for
pivotal categories (see [NSO7]) and a formula of generalized F'S indicators for spherical
fusion categories, given by Ng and Schauenberg in [NSI10].

In broad terms, the generalized FS indicators for fusion categories are the traces
of generalized rotation operators on homspaces in the category. Generalized rotation
operators have been studied extensively and play an important role in the study of
subfactor planar algebra. V. Jones used these rotations to show that certain quadratic
tangles are linearly independent [Jon12] and to construct annular structures of subfac-
tors [Jon01], which played a crucial part in the classification of subfactors of index at
most 5 (see [JMS14] for an overview).

Generalized FS indicators have proven to be a useful tool for analyzing fusion cate-
gories. One important application is in the proof of the congruence subgroup conjecture
for spherical fusion categories, which states that the kernels of the modular represen-
tations of modular categories are congruence subgroups of SLy(Z) (see [NS10]). The
confirmation of this conjecture provides important insight on the relationship between

rational conformal field theories and modular categories.
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Generalized FS indicators are also useful for classification purposes, as they can
be used to create bounds and have nice number theoretic properties. It was used by
Bruillard, Ng, Rowell and Wang to show rank finiteness of modular tensor categories,
which is that, up to equivalence, there are only finitely many modular categories of any
fixed rank [BNRW16]. Furthermore, the indicators have been used to classify fusion
categories of small rank (see [Ost14], [Larl5]).

The focus of this thesis is to give a self-contained derivation of the generalized
Frobenius-Schur indicator formulas for spherical fusion categories given in [NS10]. This
thesis will be presented as follows. The first two chapters give an introduction to the
language of monoidal categories, focusing mostly on the theory needed in the remainder
of the thesis. Specifically, chapter 1 defines pivotal and semisimple monoidal categories
and chapter 2 defines braided monoidal categories, modular data and the Drinfeld
center. In chapter 3, we define the induction functor to the Drinfeld center, and give a
formula for the generalized Frobenius-Schur indicators in terms of the inductor functor
and modular data of the center. Finally, in chapter 4, we follow the work of Barter, C.
Jones and Tucker in [BJTI16] and use the indicator formula to construct special torus

link invariants for modular categories.



Chapter 1

Introduction to monoidal

categories

There is a plethora of adjectives used to classify and describe tensor categories. This
chapter, along with the next, introduces some of this language. In section 1.1 we give
the definitions of monoidal categories and monoidal functors, as well as provide an
explanation of string diagrams. Section 1.2 introduces pivotal categories and section
1.3 extends on this and defines spherical categories. Section 1.4 focuses on semisimple
categories and makes some important observations about dimensions of simple objects
in semisimple categories. Section 1.5 gives an introduction to dual pairings and presents
the two basis, dual basis pairs we need for the proof of the indicator formula.

Note that throughout this thesis we assume our categories are essentially small.

1.1 Monoidal categories

We first introduce the notion of a monoidal category, which is the categorification of a

monoid.

Definition 1.1. A monoidal category is a category C with the following additional

information:

1. tensor product: a bifunctor ® : C x C — C

2. associator: a family of natural isomorphisms
agyw : (UV)eW S U (VeW)

for U, VW € C

3. unit : an object 1 € C
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4. left and right unitors: natural isomorphisms
Av:1leV SV
pv:Vel=SV

forall V eC

such that they satisfy the following conditions:

e For all W, X,Y, Z € C, we have the commutative diagram

(WeX)®Y)® Z
We(XeY)eZ WeX)e(Y®2Z)
laW,X(@Y,Z J/QW,X,Y®Z

idw R«
We(XeY)®2) U WeXe (Y o2)

(pentagon axiom)

e For all VW € C, we have the commutative diagram

(Vel)eW . » Ve (1leoWw)
m A . (triangle axiom)
VoW

We now give a brief explanation of why we require the pentagon and triangle ax-
ioms. Recall that in a monoid, we write the expression for an element, mq o ... c my,,
of the monoid without specifying a parenthesization. This is because multiplication in
the monoid is associative. Similarly, we could also add and delete copies of the identity
element. As an analogue of the associativity condition of monoids, given two paren-
thesization of V} ® ... ® V,,, X1 and Xs, in the monoidal category, we require that all
isomorphisms composed of «a, p, A from X7 to X5 to be equal. In other words, we have
a canonical isomorphism between X; and X3, By the MacLane Coherence Theoremlﬂ
this is equivalent to showing that the triangle and pentagon axioms are satisfied.

We can also categorify morphisms between monoids.

Definition 1.2. Let (C,®,«,1,\,p) and (C',®',a/,1", N, p’) be monoidal categories.

A monoidal functor from C to C' is a pair (F,J) where

F:C—>(C

!For a proof, see [EGNOTH].
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is a functor and

Jxy :F(X)® F(Y) = F(X®Y)
is a family of natural isomorphisms such that:
e F(1) is isomorphic to 1/
e For XY, Z € C, we have the commutative diagram

Vp(x),F(¥),F(2)

(F(X)®' F(Y))®' F(Z) » F(X) @' (F(Y)®' F(2))

JX,Y®/idF(Z) idF(Z)®/JY,Z
FIXQY)® F(Z) FX)&' (F(Y ®Z)
Ixev,z Ix,yeoz
F(ax,y,z)

F(X®Y)®Z2) FX®(Y®2)

(monoidal structure axiom)

Definition 1.3. A monoidal functor (F,J) is an equivalence of monoidal categories
if ' : C — C'is an equivalence of categories. In this case, we also say C and C’ are

monoidally equivalent.

It can become complicated wrangling with unitors and associators. However, some-
times we are lucky and all unitors and associators are in fact identities. In this case,

we have a strict monoidal category.

Definition 1.4. A monoidal category C is strict if
Vel=vV=1V,(VeaW)eZ=Ve(WeZ2)
for all VW, Z € C and all components of «, p, A are identities.

It is a well-known theorem of MacLaneﬂ that every monoidal category is monoidally
equivalent to a strict monoidal category. Therefore, given any non-strict monoidal
category, we can replace it with a strict one as long as we are only concerned with
monoidal categories up to monoidal equivalence. Thus in all later deﬁmtionsﬂ7 we will
simplify notation and assume that our monoidal categories are strict.

Now we introduce a diagrammatic calculus for morphisms in a strict monoidal
category. We denote a morphism f : V — W by a box labelled by f with strings
labelled by V and W.

2For a proof, see [EGNO15].
3Except when we define braided tensor categories in section 2.1, where the unitors and associators

are included for completeness and consistency with the literature.



6 CHAPTER 1. INTRODUCTION TO MONOIDAL CATEGORIES
w
Vv

Note that we read the string diagrams optimistically, that is, upwards. When f is

the identity, we just write it as a string without any boxes.

\%4 Vv
%4 %4

Composition of morphisms is denoted by vertical composition of the string diagrams.

For example, given f: X - Y and g: Y — Z, we write go f : X — Z as:

Tensor product of morphisms is denoted by horizontal juxtaposition of the string
diagrams, for example, given f: X — Y and h: W — Z, we write fQh: X QW —
Y ® Z as:

Y A
f®h:
X W

One advantage of using string diagrams is that most intuitive manipulations of the
strings are allowed and correspond to extra structures in the monoidal categoryﬂ For
example, one can imagine morphisms as beads on strings, which can be shifted up or
down the strings freelyﬂ

4This statement is kept deliberately vague. We will make more sense of it in the later sections, once

we have defined more structures on monoidal categories.
5For further details on the coherence of the string diagram calculus, the reader should consult

[Muel0] for an overview and [JS91], [FY92] for comprehensive explanations.
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Lemma 1.5. Gwen f:V — W, and g: X — Y, we have

WYy WY
] - . (1.1)
(9] [/]

vV X vV X

Proof. Since the tensor product is a bifunctor, we know that for morphisms h, k,l,m

with the appropriate domains and codomains, we have

(h@k)o(l®m)=(hol)® (kom).

Then substituting h for f, g for m, and k, [ for identities give us

(f®idy)o (idy @ g) = f®g = (idw ®g) o (f ®idx).

which is precisely what the diagram says. O

1.2 Pivotal categories

Motivated by the concept of duals in the category of vector spaces, pivotal categories
gives us a way of defining duals of objects. Note that many varying definitions exist
and we follow the approach taken in [Mue03al, that is, we give the definition of a strict
pivotal category. It can be shown that theorems for strict pivotal categories can be
translated into results for general pivotal categories, up to inserting some isomorphisms
[Mue03a].

Definition 1.6. A strictly pivotal category is a strict monoidal category C with:

1. duals on objects: A map Obj(C) — Obj(C) when sends V — V such that

<

=V, VeW=weV, 1=1

2. evaluation and coevaluation: For all V € C, we have morphisms
ey VeV o1
wil=sVeV

such that both
id

Veveol 2 yveVey 99 1oy v "

L i — id —
VeleV 299 yoTey V%, yo1=v
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are equal to idy .

3. coherence of objects: For all V,W &€ C we have the following commutative trian-

gles:

1 v VeV

LV QW de

VaWwaVeaW=VeWeaWaV

14 v VeV

VW idy ®ew idy-

VoaWweaVeaW=VeWeaWaV

4. coherence of morphisms: For all morphisms s : V' — W the following composite

morphisms are equal:

(1.3)

Graphically, we denote ey as

1
= M\
\% vV \% Vv

Similarly, we denote ¢y as

vV Vv % 1%
: U
1
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Sometimes, to avoid clutter in the string diagrams, we may choose to only label the

middle of the string instead of the ends. For example, we can also denote ey as

M«

Then ([1.2)) can be graphically denoted as:

V m
m 1% Vv
And (1.3]) can be represented as:

V
=
w

Furthermore, € and ¢ give us a way of defining morphisms of C(V, W) from mor-

phisms in C(W, V), a technique we will make frequent use of in chapter

Definition 1.7. Given a pivotal category C and s € C(V, W), define 5 € C(W,V) as:

1% 1%
= (1.4)
w w
Remark 1.8. By , we know we could have equivalently defined s to be:
1% v
= (1.5)

=
=
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1.3 Spherical structure

Definition 1.9. Given V an object in a strict pivotal category C, and f € End(V') we

can define the left categorical trace of f as follows:

. — feldy — =
1 9, yeT R ey v,y (1.6)

Diagrammatically, the left categorical trace, denoted by trp(f), is

tri(f) = : (1.7)

Similarly, we define the right categorical trace, denoted by trr(f), to be

tre(f) = : (1.8)

When taking the categorical trace, if the domains are codomains are compatible,

the order in which we compose the morphisms does not matter.

Lemma 1.10. For a pivotal category C, f € C(V,W), and g € (W,V), we have:

tri.(fog)=trr(go f)
trr(fog) =trr(go f)

Proof. To prove trp(f =trp(go f), we need to show that

. ‘ :

By repeated use of ([L.2)), we have that

TG -
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Observe that by (1.3]) and (1.2),

V v |4
@ : Uﬁgﬂ : | (1‘11)
w w w

Combining the two facts above gives us (1.9)). Similarly, one can show that trg(g o
f)=trr(go f). O

Definition 1.11. A pivotal category C is spherical if for all objects V' € C and mor-
phisms s € End(V), trr(f) = tr(f). When this is the case, we drop the letters R and
L and just use the notation tr(f).

Definition 1.12. For V an object in a spherical category C, the dimension of V,
denoted by dy, is defined by
dy = tr(idy).

1.4 Semisimple categories

To define a semisimple category, we have to first define a k-linear category, which can
be thought of as an enrichment over K-vector Spacesﬂ That is, instead of thinking of
the homspaces just as sets, we require them to be vector spaces. Note that for the rest
of the thesis, we only work with the case where K is an algebraically closed field with

characteristic 0.

Definition 1.13. Let k be a field. A category C is a k-linear category if it satisfies the

following:
e all homspaces are finitely generated K-vector spaces
e compositions of homspaces are K-linear

We now define the concept of direct sums and simple objects in a K-linear category.

Definition 1.14. For a k-linear category C and X1, ..., X, objects in C, the direct sum
of Xi,..., X, exists if there are Y € C, v; € C(X;,Y), and v; € C(Y, X;) such that:
S viou =idy
i€[1,...] (1.12)
v 0 vj = & jidx,
Then we say Y is a direct sum of X1,...,X,. The category C has direct sums if

the direct sum of W, Z exists for all W, Z € C.

SNote that one could let K to be a commutative ring, and think about k-modules instead.
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Definition 1.15. In a k-linear category C, an object V' € C is simple if End(V') = K idy.
At last, we define semisimple categories.

Definition 1.16. A k-linear category C is semisimple if:
e it has direct sums

e all idempotents split, that is, for all f = f - f € End(X), there exists Y € C and
u:Y - X, v : X —Ysuchthat v/ -u=idy andu-v' = f

e the simple objects are mutually disjoint, that is, let the set of simple objects be
{Xi}iGD then C(X,L,Xj) ~ 6i,j k

e for all Y, Z € C, the map by composition:
P, z) ek (Y, X;) = C(Y, Z)
i€l
is an isomorphism.

Remark 1.17. Furthermore, if C is a monoidal category, we also require that 1 is a

simple object for semisimplicity.

For C a semisimple category, we denote the set of simple objects in C by Irr(C). It
can be shown that every object in a semisimple category is isomorphic to a finite direct

sum of simple objectsm As a consequence of this, for any X € C, we have that

X~ @ v~ (1.13)

Yelrr(C)
where ny = dim(C(Y, X)).
In particular, when X = A®B for A, B € Irr(C), we can define the fusion coefficients

N) p = dim(C(A® B,Y)),

which satisfy

AeB~ @ vVNis,
Yelrr(C)

Now we prove some lemmas for semisimple, pivotal categories.

Lemma 1.18. Let C be semisimple, pivotal category and J € Irr(C). Then J € Irr(C).

"We won’t prove this here. In Cor. [1.27] however, we give a proof for the case when C is a semisimple
category with finitely many simple objects.
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Proof. We can define a linear isomorphism ® : End(.J) — End(J) as the map that

sends
J J

— . (1.14)

This map has an inverse that sends

J
%] — . (1.15)
J

J

It is easy to check that @ is in fact a vector space isomorphism, so End(.J) ~ End(J) =
kid. O

Lemma 1.19. For a semisimple, pivotal category C, and J € C, we have
dj=dy
dp = 1.

Proof. By definition of dimension and sphericality of C, we have
dy =trp(idy) = = trr(idy) = d. (1.16)

For the second equation, observe that since C is a K-linear category, for all X € C,

we have

dx :d1®X =didx. (1.17)
Therefore d1 = 1. ]

Lemma 1.20. For a semisimple, pivotal category, and L,J € Irr(C), Hom(L ® J,1)

is one-dimenstonal if L = J and zero otherwise.

Proof. By asimilar argument as in Lemma we know that Hom(LJ, 1) = Hom(L, 1®
J) = Hom(L,J). Since L,J are simple objects, by definition, Hom(L,J) is one-
dimensional if and only if L = J.

O
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We can also require there to be only finitely many simple objects.

Definition 1.21. A monoidal category C is finitely semisimple if it is semisimple and
has a finite number of isomorphism classes of simple objects. A monoidal category C

is fusion if it is finitely semisimple and pivotal.

Definition 1.22. The categorical dimension, D, of a spherical fusion category C is

D= ) di.

Lelrr(C)

1.5 Dual pairings

Let C be a semisimple category and K be an algebraically closed field with characteristic
0. Since the homspaces are vector spaces, we can give a basis. The goal of this section
is to review of the concept of dual pairing, which is a gadget that generates a dual basis

from a basis. Moreover, we highlight two dual pairings we use in the latter chapters.

Definition 1.23. Let V and W be vector spaces over a field K. Then a bilinear map
(,):V xW — K is non-degenerate if it satisfies:

e if v € V is such that for all w € W, (v,w) = 0, then v =0
e if w € W is such that for all v € V, (v,w) =0, then w =0

Definition 1.24. For V and W vector spaces over a field K, a dual pairing of V' with
W is a non-degenerate bilinear map (, ) : V x W — k.

Theorem 1.25. Let V and W be finite dimensional vector spaces over a field K and
(,):VxW—=Kk

is a dual pairing of V. with W. Then there is an isomorphism from V to W*, which

sends v to A\, where \y(w) = (v, w).

For a proof, see [Gar09]. Thus, given {v;} a basis of V', the dual pairing provides a
corresponding dual basis {w;} of W ~ V*, given by the equation (v;, w;) = J;;. Now
we prove some properties of finitely semisimple categories which will help us to define

our first dual pairing.
Theorem 1.26. For a finitely semisimple category C and L € Irr(C), define
(,):C(Y,L)®kC(L,Y) -k (1.18)

to be the bilinear map that sends g ®« f to ¢ where go f = c-idy. This map is

non-degenerate.
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Proof. Suppose there exists v € C(L,Y) such that for all w € C(Y, L), (w,v) = wov = 0.
By semisimplicity, for € End(Y"), there exist f; € C(Y,J) and gy € C(J,Y) such that

T~ Z gso fr.

Jelrr(C)

> gsofrow,

Jelrr(C)

Consider the morphism

as L, J are simple objects, C(L,J) = 0 if L # J, so most of the terms in the sum will
be zero and we are left with g7, o fr, o v. By assumption, f;, ov =0, thus x ov =0 for
all x € End(Y). Let 2 = idy. Then we have that 0 = idy o v = v.

By a similar argument, one can show that if there exists w € C(Y, L) such that for
all v e C(L,Y), (w,v) =0, it must be the case that w = 0. O

Corollary 1.27. In a finitely semisimple category C, every object can be written as a

finite direct sum of simple objects.

Proof. Let {8} be a basis of C(Y, L), which we will denote as 5 € B(Y,L). Observe
that the dual pairing above gives a dual basis {#*} € C(L,Y). Since foa = 4 5idp,

it suffices to show that

Z B* o =idy.
Lelrr(C)
BEB(Y,L)
Let
g= Y. B oB.
Lelrr(C)
BeB(Y,L)

Then it suffices to show that for all f € C(Z,Y), f' € C(Y, Z), we have that go f = f
and ffog= f".
By semisimplicity, there exist wy € C(J,Y') and vy € C(Z, J) such that

Consider

go E wyjouvy,

Jelrr(C)

it is easy to see that for, L # J the term is zero as L, J are simple objects. Thus
we are left with
Y. Bopowpous.

Lelrr(C)
BeB(Y,L)
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By writing wy, in terms of * € B(L,Y’), we see that,

Y BroBows=uwy.
Lelrr(C)
BeB(Y,L)
Therefore, g o f = f. By a similarly argument, one can show that fog= f. O
Thus, for this dual pairing, we have a nice expression of the identity morphism in

terms of a basis and its dual basis.

Corollary 1.28. Let C be a finitely semisimple category and X,Y € C. For each
L € Irr(C), pick a basis of C(X ® Y, L). Let the dual pairing be the map

(,):C(L,X®Y)okC(X®Y,L) =Kk (1.19)
that sends f Qk g to ¢ where go f = c-1idy. Then

X Y X Y

= ) . (1.20)

Lelrr(C) @
a€B(XY,L)

X Y X Y
Remark 1.29. The fact that the RHS of ([1.20]) does not depend on the choice of basis

stems from the linearity of hom-spaces in C. It is well-known that if {;} and {3;} are
two different bases for C(X ® Y, L), then ), a; ®k o and Zj Bj @« B represent the
same element in C(X ® Y, L) ® C(L, X ®Y). Consider the map

IN'C(XeY,L)xC(L,X®Y)—=-CXRY,X®Y) (1.21)
which sends f X g to the following morphism

X Y
@)

L
()

X Y

Since C is a k-linear category, I is in fact a K-linear map. Therefore

T() aixaf) =T _ 8 x B)
L J
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and the definition does not depend on the basis. In general, in a k-linear category, if
we define a morphism using the sum of some basis and dual basis, then the definition
does not depend on the choice of basis. This observation is extremely useful and we

frequently use this in the proofs that follow to choose a convenient basis.

Note that the pairing (, ) requires L to be a simple object. When this is not the
case, we use another dual pairing defined as follows. Let C be a fusion category. For
X,Y € C, define the bilinear map

(,):C(X,Y) @k C(Y,X) — k (1.22)

be the map that sends 5 ® a to ¢, where

(1.23)

< <
OpO)

It is easy to check that (, ) is non-degenerate by decomposing X,Y into direct sums of

simple objects.

Remark 1.30. A remark on notation: instead of explicitly stating the dual pairing,
we annotate with either an asterisk or a star to differentiate between the two pairings.
For instance, let {8} be a basis for the vector space V, then {$*} is the dual with
respect to (, ) and {$*} is the dual with respect to (, ).

Lastly, we recall the definition of the trace of a linear operator. Note that by remark
this definition does not depend on the choice of basis.

Definition 1.31. Let C be a k-linear category. For a linear map 7' : C(X,Y) — C(X,Y)
and a basis {a} of C(X,Y), the trace of T is

Tr(T):= Y (Toy,0f)

aeB(X)Y)

where {a}} is the corresponding dual basis under the dual pairing (, ).
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Chapter 2

Braided monoidal categories

This chapter continues the introduction to the language of monoidal categories. In
section 2.1 we define braided monoidal categories and braided monoidal functors. In
section 2.2 we define twists for pivotal, braided tensor categories and elaborate on
twists of simple objects when the category is also semisimple. In section 2.3 we discuss
modular categories. In particular, we define the s and ¢ matrices and present the

Verlinde formula. Finally, in section 2.4 we define the Drinfeld center.

2.1 Braided monoidal categories

Braided monoidal categories capture in categorical terms what happens when we com-
mute the terms in a tensor product. This is done by specifying a family of natural

isomorphisms oy : V@ W — W ® V, which is referred to as the braiding.

Definition 2.1. A braided monoidal category is a monoidal category C equipped with

a family of natural isomorphisms
0'V7in®Wl>W®V

satisfying the hexagon axioms, that is, for all X,Y,Z € C

Xo¥Ye2) XX (vez)oX

(XRY)®Z Y ®(Z®X)

(YOX)®Z gy Y0 (X ® 2)

19



20 CHAPTER 2. BRAIDED MONOIDAL CATEGORIES

OX®Y,Z

(XRY)Z —3 Z(X®Y)

-1 —1

XY ®Z) (ZoX)®Y

id X@m /M®idy

X®(ZoY) — (X@2)QY

Ax 7z v

comiutes.

The hexagon axioms ensure that the braiding is in fact a good one, in the sense
that it is compatible with the tensor product. One way to see this is as follows. For

strict tensor categories, the hexagon axioms simplify to the following conditions:

oxyez = (1dy ® ox,z) o (oxy ®idz) (2.1)

oxey,z = (0x,z ®idy) o (idx ® oy z)

In our graphical notation, we denote oy, as a crossing of the strings of the following

type

w 14 w \%4

| ovw | = \ ; (2.2)
\

14 w \%4 w
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Then (2.1) can be expressed as:

YZ X YZ X

WARN
AN

X YZ X YZ
Z XY Z XY

\ M
\ \

XY Z XY Z

(2.4)

Since the braiding is natural, we can also move morphisms up and down the string
like beads. For example, for U, V,W € C, f € C(U,V') we have

We can extend on the definition of monoidal functor when the functor also behaves

and

well with the braiding.

Definition 2.2. Let (C,®,a,1,\, p) and (C',®',a/,1', X, p’) be braided monoidal cat-
egories with braiding o and ¢’ respectively. A monoidal functor (F,J) from C to C’ is

called braided if for all X,Y € C, we have the commutative diagram

F(X) @ F(Y) 25T by af P(X)
JX,Yl JY,Xl
F(X®Y) 7 F(Y ® X)
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If F' is also an equivalence of categories, then C and C’ are braided monoidally

equivalent.

2.2 Twists

Once we have a braided structure, we can define the notion of twists.

Definition 2.3. For a pivotal, braided tensor category C and V' € C. We can define

the twist of V', denoted by 6y, as the composition of the following morphisms:

i ¢ - O idg — i
Vevel %%  yveoyveV 29 L yeveTV Y L ye1oy

In our graphical notation, 6y is interpreted as a twist in the string:

v = P

Now we prove that twists allow morphisms to pass through them.

Lemma 2.4. Let C be a pivotal braided tensor category and f € C(X,Y). Then

Y Y
Oy

Yy = |X- (2.7)
f Ox
X X

Proof. This is a simple computation using the functoriality of the braiding and the

LL.

observation
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Remark 2.5. Furthermore, one can show that, for C a pivotal braided tensor category

and V,W € C, we have
Vv W w

1%
AN

- . (2.9)

Vv w Vv w

For readers familiar with the notion of ribbon categories, observe that this is the

’ Ovew ‘

ribbon relation. In fact, for semisimple categories, spherical braided structures uniquely
define ribbon structures of (1l

For a semisimple category C and L € Irr(C), we can identify 6 with a scalar as
Home (L, L) ~ k.

Definition 2.6. Let C be a semisimple, pivotal, braided category. Given L € Irr(C),
we define 07, € Kk as follows:

Now we prove some useful lemmas which tell us how the different twists relate with

each other.

Lemma 2.7. For C a braided spherical fusion category, and L € Irr(C), we have:
L P
b =Y
.

Proof. Since L € Irr(C), there exists ¢, co € K such that

P = (2.10)
L L

1.

:
-1
L
L

!See [EGNO15| Prop. 8.10.12.
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d = | (2.11)

L L
Now take the trace of (2.10) and (2.11]), since C is spherical, we know that the two

traces must be equal, so ¢; = co.
To prove the second statement, observe that by the first statement, we have

b O (2.12)
P O

By functoriality of the braiding, we have

O - . (2.13)
C

L L

By the properties of the pivotal structure, we know that

= . (2.14)
L L
Since L is simple, then it must be that case that
-
L ‘ L
O

2.3 Modular categories

In this section, we define modular data for premodular categories and give a definition of

modular categories. Then we present some of the key theorems for modular categories.
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Note that this section only contains the theorems needed for later chapters, for a more

nuanced introduction to modular categories and complete proof of theorems, consult
[BJ0O].

First we define premodular categories.

Definition 2.8. A monoidal category C is a premodular category if it is semisimple,

spherical and braided.

For a premodular category C and simple objects L, J € Irr(C), we can define §1; €
k = End(1,1) by

§LJ = . (215)

=~
o

Observe that
511 =dj. (2.16)

Also, by remark and decomposing L ® J into simples, we can alternatively
express Sy as,
SLy=00'07" > NEOxdx. (2.17)
Kelrr(C)
Thus by , one can show that

by observing C(L ® J,K), C(J® K,K), C(L® J,K) and C(J ® L, K) are isomorphic
as vector spaces, where the isomorphisms are given by some suitable compositions of
braiding and morphisms from the pivotal structure.

We can collect this information in the form of a matrix, giving us the § matrix. In

a similar fashion, we can define the ¢ and ¢ matrices.

Definition 2.9. For a premodular category C we define the following matrices

5:=(51y)
t:=(try)
¢ = (cry),

with entries indexed by L, J € Irr(C) and
tr,g:=90r40L

cL,g = 5L77.
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Definition 2.10. A premodular category C is modular if is finitely semisimple and §
is invertible.
When C is modular, we can normalize § by
s
§:=—
VD
where D is the categorical dimension.

The s, t, and ¢ matrices of a modular category satisfy nice relations.

Theorem 2.11. For a modular category C, we have:

s =c
ct =tc
cc=1

where

pt = Z Ord>
Lelrr(C)

p = Z HEdQL

Lelrr(C)

and are non-zero.

From the relations above, one can show that the s and ¢ matrices give a projective
representation of the modular group, SLs(Z), hence the name modular categories. The
s and t matrices provide a surprisingly large amount of information about the category.
In particular, we can use them to calculate the fusion coefficients. This is done using

the Verlinde formula.

Theorem 2.12 (Verlinde formula). For a modular category C, we have

SLRSJRSE
NE, = Z TKR (2.19)
RelIrr(C)

2.4 Drinfeld center

For a strict tensor category C, one can construct the Drinfeld center, denoted by Z(C),

out of half-braidings.

Definition 2.13. A half-braiding on X € C is a family of isomorphisms {ex(Y) :
XY — Y X}yec satisfying:
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1. naturality: For all Y, Z € C and all morphisms f € C(Y, Z),
ex(Z)o(idx @ f) = (f ®idx) o ex(Y). (2.20)
2. braid relation: For all Y, Z € C,

ex(YZ) = (idy @ ex(2)) o (ex(Y) @ idy). (2.21)

As with braidings, we denote half-braiding by crossings of the strings. To avoid any
confusion between braidings and half-braiding, we follow a similar convention to that
in [JBlOJEL and denote strings coming from objects in the center by double green lines.
Therefore, any strings that cross under the double green line should be interpreted as
a half-braiding. Note that, for convenience, we sometimes label the double green line
with the underlying object in the category, rather than the object in the center. For
example, We can express the naturality and braid relations of half-braiding using the

following diagrammatic equations:

YZ X YZ X

X YZ

Now we define the Drinfeld center of a tensor category.

Definition 2.14. The Drinfeld center Z(C) is a category with objects (X, ex) where
X € C and ey is a half braiding of X. Given objects (X, ex),(Y,ey), we define
Homz ey ((X, ex), (Y, ey)) as the set of morphisms f € C(X,Y) satistying for all Z € C,

= . (2.24)

X Z X Z
2We differ from [JB10] by having the green strings on top in the braiding rather than under.
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Remark 2.15. A point on notation: sometimes we may write a morphism f € C(V, W),

as follows
w

(Viev)

This allows us to encode the half-braiding of (V,ey) € Z(C) diagrammatically even

though f is a morphism in the category.

We can give Z(C) a strict monoidal structure. Let the tensor product be

(X,ex) @ (Y,ey) = (XY, exy) (2.25)
where

€Xy(Z> = (ex(Z)(X)idy)o(idx(X)ey(Z)), (2.26)

and the unit be (1, e1) where e1(X) = idx. In fact, one can do more, [Mue03b] showed

that Z(C) inherits more structures from C and is in fact modular.

Theorem 2.16 ([Mue03b] Thm. 1.2). Let k be an algebraically closed field, and C a
spherical fusion category with categorical dimension D # 0. Then Z(C) is a modular

category.



Chapter 3

Generalized Frobenius-Schur

indicators

As every object/morphism in Z(C) corresponds to an object/morphism in C, we can
define the forgetful functor
F:Z2(C)—¢C

which sends (X, ex) to X and morphisms in Z(C) to the underlying morphisms in C.
We now have the language to give the formal definition of the generalized Frobenius-

Schur indicators.

Definition 3.1. For a spherical fusion category C, n € N, X € C and W € Z(C), we

define the rotation operator
px  C(F(W), X®") — C(F(W), X®")
as the following map

x@n

—_——

w

Definition 3.2. The generalized Frobenius-Schur indicator, denoted by vV (X), is de-

fined as the trace of the rotation operator, that is,

VW(X) = Tr(p,VXX).

n

The aim of this chapter is to derive a formula for the generalized Frobenius-Schur

indicators in terms of modular data of the center. This formula is given in [NS10] as

29
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Cor. 5.6, here we give a direct and self-contained proof. Roughly speaking, we do this
by extending the adjunction between the forgetful and induction functor to construct
a suitable algebra isomorphism between morphisms in the category and morphisms in
the center. Then, using this isomorphism, we find a way of expressing the trace of the
rotation operator in terms of the categorical trace of some morphism in the Drinfeld
center.

The outline of this chapter is as follows. Section 3.1 is dedicated to defining the
induction functor to the Drinfeld center. Section 3.2 gives a proof of the fact that the
induction functor is left adjoint to the forgetful functor. Then in section 3.3, we extend
the bijection of hom-sets from the adjunction into an algebra isomorphism. In section
3.4 we prove some useful equalities between traces of morphisms. Finally, in section
3.5 we present a closed formula for the generalized Frobenius-Schur indicators.

Note that for simplicity, we abbreviate tensor product as concatenation, for exam-
ple, XY =X QY.

3.1 Induction to the Drinfeld center

The goal of this section is to define the induction functor to the Drinfeld center, fol-

lowing the approach taken in [JBI0].
First we define a special half-braiding for objects i(X) € C. For X € C, define i(X)

as

iX)= @ JxJ.

Jelrr(C)

Then we define a half-braiding for objects of the form i(X) € C. For

ex)(2): | @ IxT|z->2z| @ TXxI|,
JeIrr(C) JeIrr(C)

we let the L, .JJ component be

where
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@ = @& | (3.2)
L L
Remark 3.3. Once again this does not depend on the choice of basis by remark [T.29]

and we remind the reader that the dual basis is with respect to the dual pairing (, )
defined in Theorem .26

Remark 3.4. For simplicity, we shorten e;x)(Z)r,s to just ef, ; when the half-braiding

can be easily deduced from the string labels.
Now we prove that e; x) is indeed a half-braiding.

Theorem 3.5. For a spherical fusion category C and X € C, we have that (3.1) defines
a half braiding of i(X).

Proof. To show that e;(x) is an isomorphism, we give an inverse, which has components:

J X J Z J XJ Z
L[ :
S D D 9
‘ ‘ 7 ‘ ‘ eeB(JZ,L) J
Z . X L Z I X L
where
J J
= (3.4)
Z L Z L
We claim that for L, K simple objects in C,
> esxoep) =0kr-idyry, (3.5)

Jelrr(C)
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Observe that

KX K
€JKO€Z}: j Z . (36)
,BE% JZ,K)
ae%(JZL) g
7 X L

Since K, L are simple, ejx o ez} = 0 unless K = L. Furthermore, by definition of
dual basis, for ;,6; € B(JZ,L), g; 0 €7 = 0;,4idz, therefore

L X L

eJjrL o 62}, = j . (37)
66% JZ,L)

7 X L
By remark if we can find some choice of basis of § € C(JZ, L) such that 8 is
a basis of C(ZL, J) and f3 is the dual basis of 3/ with respect to the pairing (, ), then

(3.5)) follows from Cor.

First observe that we can construct a linear isomorphism between C(JZ, L) and
C(ZJ,L) using ¢, ¢ and scalar multiplication, thus, for 3 € B(JZ, L),

L
vds
var @)
zZ 7
is a basis of C(Z.J, L).
We claim that
p _
vds
Vi (@)

l
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is the corresponding dual basis. To show this, we observe that since J is simple, for
Bi, B; in the basis of C(JZ, L) there exists some ¢ € k such that,

o
]

By lemma we know that this is just the same as trp(f5; * of;), so the LHS is
0 when B; # [3] and d; when i = j. Since the categorical trace of the LSH is just cdy.
Therefore ¢ = 0 when i # j and ¢ = 1 when ¢ = j.

Therefore, by making a good choice of basis, we have deduced

-1 EE
E €JKO€LJ—(5KL leLXL'
LelIrr(C)

A similar argument can be applied to show

—1 o Sa
E eJKoeLJ_(sKL‘IdLXLZ'
LelIrr(C)

To show naturality, we need that for all W, Z € C, f € C(Z,W), and for all L, J €
Irr(C), we have

BEB(LW,J)

J
VA
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Since {e} forms a basis of C(LZ,J), then for each g € B(LW,J), there exists

Ce,3,7 € K such that
J
w o= Ce.B8,7 (3.10)
66% LZ,J)

Similarly, since {8*} forms a basis of C(J, LW), there exists d. g ; € K such that

L w
Z = > depy (3.11)
g Be(LW,J)
J
Thus, we have

woJ

7 = > depy (3.12)
@ Be(LW,J)
L

L w L w L 7
G
J w
[Jj = Y (B) = > ) (3.13)
JeIrr(C) 1%7%4 JeIrr(C), J
BEB(LW,J) ceB(LZ.J) e
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Substituting (3.10)) and (3.12)) into (3.13]) then pre-composing and post-composing

with €* and § give us

Ce,8,0 = de,B,J-

Thus we have proven (3.9).

To prove the braid relations, let a € B(LY, K) and 8 € B(KZ,J), then the L,J
component of (idy ® ex(Z)) o (ex(Y) ®idy) is

Y Z J X J

; )
RN

K . (3.14)
Vdy
Kelrr(C),
aG‘B(Ll(/',I)(), @ @
BEB(KZ,J)
7 X L Y Z

By semisimplicity, the set consisting of

J

L Y VA

where K ranges over all simple objects in C and a € B(LY, K), € B(KZ,J) form
a basis of C(L ® (Y Z), J), with the corresponding dual basis given by

Since C is pivotal, we have
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L
Thus the L,J component of (idy ® ex(Z)) o (ex(Y) ® idz) is equal to the L,J

component of ex(Y Z) by remark Therefore the braid relations are satisfied. [

Now we have all the ingredients needed to define the induction functor I : C — Z(C).
For X € C, let

where

ixX)= @ J7xJ

Jelrr(C)

and e;(x) is as defined in Section (3.1)).
We define I for morphisms. Let f : X — Y, then I(f) : I(X) — I(Y) has L, J

component 0 if L # J, and has component

il
~
h

(3.15)

l
>~
~

it L=J.
It is easy to see that I(f) is indeed a morphism in Z(C). Since the only non-zero

components are I(f)rr, for all L € Irr(C), this is equivalent to showing that for all
L,J € Irr(C) and Z € (C) we have



3.2. ADJOINT TO THE FORGETFUL FUNCTOR 37

| erJs | I(f)LL

L Y L _ J X J . (3.16)
t I(f)LL J ’ €rJ ‘
L X L Z L X L Z

An easy substitution of the half-braiding definition shows that the above equality must
hold. It is also immediately obvious that I(f o g) = I(f) o I(g). This confirms that I

is in fact a functor.

3.2 Adjoint to the forgetful functor

This section shows that the forgetful functor F' : Z(C) — C is in fact biadjoint to I.
We first prove a useful lemma which helps us understand the relationship between the
different components g : V — KXK of a morphism g € Z(C)(V, I(X)).

Lemma 3.6. Let g : V — I(X) be a morphism in Z(C), and gk : V — KXK be the
K-th component of g, then

Y-

Proof. Since g is a morphism in the center, we know g must satisfy the following

K 1(X)

(3.18)

V E V K

Picking the 1-th component of (3.18)), we have
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K 1 K 1X 1
K X
_ 11 s Vi ()
1 - T X _
reme | T Lenn(C) Vi L L
BEB(LK,1)
AR qr gL

V K

Vv K Vv K

(3.19)

Since K and L are both simple, C(LK,1) is one-dimensional if L = K and zero
otherwise. Therefore the evaluation map, €7, and the coevaluation map, ¢; can be used
to give a basis and dual basis of C(LK,1) = C(LL,1):

1
b= s
B =
T Vg "

K X K X
! (3.20)
- T -
)
V K Vv K
Composing with 7 gives us the desired equality. O

This lemma is crucial in proving that the induction and forgetful functor are biad-

joint as it gives us a way of constructing a canonical bijection of hom-sets.

Theorem 3.7. The induction functor I : C — Z(C) is right adjoint to the forgetful
functor F: Z(C) — C.

Proof. We need to show that for all V € Z(C) and X € C, there exists a natural

isomorphism

O:C(F(V),Y)— Z(C)(V,I(Y)).

For f e C(F(V),Y), we define ®(f) : V. — I(Y) component-wise as follows

O(flr=f (3.21)



3.2. ADJOINT TO THE FORGETFUL FUNCTOR 39

KYK K Y K
o(f)x | = Vix (3.22)
P4

We first show that for all f € C(F(V),Y), ®(f) is a morphism in the center. This
is equivalent to checking that for all W € C,

w 1Y) w 1Y)
.
- . (3.23)
)
vV W v w

Observe that the K-th component of the RHS of (3.23) can also be written as:

W K Y K
’ - ‘
S Vi T (3.24)
Lelrr(C) tJ L
|4 w

Using a € B(KW, L), we can produce the following basis and dual basis of C(LW, K ):

K K
L w L w
L w L w
K K

Substituting the basis into (3.24]) gives us
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w Y K
L
f
Vi > . @) : (3.27)
LelIrr(C)
acB(KW,L)
Vv W

By the pivotal structure of the category, we have
W K WK

= . (3.28)

L L
By the above fact, and that we can pull a under the half-braiding, (3.27]) becomes

WK 'Y K

Vix > @ . (3.29)
LelIrr(C) L
aEB(KW,L) @
|4 w

Since « form a basis of (KW, L), by Cor. we know (3.27)) is equal to

WK Y K
f
Vidk _J , (3.30)
)
vV W

which is the same as the K-th component of the LHS of (3.23), so ®(f) is a mor-
phism in the center.
By Lemma we know that every morphism in Z(C)(V,I(Y)) is uniquely deter-

mined by its 1-th component, thus ® is a bijection.
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To show that the map is natural, we show that for all Y)Y’ € C, V,V' € Z(C),
fecy,Y),ge 2(C)(V',V)

C(F(V),Y) —2— Z(O)(V.I(Y))

| |@1)
C(P(V'),Y") -2 Z(C)(V',I(Y"))

commutes. That is, for all h € C(F(V),Y), we want
O(fohoF(g)=I(f)o®(h)og. (3.31)

Since the morphisms on both sides are in Z(C)(V', I(Y)) C C(F(V’),I(Y)), we can
compare the K-th component, which is in C(F(V'), KY K). By the definition of I, we

can derive that

(I(f)o®(h)k = (I(frx o ®(h))k = P(foh)k. (3.32)
So the K-th component of the RHS is

=

(3.33)

The K-th component of the LHS, by the definition of ®, is

K Y K

Vg . (3.34)

F(g)

v
Since ¢ is a morphism in the centre we can move F(g) down the half-braiding, so

we get that it is equal to the RHS.
O
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Remark 3.8. In fact, I is biadjoint with F. By flipping the diagrams in proof upside
down, we can also show that [ is left adjoint to F'. That is, we can construct a natural

isomorphism

U:C(Y,F(V)) = Z)I(Y),V)

for Ve Z(C) and X € C as follows:
Let f € (Y,F(V)). Define

U(flr=f (3.35)
14 v
U(f)x |= Vix r . (3.36)
KYK K Y K

By a similar argument as before, we can show that our definition of ¥ is indeed

good.

3.3 The tube algebra on C(i(X), X)

Pick X € C. Recall that the adjunction in section 3.2 gives us a bijection of sets by
o1

C(i(X), X) = C(FI(X), X) =~ Z(C)(I(X), [(X))

Since we are working in K-linear categories, ® is also compatible with addition
and multiplication by scalars. Thus to produce an algebra isomorphism, it suffices to
specify a multiplicative structure on C(i(X), X ). This gives rise to the tube algebra on
C(i(X),X). The construction of the tube algebra is due to [Ocn94].

Definition 3.9. Given X € C, we define the tube algebra of X as

Tube(X) =C(i(X),X)= @ C(IXJX),
JelIrr(C)

which inherits the additive structures of homspaces from C. Given f,g € C(i(X), X),

define multiplication g - f as
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ﬁ

Vdr/dy

g-f= @ > = (3.37)

Lelrr(C) K,J€Irr(C) dr
a€B(JK,L)

where the notation @ defined in [T

Remark 3.10. It can also be shown that multiplication in the tube algebra is associa-
tive by applying remark

Theorem 3.11. Let C be a spherical fusion category and X € C. Then ® defines an
algebra isomorphism between Tube(X) and Z(C)(I1(X),I1(X)).

Proof. Let f,g € C(I(X),I(X)). It suffices to show

o gof) =0 (g)- 27'(f). (3.38)
Observe that

Z\/@\/E X

o l(g) o) = P fi1 : (3.39)

Lelrr(C) K,Jelrr(C)

K
a€B(JK,L) @ 7 J @

On the other hand, we know

(I)_l(g © f) = Z K X K = Z \/@ 74 X K- (340)

Kelrr(C) Kelrr(C)
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Substituting the definition of the half-braiding into (3.40)) gives

- =6 > \ﬁ‘/? i : (3.41)

Lelrr(C) K,J€elrr(C)

K
BEB(LK,J) @ 717 @

For {a} a basis for C(JK, L), we can give a basis {3} for C(LK, J) by letting

J
L K

It is easy to check that the corresponding dual basis {8*} is

L K
J

Substituting (3.42)) and (3.43) into (3.41) gives us the expression in (3.39). So we

are done. O

a\a

a\a

3.4 Tying the strings together
Now we prove some useful facts about the relationship between the categorical traces

of morphisms in C(i(X), X ) and Z(C)(I(X),I(X)). This gives us the key ingredients

we need for the indicator formula.

Theorem 3.12. Let C be a spherical fusion category, X € C and f € C(i(X), X). Then
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on] =P [h (344
I1(X) X

where f1 € C(X, X) denotes the 1-th component of f and D is the categorical dimension
of C.

Proof. First rewrite i(X) as > ; LXL, and observe that since L,.J are both simple
objects, C(L, J) is one-dimensional if L = J and is 0 otherwise, therefore we only need

to consider the terms when L = J. Then using sphericality of C, we get

a(f)] = Z( | @I’(f)LL - (3.45)
Lelrr(C
1(X) L x\ \L

Applying Lemma [3.6] and the definition of the half-braiding, we get

S Vg %L (3.46)
LK€l (C) K
BEB(LL,K)

Since C is pivotal,

K

As $ is a morphism from 1 to K, C(LL,K) must be one-dimensional when K = 1

and 0 otherwise. So it is only necessary to consider the term when K = 1. Picking

the basis of C(LL,1) to be \/%TLQ and the corresponding dual-basis to be ﬁLL and
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substituting this into (3.46]) gives us

®(f) = > = Z)d% L (347)

Lelrr Lelrr(C

©)
I(X) L O X

O]

We want to find a way of expressing trace of morphisms involving half-braidings
in terms of C(i(X), X). To do this, we first have to prove a lemma on how the half-

braidings split under direct sums.

Lemma 3.13. Let C be a spherical fusion category, W € Z(C) and X € C. We have

ew(i(X)) = P ew(ZXL). (3.48)
Lelrr(C)

Proof. Since i(X) is a direct sum, there exist projections 7 : i(X) — LXL and
coprojections ay, : LXL — i(X) such that for L, J € Irr(C), the following holds:

- oy = 6p jidy, (3.49)
Z oy, - T, = idi(X) (350)
LelIrr(C)

By (3.50) and the naturality of the half-braiding ey, we have

ew (i(X)) = LXLD = = ew(LXL).
" Le%r:(C) LSQC) "
N
W i(X)
(3.51)

O

Now we give an explicit computation of ® ! on a specific morphism in Z(C)(I(X), I(X)).
As we will find out in the next section, this is a key ingredient for constructing the mor-

phism in the center whose categorical trace is the Frobenius-Schur indicator.
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Theorem 3.14. Let C be a spherical fusion category. For X € C and W € Irr(Z(C)),

X I(X)
\
1 W
d — 52
© > T @ @) | =w (3.52)
Lelrr(C) aeB(F(W),L
7 X L I(X)

where @ is defined in definition [1.7.

Proof. By the braid relation and lemma,

I(X)
Vdr, @ @ (3.53
w @ Z \/@ )
Lelrr(C) JGIrr(C)
BEBUIQF(W
[
I(X) Z

Since ®~! sends f € Z(C)(I(X), (X)) to the morphism f1 € C(i(X), X), we can
let J = 1. Therefore, for {a} a basis of (F(W), L) then we can define {3} a basis of
C(L® F(W),1) and a corresponding dual basis as follows:

_ \/‘%L (3.54)
W

L W L

L W L W
:&@ . (3.55)
1
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Using the basis and dual basis defined above gives us

I(X) X

=

_ 1
q’lW @ Z\/ﬂ

Lelrr(C) aeB(F(W),L)

I | |
1(X) I X L

(3.56)
By naturality of the half-braiding, we know we can slide morphisms under the

braiding, giving us

I(X) X

| B @ Z 1 W . (3.57)
LeIrr(C)aE‘B(F(W)vL)\/CTL @ @

I(X) I X L

Since W € Irr(Z(C)), by a similar reasoning as in Lemma we know that the
two twists will cancel each other, giving us the statement we want.
O

Corollary 3.15. Let C be a spherical fusion category, X € C, W € Irr(Z(C)), and f €
C(i(X), X). Suppose also that we denote the Kth component of f by fr € C(KXK, X),
then

1(X)

S
Il
N

(3.58)

Lelrr(C)
H aEB(F(W),L)

®(f)

where D is the categorical dimension of C.
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Proof. By Theorem and we know

I(X) X
|
W
w a o
-1 _ @ Z 1 Vdpvdy ; .
- 1. Ji.. L J
H Kelrr(C) L,Jelrr(C) dy dic 7 J
a€B(F(W),L) 3
o(f) BEB(TK,L) (B 5)
I(X) K X K
(3.59)

Now consider the 1-th component of the morphism above, C(JL, K) is non-zero if

and only if L = J. In particular, C(LL, 1) is one-dimensional, so we can pick ﬁ €T

to be a basis and \/% 7 to be the corresponding dual basis. Then, an easy calculation
using Theorem [3.12| gives us the statement we are after. O

3.5 A formula for the Frobenius-Schur indicators
In this section, we show that by finding a morphism f such that ®(f) = 9?( X))’ Cor.
gives us an expression of the generalized Frobenius-Schur indicators in terms of

morphisms in the center.

First, we define gx € C(i(X), X) and show that gx = ®~(0;(x)).

Definition 3.16. Let C be a spherical fusion category. For X € C, define ¢x €
C(i(X), X) by specifying the components (qx); € C(LXL, X) to be

X
1

(gx)r = — @ .
Nz

BeB(XT) ¥ ¢

7 X L

Theorem 3.17. Let C be a spherical fusion category and X € C. Then

O (07(x)) = ax.
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Proof. Recalling the definition of the twist, we have

I(X) i(X)
p = [ei:;) . (3.60)
I(X) i(X)

By Lemma [3.13, we know that the half-braiding only has diagonal components,

therefore
JXJ
JTXJ|
Orx) = @ [%(X) . (3.61)
Lelrr(C) Jelrr(C)
LXL
Taking the component J = 1 and writing out the half-braiding, we get
X 1
/ 1
_ Vdr, { :
O (01x)) = = . (3.62)
Lelr(C) yeB(Lx,1) ¥ 1
. X L

For {8} a basis of C(X, L), we can define a basis {7} of C(LX, 1) and a corresponding

dual basis as follows:
1
1

= — 3.63
L X L X
L X L X

— L (3 64)

VT ' '

1

Substituting for the basis and dual basis gives us the statement we have set out to

prove. O
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Lemma 3.18. Let C be a spherical fusion category and X € C. Then

X
Yn—l

1 1 —
o0 x) = B > T | B (3.65)

Lelr(C) gen(xX"I) ¥ ¢ ‘

L X T
Proof. By Theorem |3.11} we know

(07 ) = @ (Or(x))" (3.66)

where the LHS is multiplication in the tube algebra. Further observe that by Theorem
.17 we know

O (070x)" = (gx)™ (3.67)

Then the rest follows from a straight forward computation. O

Finally, we give a formula for the generalized Frobenius-Schur indicators!

Theorem 3.19 (Generalized FS indicators formula, [NS10]). Let C be a spherical fusion
category, X € C, W € Irr(Z(C)). Then

1 5 n 1.
vl (X)=— > 3wy 0 dim(C(F(Y),X))
Cyernz©)

where D¢ is the categorical dimension of C.

Proof. By the definition of the trace of a linear operator,

vy (X) =Tr(pnx) = >
SEB(E(W),X7)

(3.68)
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Now observe that by Cor. and Lemma [3.18

1(X)

SIS
Il
g

Lelrr(C)
H aE‘B(F(WLL)

BeB(X" L)

0

1(x)

(3.69)

For all L € Irr(C) and a € B(F(W),L), 8 € B(X",L), we define v a basis of

C(F(W),X"™) and a dual basis (with respect to the second dual pairing (, ) in chapter
1) by letting:

xn X xn!
= \/117 (@) 3 (3.70)
L
W W

(3.71)
Substituting (3.70]) and (3.71)) into (3.69) gives us
1(X)

1 (W

— = .72

= (372

I
07 x)

By sphericality and a similar argument to the one in Theorem [3.14] we know that
we can move the X strand down to match the diagram in (3.68). Therefore,
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1
Tr(py x) = 5 : (3.73)

I

1(x)

0

By Theorem we know that Z(C) is semisimple, so we can express I(X) as a
direct sum of simple objects in Z(C), that is

I(xX)= @ o (3.74)

Yelrr(Z(C))

where ny is the number of times Y appears in the direct sum of I(X). By (1.13)), we
know

ny = dim(Z(C)(Y, I(X)).
Since [ is right adjoint to F', we know
ny = dim(C(F(Y), X)).

For each Y € Irr(Z(C)) and j of ny copies of Y in I(X), we have a projection my; €
Z(C)(I(X),Y) and coprojection ay,; € Z(C)(Y, (X)), such that

idrxy= > oyjomy, (3.75)
Yelrr(Z(C))
jE[l,Q,...,ny]
Therefore,
I(X)
W
= > (3.76)
Yelrr(Z(C))
H j€[1,2,...,ny]
O1cx)

Since 7y,; and ay; are morphisms in Z(C), we can slide them up and down any
half-braiding. Furthermore, by Theorem my,j © 07 x) = 03 o Ty, so we have
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1
Tr(py x) = > (3.77)

Yelrr(Z(C))

J€[1,2,...,ny]

By, Lemma we can move Ty,; up to the top, giving us
W 1
Tr(pl) = (3.78)

Yelrr(Z(C))

]E[l,Q,...,’ny]

From the definition of finite sum, we know 7y ; o ay;; = idy. Since Y is a simple

object of Z(C), we can rewrite the twists in terms of 0y by definition we have

1

n 1 - n
TT(PK,/X) =D Z Oy = Z swy 0y
Yelrr(Z(C)) 174 Yelrr(Z(C))
jE[1,2,...,ny] jE[l,z,...,ny]
(3.79)
Since ny = dim(C(F(Y), X)), we have the statement we want. O

Remark 3.20. Though we assumed that W is a simple object in Z(C). One can easily

generalize this formula for any object in Z(C) by decomposing it into a direct sum of
simples.
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Remark 3.21. One can also define the higher generalized Frobenius-Schur indicators,
1/}2/ L(X) as
vk (X) = Tr((onx)") (3.80)

The formula we gave in Thm. [3.19|calculates the higher generalized Frobenius-Schur
indicators for £ = 1. In the following chapter, we develop a method of calculating the
higher generalized Frobenius-Schur indicators when n is prime. For a complete formula

for the higher generalized Frobenius-Schur indicators, see [NS10].
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Chapter 4

Link invariants for torus knots

It is well-known that we can obtain oriented ribbon link invariants from braided spher-
ical fusion category. For a braided spherical fusion category C and X an object in the
category, we can interpret the oriented link diagram by thinking of it as a string dia-
gram with the strings labeled by X. Then we obtain a morphism in C(1,1) € k which
can be identified with a number in K and is invariant under the Reidemeister moves. In
practice, calculating the link invariants is a computationally hard process and requires
us to know a lot about the category C. This chapter presents a way of generating
link invariants of special torus knots using the higher Frobenius-Schur indicators for
modular categories. In section 4.1 we give a way of generating some of the higher
Frobenius-Schur indicators from the indicator formula using Galois actions. In section
4.2 we discuss a simplification of the indicator formula when the category is modular.
In section 4.3 we introduce torus knots and derive a method for generating torus knot
invariants from modular data of modular categories. In section 4.4 we present some
calculations for link invariants for Drinfeld centers of pointed fusion categories. Finally,

section 4.5 gives some concluding remarks.

4.1 Higher Frobenius-Schur indicators

Recall in chapter 3 we defined the higher generalized Frobenius-Schur indicators 1/}2/ 1 (X)
as

Vo (X) = Tr((pn x)")- (4.1)

n,

Now we give a method of computing some of the higher FS indicators 1/;:"/ w(X) from

W

2V (X). First we observe that the generalized rotation operator is diagonalizable.

Lemma 4.1. For spherical fusion category C, W € Irr(Z(C)) and

px  C(F(W),X™) = C(F(W),X"™)

57
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the rotation operator, we have

(pn x)" = O idp ) xn - (4.2)

Proof. Let f € C(X™, F(W)). Since C is pivotal, we have

X" X"
WO = J _ J . (4.3)
w w

We can pass f under the half-braiding, giving us

X" X"
w w

Since K is an algebraically-closed field with characteristic 0, we know that p}/l"/X is
diagonalizablﬂ Furthermore, let {a} be an eigenbasis of p!¥y with eigenvalues {\w.o}.
Picking an nth root of 8y, then the set

1
A= {eﬁ/)\ma}ae%(F(W):X")

consists only of nth roots of unity.

As the trace of p}fx is the sum of the eigenvalues, we have
VXV (X) = Z )‘W,on
a€B(F(W),X")
and furthermore

v (X) = tr((p) x)") = > A
a€B(F(W),X™)

s 1
Let ¢ = en . Then 05, (X) is an element in the n-cyclotomic field Q[¢]. Since
Q[¢] is a Galois extension for Q, for ged(n, k) = 1, we have an element ¢y, of the Galois
group, also known as the Frobenius map, which raises £ to the k-th power. Thus we

have

!This can be shown using representation theory: p,VX x induces a representation of Z/nZ, since the

group is finite, the representation is unitarizable and therefore pfx x is diagonalizable.
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1o 1 k E
er@ive (X)) = Y (OpAna)’ =05 (X).
EB(F(W),X")

In particular, when n is prime, then any choice of £ would be coprime to n, so in

this case, we can compute all higher Frobenius indicator using Galois actions.

Remark 4.2. Whilst we focus on the case of n being prime, a similar process can be

done when n is not prime, for details, see Prop. 1.2. in [BJT16].

If we know all higher Frobenius-Schur indicators, by applying the Galois actions or
otherwise, then we can explicitly compute the eigenvalues. Let x; be the number of

times &' appears in A, where

1
A = {0 Awa taesrow),xn)-

Then we can use the discrete Fourier transformE] to find the multiplicities x;, given by

ook

1 k _
n= D Ofiven V(X (4.5)
k=1

—1
Then the eigenvalues of pKVX are flﬂv{} with multiplicity ;.

4.2 Drinfeld centers of modular categories

The formula given in Theorem requires us to know the s and ¢ matrices for the
Drinfeld center, as well as the forgetful functor multiplicities. In general, it is difficult
to write down the s and t matrices for the center, or even know what the simple objects
are! When C is modular, however, we can derive the the modular data for Z(C) from
the modular data for C. In this section, we explore the implications of this, and give a
formula for the generalized FS indicators in purely in terms of the modular data of the

category. First we introduce some notation.

Definition 4.3. Let C be a braided monoidal category, with the braiding given by
the family of natural isomorphisms oyw : VW — WV. Define C to be the braided
monoidal category with the inverse braiding a;[,lv VW - WV.

Remark 4.4. To highlight the difference between C and C, we decorate objects and

morphisms in C with tildes.

Definition 4.5. Let A and B be k-linear categories. Define the tensor product, AX B,

to be the category consisting of the following:

e objects are finite direct sums of the form @, A; X B; with A; € A and B; € B

2For an explanation of the discrete Fourier transform, see the appendices.



60 CHAPTER 4. LINK INVARIANTS FOR TORUS KNOTS

e morphisms between objects are defined by:
Hom uxs(EP A ¥ B; , €D A; ¥ B)) = P A(X;, X;) @k B(Y;, Y;)
i j ij

Remark 4.6. If A and B are semisimple categories, it is easy to see that the only
objects in A K B satisfying End(D; A X B;) = P, ; A(Xi, X;) @k B(Y;,Y;) ~ k are of
the form L X K where L, K are simple objects in C.

Theorem 4.7 ([Mue03b] Theorem 7.10). Let C be a braided monoidal category. Define
the functor G : CRC — Z(C) as follows:

e on objects: send XKY to (X @Y, exgy), where for W € C , exgy (W) is defined
to be

(oxw @ idy) o (idx ® ayy),

which can be represented diagrammatically as

W XY

L/

e on morphisms: sends fK g to fRg

If C is modular, then G yields a braided monoidal equivalence between C R C and
Z(C).

Under this equivalence, we can view the forgetful functor F': Z(C) — C as

F.:.CXC—C

which sends X XY to X ® Y and f X § to f ® g.
Now that we have an equivalence between a category we understand better and the
Drinfeld center, we can write down information about the center in terms of information

about the category.
Theorem 4.8. For a modular category C, we have
Dz(c) = D¢

where Dz (cy is the categorical dimension for the Drinfeld center, Z(C), and Dc is

the categorical dimension of the category, C.
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Remark 4.9. Though we asked for C to be a modular category, this statement also

holds for spherical fusion categories in general.

Proof. This is a straight forward computation. Since isomorphism classes of simple
objects in Z(C) just correspond to J X K for J, K € Irr(C), then

Dzo= >, dgp= Y  didi="D¢ (4.6)
J,Kelr(C) J,Kelrr(C)
Theorem 4.10. For a modular category C, we have

S ARB.cRD = SACSB.D (4.7)

where SAmB.oRD IS an entry of the s matrixz for CRC, and SA,CSp.p is an entry for

the s matriz for C.

Proof. Writing out the definition for the s entry gives us that

-~
§A®B,be = =
AX B CRD 4\ \B D
(4.8)

Since the braiding is functorial, we can move inner diagram involving B, D outside of

C

the A, C' diagram. Then we can use sphericality to show that the RHS is equal to
§A70§§,D' (4.9)
Now we normalize the s matrices. By theorem we have

SARB,CRD _ SARB,CRD _ SAC SB,D

S ARB.ORD = = = = SACSH p- (4.10)
ARB,CRD Dz ) De VDo /De B,D
O
Theorem 4.11. For a modular category C, we have
0a

Proof. Similar to the proof Theorem We first write out the definition of the twist
then use functoriality of the braiding to manipulate the strings to produce the desired

diagram. ]
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Now we derive a simplification for the FS indicators for modular categories. For
X €Cand LK M € Irr(Z(C)), by Theorem we know

~ 1 ~ n . ~
vM(X) = — > el dm(C(F(J B K), X)). (4.12)

De
J,Kelrr(C)

Then using Theorems and the fact F(JXK) = J ® K, we have

~ 971
iMX) = Y sasik g dim(C(T @ K, X)). (4.13)
J,Kelrr(C) K

By the Verlinde formula (Theorem [2.12), we have

Y 0"}  SJRSKRSY
vEM(X) = > sposyy gt AR (4.14)

o s
J,K,Relrr(C) K 1R

To evaluate the formula, we still need a way of finding the duals of simple objects,
Theorem tells us that this information can be found in the square of the s matrix.
Thus, for modular categories, we have a way of writing the Frobenius-Schur indicators

solely in terms of the s and ¢ matrices of the category.

4.3 Torus knots

This section gives a brief introduction to torus knots and assumes knowledge of link
invariants. Readers without a background in knot theory should consult [Ada04] for a
more comprehensive introduction to torus knots and link invariants.

In short, a torus knot is a knot that lies on an unknotted torus. They can be
completely characterized by how many times the knot crosses the meridian and the
longitude of the torus. We call a torus knot an (n, m)-torus knot if it crosses a meridian
curve n times and a longitude curve m timesﬂ We can also view the (n, m)-torus knot

as the closure of the following braid

/

(4.15)

/

n strands

3Note that this characterization is not faithful, it can be shown that the (m,n) and (n,m)-torus
knots are in fact the same knot. Also. not all choices of m and n produce torus knots, we require

ged(n, m) = 1.
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where by closure of a braid B we mean

(4.16)

the loop obtained when we connect the leftmost top string with the leftmost bottom

string, the second leftmost string with the second bottom leftmost string and so on.

Let C be braided spherical fusion category and pick an object X € C. If we label
an oriented link with the object X € C, then we have a string diagram representing a
morphism in C(X", X™). It can be shown that this morphism in invariant under the
Reidemeister moves, giving us an oriented ribbon link invariant. In our case, we have
that the torus link invariant, denoted by Ty, is the categorical trace of the following
morphism in C(X", X"):

xntoy "
/
v
P (4.17)
/
X o

Since C is finitely semisimple, then for L € Irr(C), and « a basis of C(L, X™), we

have that Ty is the categorical trace of

(4.18)

>

Lelrr(C)
a€B(L,X"™)
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If the linear operator M{:,X :C(L,X™) — C(L,X™)

(4.19)

is diagonalizable, then for {8} is an eigenbasis of ui x With eigenvalues {\} 5}, we

have

= ) (\ppTdL.  (4.20)
Lelrr(C)
BEB(L,X™)

=Y, (pgmtr
Lelrr(C)
BEB(L,X™)

Remark 4.12. Since there are (n — 1)m undercrossings and no overcrossings in the

the (n, m) torus knot, the writhe of the knot is —(n —1)m. Then we can also normalize

the invariant by Hg?fl)m to obtain a oriented knot invariant, denoted by TTT , where

I = 0% 0™ N (M )™y (4.21)
LelIrr(C)
BeEB(L,X™)

(L)

To show ,u{; y is diagonalizable, we first show a relationship between ,u{; y and p, 7%

where

P e(L, X™) = C(L, X™)

is the rotation operator
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n—1
X x
L,o
oo = (4.22)
L

and o is the braiding coming from the braided structure of C.

Lemma 4.13. We have the following relationship between pﬁLL)’?) and Mﬁ,x’
L, _
Pk = 05 i x (4.23)

Proof. Since the half braiding of (L, o) is also a braiding in C,

n—1
X x
L7
pl ;) — - (4.24)
L L
O

In Lemma we showed that generalized rotation operators are diagonalizable,

(L,o)

thus qu x is also diagonalizable. Also, for {a} an eigenbasis of p, )g with eigenvalues

{ALa}, then {a} is an eigenbasis Nﬁ,x with eigenvalues {x A1 o}. In particular, we

-1
know that the eigenvalues for ,u{;’ « are {0x0;" &'} with multiplicity 2; € N where

1=,k i
T =~ > o0 (4.25)
k=1

Since (L, o) can be viewed as L X 1inCKC, by our work in section we have

i 0" SJRSKRS¥%
LX1 X) = J JROSKRSXR
Vn ( ) = § SLISTK on : e

J,K,REIrr(C) K 1R

(4.26)

When n is prime, this is all we need to use the Frobenius map to find the higher FS
indicators.

Furthermore, observe that

dr, =511 =+VDcsra,
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Therefore, by (4.20]), we can write the torus link invariant to be,

1
m —= I\m SL,1
nX = Z x(Ox0, ") —F=. (4.27)
le[l,....,n] De
Lelrr(C)
Substituting (4.25]), we also have
1 k _m Pt
Ty = —— > 0p0%0, " vIEH(X)sp &m0, (4.28)
n DC lel,...., n
kell,....,n]
LelIrr(C)

4.4 Torus link invariants for Drinfeld centers of pointed

fusion categories

Using the computer algebra system GAP[GAP17], we implemented algorithms that
calculate both the torus ribbon link invariants and the normalized version. The com-
puter code is included in the appendices. We computed some invariants using modular
data for Drinfeld centers of pointed fusion categories given in [Grul7]. This led to some
interesting observations.

For example, consider the twisted quantum double of the alternating group A,
Rep(D“2 Ay).

There are 18 equivalence classes of simple objects in the categoryﬁ We observed
that for a given choice of simple object X, T{'{L y is always the same for m € [1, ..., 10].

Specifically, it is given by
(11134443333444)

where the J-th entry gives the invariant for the J-th simple object in the modular data.
When n = 3, however, we notice that not all invariants are the same, specifically,

we have

1113 4 4 4 3 3 3 3 4 4 4
111 3 16 16 16 3 3 3 3 16 16 16

where the LJ-th entry gives TBL 7- Thus for most choices of simple objects, T:,,l x 7 T327 x-
We believe this is related to the conductor of the category, that is, the order of the ¢

matrix.

4.5 Concluding remarks

There are several directions for further research. First is to calculate the FS indicators

and link invariants for well-known modular categories. For example, it would be inter-

4 For the s and ¢ matrices for this category, see the appendices.
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esting to calculate the torus link invariants for the extended Haagerup category, which
is not currently known.

Another direction is to generalize the algorithm to allow composite values for n, and
to improve overall efficiency in order to calculate invariants for categories with bigger

modular data. Then we can consider questions such as:

1. Is the normalized link invariant always integral for Drinfeld centers of pointed

fusion categories?

2. What is the relationship between the conductor and the variations in the normal-

ized torus invariants?
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Appendix A

Discrete Fourier transform

When we have a integral weighted sum of roots of unity, and the sums of the powers of
the roots of unity with the same weighting, we can use the discrete Fourier transform

to calculate the weights.

Theorem A.1l. Let £ = e% be the primitive n-th root of unity, and for each £* an

integral weight xy, suppose we know X, where

Xj=) aeh (A1)
k=1
Then
— l - —lk
T = n klekf . (AQ)

Proof. Substituting the definition of X} into the RHS gives us

% DI

k=1 j=1

Now consider Z?Zl z;€ =Dk with respect to a fixed k. The [ = j term contributes

n
Z T = nxg
k=1

to the sum.
When [ # j,
k) N ek S K-y, 1=1
> e = 2;¢ e = 2;¢ '1—@4:0
k=1
Thus the RHS is indeed equal to z;. O
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Appendix B

APPENDIX B. MODULAR DATA FOR REP(D“2Ay)

Modular data for Rep(D“2A,)
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