
Computing Modular Data for Drinfeld
Centers of Pointed Fusion Categories

Angus Gruen

A thesis submitted in fulfillment of the degree of

Bachelor of Philosophy (Honours) - Science at
The Mathematical Sciences Institute

Australian National University

October 2017

c© Angus Gruen

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Angus Gruen
26 October 2017

Acknowledgements

It’s been a great year.
First and foremost I would like to thank my supervisor Scott Morrison for all his help over

the last year. There is no way that this project would have come anywhere close to completion
without the countless hours he has spent helping me get both the theory down and the code
base working.

Jean, Damon, Guy, Matthew, and my parents also deserve many thanks for proofreading
my thesis and providing feedback; especially considering that, for many of them, I think this
thesis read a bit like arcane magic.

I thank my housemates Damon, Jean, Vienna, and Alex for putting up with my mathematical
rambling over the past 8 months and helping to keep me sane. On a similar note I thank my
family for all their support and in particular my father, David, for encouraging me to pursue
mathematics for as long I can remember. I would also like to give a special thanks to Katrina,
without whom my life would be far more dull.

Finally, I doubt I would have gotten anything done without the work of Larry Page and
Sergey Brin who wrote that which allows information to be found on the web.

v

Abstract

A theoretical background is developed to explain in detail the link between the modular tensor
category Z(VecωG) and the representation category of a quasitriangular quasi Hopf algebra
Dω G. Using this link, a classification of the simple objects in Z(VecωG) and formulas for the
modular data of Z(VecωG) are carefully derived. Then, code is written in GAP to produce the
modular data of Z(VecωG), givenω and G. This is used to create a database of modular data
for the Drinfeld doubles of pointed fusion categories with dimension less than 47. This database
as well as GAP code accompanying it can be found at https://tqft.net/web/research/
students/AngusGruen. For a basic example of how this database might be used, we briefly
analyse patterns in the ranks of Z(VecωG) as |G| varies and produce lower bounds for the
number of Morita equivalence classes of pointed fusion categories of a given dimension less
than 47. For dimensions below 32, these lower bounds agree with the lower bounds published
by Mignard and Schauenburg in [1]. At dimension 32 we improve upon the published lower
bound and for dimensions 33 through 47 we present the first set of lower bounds on the number
of Morita equivalence classes of pointed fusion categories at each dimension.

vii

https://tqft.net/web/research/students/AngusGruen
https://tqft.net/web/research/students/AngusGruen

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

2 Preliminaries 3
2.1 Monoidal Category Theory . 3

2.1.1 Pivotal and Braided Categories . 5
2.1.2 String Diagrams . 7
2.1.3 Fusion and Modular Categories . 10
2.1.4 The Drinfeld centre . 13

2.2 Backgroup Algebra . 15
2.2.1 Group Cohomology . 15
2.2.2 Hopf Algebras . 15
2.2.3 Representation Theory of Hopf Algebras 18
2.2.4 Projective Representation Theory . 22

3 Classifying equivalence classes of Pointed Fusion Categories 27
3.1 Twisted G-graded Vector Spaces . 27
3.2 Functors between VecαG and VecβH . 29
3.3 Equivalence classes of Pointed Fusion Categories 33

4 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces 37
4.1 An Intricate Hopf Algebra . 38
4.2 The Modular Equivalence between Rep(DωG) and Z(Vecω−1

)bop 40
4.3 Deriving the S and T matrices for Z(Vecω−1

)bop . 47
4.3.1 Classifying the Simple Objects . 47
4.3.2 Deriving the S Matrix . 48
4.3.3 Deriving the T Matrix . 53

5 Computing Modular Data in GAP 57
5.1 Choosing a Set of 3-cocycles . 58
5.2 Computing the Simple Objects . 58
5.3 Computing the S and T Matrices . 61

6 Analysis of Modular Data 65

A Group Cohomology 69

B More Code 71

ix

x Contents

Chapter 1

Introduction

Fusion categories are an important area of study due both to their frequent occurrence in
category theory as well as their applications in physics. An important current area of study
in low-energy physics is the study of a phenomenon called “topological phases of matter”.
These topological phases are potentially key components in technological advancements in
areas such as superconductors and quantum computing. One approach to studying topological
phases of matter is through modelling them with topological quantum field theories (TQFTs).
The cobordism hypothesis [2] states that TQFTs are classified by higher categorical data and in
particular the work of Douglas–Schommer-Pries–Snyder [3] identifies fully extended TQFTs in
2+1 dimensions1 with fusion categories.

Pointed fusion categories are a particular class of fusion categories possessing several useful
properties. These categories are classified by pairs (G,ω) of a finite group G and a 3-cocycleω
on G. In addition, the Drinfeld centre of a pointed fusion category turns out to be equivalent to
a representation category of a Hopf algebra known as the twisted quantum double of the group
G. This correspondence allows for categorical problems to be translated over into algebraic
problems which can then be solved by algebraic means.

This thesis is broadly split into three parts. Chapter 2 gives an overview of the background
category and algebra theory. In particular the category theory section builds up to the definition
of a modular category and gives an overview of the Drinfeld centre construction. The back-
ground algebra focuses on giving an introduction to Hopf algebra theory and a slightly unusual
perspective on projective representation theory.

Chapters 3 and 4 focus on finding the equivalence classes of pointed fusion categories and
the corresponding modular data. Chapter 3 introduces the category of G-graded vector spaces
VecωG and explains how they are naturally pointed fusion categories. It then details the equiv-
alence classes of these categories by proving a theorem classifying the functors between two
such categories. Chapter 4 introduces the twisted quantum doubles of a finite group DωG, and
proves an equivalence of modular tensor categories between Rep

(
DωG

)
and Z

(
Vecω

−1
G
)bop.

Using this equivalence, we give a detailed derivation for the modular data of Z
(
Vecω

−1
G
)bop

and explain the link between this modular data and the modular data of Z
(
Vecω

−1
G
)
.

Finally, Chapters 5 and 6 focus on the computational aspects of the project. Chapter 5
describes the code written to compute the modular data of Z

(
Vecω

−1
G
)bop given G andω. In

particular it discusses the methods used to create a list of simple objects of Z
(
Vecω

−1
G
)bop and

the various optimisations used to speed up the calculations of the S and T matrices from this
list. Then, a database of this modular data will be assembled for all equivalence classes of
pointed fusion categories with dimension at most 47. Code written by Michaël Mignard and
Peter Schauenburg in their recent paper [1] is used to find a list of unitary 3-cocycles which
are a representatives of a representative cohomology class of each orbit in H3(G,C)/Aut(G).

1We write 2 + 1 as opposed to 3 to specify that there are 2 spatial dimensions and 1 time dimension.

1

2 Introduction

Then, given a group G and a unitary 3-cocycle ω my code constructs the modular data of
Z
(
Vecω

−1
G
)bop. Chapter 6 will then focus on some results that can be derived from this

database. In particular we confirm the result of Mignard and Schauenburg concerning the
number of Morita equivalence classes of pointed fusion categories at each dimension less than
32, improve upon their lower bound when the dimension is equal to 32 and publish new lower
bounds at each dimension between 33 and 47 inclusive. We note that the improvement at
dimension 32 also proves that the modular data of a category is a stronger invariant than the
Frobenius-Schur indicators and T-matrix.

The classification of functors VecαG→ VecβG in Chapter 3 is technically new but presum-
ably obvious to experts. Cain Edie-Michell is about to publish a classification of equivalences
of graded categories [4]. My result is neither a special case as it classifies more than just the
equivalence classes, nor as strong as it only covers the case when the trivial graded piece is Vec.

A careful derivation of the equivalence Rep
(

DωG
) ∼= Z(Vecω−1

G
)bop has not been pub-

lished before. In particular, no-one seems to have noticed that with the usual conventions
you are required to invert both the associator and the braiding. While the formulas pre-
sented for the S and T matrices do appear in the literature [5], the corresponding derivations
of these formulas do not. These derivations are given in careful detail in Section 4.3. The
database of modular data constructed as described in Chapter 5 is available for public use at
https://tqft.net/web/research/students/AngusGruen. Such a database has never
been available before. This database already been put to use by one of my fellow honours
students AnRan Chen computing invariants for torus knots [6] and we are planning to use the
database for numerous other computations.

https://tqft.net/web/research/students/AngusGruen

Chapter 2

Preliminaries

More in-depth discussions on the definitions in this section can be found in the textbook Tensor
Categories [7].

2.1 Monoidal Category Theory

Definition 2.1. A monoidal category (C ,⊗, I,α, λ,ρ) consists of a category C along with a bifunctor
⊗ : C × C → C , an identified object I, and three natural isomorphismsα, λ, and ρ. The associatorα,
has components

αX,Y,Z : (X⊗Y)⊗ Z ∼−→ X⊗ (Y⊗ Z) ∀ X, Y, Z ∈ C

and the left and right unitors λ and ρ, have components

λX : I ⊗ X ∼−→ X

ρX : X⊗ I ∼−→ X ∀ X ∈ C .

These natural transformations satisfy the following commutative diagrams for all W, X, Y, Z ∈ C .

(W ⊗ X)⊗ (Y⊗ Z)

(
(W ⊗ X)⊗Y

)
⊗ Z W ⊗

(
X⊗ (Y⊗ Z)

)
(
W ⊗ (X⊗Y)

)
⊗ Z W ⊗

(
(X⊗Y)⊗ Z

)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y⊗1Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

(2.1)

(X⊗ I)⊗Y X⊗ (I ⊗Y)

X⊗Y

αX,I,Y

ρX⊗1Y

1X⊗λY

(2.2)

If all three ofα, λ, and ρ correspond to the identity natural transformation, then the category
is called strict. A monoidal category is an example of a process known as categorification. Recall
that a monoid consists of a set S, with an function ∗ : S× S→ S satisfying (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ S such that there exists a unique element e ∈ S such that a ∗ e = e ∗ a = a for
every a ∈ S. Categorification takes a set theoretic definition and replaces sets by categories,
functions by functors and equations by natural transformations satisfying certain commutative
diagrams. Then a monoidal category is a categorification of a monoid. Similarly, many of the
following definitions will be categorifications of more well known structures.

3

4 Preliminaries

Theorem 2.2 (Mac Lane’s Coherence Theorem). In a monoidal category, any diagram with edges
consisting only of tensor products ofα, λ, ρ, and identity morphisms is commutative.

Proof. See [8].

Given two monoidal categories (C ,⊗, I,α, λ,ρ) and (D , ·, J,β,κ,µ), a monoidal functor
between them is as follows.

Definition 2.3. A monoidal functor (F, Φ,φ) consists of a functor F : C → D along with a natural
isomorphism called the tensorator,

ΦX,Y : F(X) · F(Y) ∼−→ F(X⊗Y) ∀ X, Y ∈ Ob(C)

and an isomorphism
φ ∈ D(J ∼−→ F(I)).

There are three commutative diagrams that these transformations must satisfy.

(F(X) · F(Y)) · F(Z) F(X) · (F(Y) · F(Z))

(F(X⊗Y)) · F(Z) F(X) · (F(Y⊗ Z))

F((X⊗Y)⊗ Z) F(X⊗ (Y⊗ Z))

βF(X),F(Y),F(Z)

ΦX,Y⊗1Z 1X⊗ΦY,Z

ΦX⊗Y,Z ΦX,Y⊗Z

F(αX,Y,Z)

(2.3)

J · F(X) F(I) · F(X)

F(X) F(I ⊗ X)

φ⊗1X

κF(X) ΦI,X

F(λX)

(2.4)

F(X) · J F(X) · F(I)

F(X) F(X⊗ I)

1X⊗φ

µF(X) ΦX,I

F(ρX)

(2.5)

These three commutative diagrams are each relating a structure in C with the corresponding
structure in D . Commutative Diagram 2.3 relates the two associators and the other two
commutative diagrams relate the left unitors and right unitors respectively. This definition is a
categorification of a monoid homomorphism. Unlike monoids, there is another layer that can
be placed on top of monoidal functors. Given two monoidal functors (F, Φ,φ) and (G, Θ,θ)
from (C ,⊗, I,α, λ,ρ) to (D , ·, J,β,κ,µ), there can be monoidal natural transformations between
them.

Definition 2.4. A monoidal natural transformation η, is a natural transformation from F→ G which
satisfies the following commutative diagrams.

F(X) · F(Y) G(X) · G(Y)

F(X⊗Y) G(X⊗Y)

ηX⊗ηY

ΦX,Y ΘX,Y

ηX⊗Y

(2.6)

§2.1 Monoidal Category Theory 5

J

F(I) G(I)
φ

θ

ηI

(2.7)

In general, most of the monoidal categories that we work with have additional structures or
properties on top of just a monoidal structure. For this thesis we will need to define a modular
tensor category. Expanding this prefix, a modular tensor category is a finitely semisimple
pivotal braided linear monoidal category with a simple unit and an invertible S matrix. The
next couple of subsections will be devoted to explaining each of these prefixes.

2.1.1 Pivotal and Braided Categories

Let C be a monoidal category.

Definition 2.5. A right dual of an object X ∈ C is an object X∗ ∈ C with an evaluation map

εX : X∗ ⊗ X → I

and a co-evaluation map
ηX : I → X⊗ X∗.

These maps must satisfy the condition that compositions1

X
ηX⊗1X−−−→ X⊗ X∗ ⊗ X

1X⊗εX−−−→ X

X∗
1X∗⊗ηX−−−−→ X∗ ⊗ X⊗ X∗

εX⊗1X∗−−−−→ X∗

are both the identity.

While right duals are not unique, they are unique up to unique isomorphism [7]. There is a
related notion of left dual, ∗X which can be elegantly defined as an object in C which has X as a
right dual.

Definition 2.6. The category C is a rigid monoidal category if every object has both a left and a right
dual.

In a rigid category, for any object X it should be clear that ∗X∗ ∼= X.
It is also possible to take the dual of a morphism. Given a morphism f ∈ C (X → Y), f ∗ is a

morphism in C (Y∗ → X∗) defined by the composition

Y∗
1Y∗⊗ηX−−−−→ Y∗ ⊗ X⊗ X∗

1Y∗⊗ f⊗1X∗−−−−−−→ Y∗ ⊗Y⊗ X∗
εY⊗1X∗−−−−→ X∗.

The morphism ∗ f is similarly defined as

∗Y
η∗X⊗1∗Y⊗−−−−−−→ ∗X⊗ X⊗ ∗Y 1∗X⊗ f⊗1∗Y−−−−−−→ ∗X⊗Y⊗ ∗Y 1∗X⊗ε∗Y−−−−→ ∗X.

Observe that the two conditions on compositions given in the definition of ∗ are exactly stating
that (1X)

∗ = 1X∗ and ∗(1X) = 1∗X. There are two features of these definition that I will state
without proof here. These proofs are a little verbose currently but will become almost trivial
when using string diagrams which will be introduced in the next section.

1We implicitly assume that the monoidal category C is strict for this definition. There is a similar but more
complicated condition when C is not strict.

6 Preliminaries

Lemma 2.7. The dual operator on morphisms satisfies ∗ f ∗ = f and (f ◦ g)∗ = g∗ ◦ f ∗.

Another property of the dual operator is that it flips monoidal products. If X and Y are
objects with right duals X∗ and Y∗ respectively then (X ⊗ Y)∗ ∼= Y∗ ⊗ X∗. The evaluation
and co-evaluation maps are given by εX⊗Y = εY ◦ (1⊗εX ⊗ 1) and ηX⊗Y = (1⊗ ηX ⊗ 1) ◦ ηY
respectively.

This leads to the following important lemma.

Lemma 2.8. The dual operator is an op-monoidal contravariant functor.

Briefly, a contravariant functor F : C → D is a mapping between two categories which
flips morphisms. This means that for each X ∈ C , F(X) is an object in D but, unlike a regular
functor2, if f ∈ C (X → Y) then F(f) ∈ C (F(Y) → F(X)). This mapping is required to
satisfy the pair of equations F(1X) = 1F(X) and F(f ◦ g) = F(g) ◦ F(f). Then, an op-monoidal
functor is almost a monoidal functor except the op-tensorator is a natural transformation from
F(Y) · F(X)

∼−→ F(X⊗Y).
The proof of Lemma 2.8 is immediate from Lemma 2.7 and the discussions preceding and

ensuing it.3

A slightly stronger notion than duals is that of invertible objects.

Definition 2.9. An object X is said to be invertible if X∗ ⊗ X ∼= X⊗ X∗ ∼= I.

Clearly if this is the case, X∗ is also invertible and X ∼= X∗∗. More generally, it is often useful
to require an isomorphism between X and its double dual. This requires extra structure on the
category called a pivotal isomorphism.

Definition 2.10. A pivotal monoidal category is a pair (C ,φ) with C a rigid monoidal category andφ
a monoidal natural isomorphism from the identity functor to the double dual functor, [9].

Observe that the composition of two op-monoidal contravariant functors is a monoidal
functor. Hence the double dual functor is indeed a monoidal functor from C to itself and so
φ is well defined. The pivotal isomorphism also gives an isomorphism between X∗ and ∗X.
Therefore, in a pivotal category X∗ can be unambiguously referred to as the dual of X.

Definition 2.11. A braided monoidal category (C ,σ) consists of a monoidal category C with a natural
isomorphism

σX,Y : X⊗Y → Y⊗ X

such that the following diagrams commute.

(X⊗Y)⊗ Z X⊗ (Y⊗ Z) (Y⊗ Z)⊗ X

(Y⊗ X)⊗ Z Y⊗ (X⊗ Z) Y⊗ (Z⊗ X)

αX,Y,Z

σX,Y⊗1Z

σX,Y⊗Z

αY,Z,X

αY,X,Z 1Y⊗σX,Z

(2.8)

X⊗ (Y⊗ Z) (X⊗Y)⊗ Z Z⊗ (X⊗Y)

X⊗ (Z⊗Y) (X⊗ Z)⊗Y (Z⊗ X)⊗Y

α−1
X,Y,Z

1X⊗σY,Z

σX⊗Y,Z

α−1
Z,X,Y

α−1
X,Z,Y σX,Z⊗1Y

(2.9)

A braiding on a monoidal category is a categorification of commutativity.

2These are commonly called covariant functors when in situations where contravariant functors also appear.
3Once again we have implicitly assumed that C is strict. Everything remains true if C is not a strict monoidal

category but all the proofs become more complicated.

§2.1 Monoidal Category Theory 7

2.1.2 String Diagrams

String diagrams are a method of representing information in a category in terms of a graphical
calculus of planar diagrams. By convention, strings are read going up the page.

Definition 2.12. Given a morphism f : A→ B its string diagram is

A

f

B

points correspond to objects and morphisms correspond to boxes on lines connecting two points.

Composition of morphisms f , h is vertical stacking and the tensor product is horizontal
juxtaposition.

h ◦ f

A

C

=

f

h

A

B

C

A

B

f

A′

B′

g =

A A′

B B′

f ⊗ g =

A⊗ A′

B⊗ B′

f ⊗ g

There is a slight abuse of notation here. For a category with no extra structure, a string diagram
is really referring to the equivalence class of string diagrams up to a certain planar isotopies.
The allowed isotopies change as more structures and properties are added to the categories.
Currently, we are allowed to slide the morphism boxes around as if they were beads on the
string and move the strings so long as the end points are fixed, no part of a string is ever
horizontal and strings do not cross each other.

Various special morphisms are assigned particular diagrams. A simple example is that
an empty string, with no boxes, crossings, or horizontal tangents corresponds to the identity
morphism. Often an identity morphism is unambiguously referred to as the object itself. More
interesting examples occur when the category has additional structures. For example, if the
category is braided then the braiding and inverse braiding are represented by over and under
crossings diagrams.

σV⊗W =

V W

VW

σ−1
V⊗W =

W V

WV

In a braided category, the equivalence class of string diagrams is now up to planar isotopy that
includes moving part of a string over/under another string to create or remove over/under
crossings. We are not however allowed to pass strings through each other.

8 Preliminaries

If the category is rigid then the evaluation and co-evaluation morphisms are represented by
the following strings.

VV∗
εV = ηV =

V∗V

Note that in this picture, the line corresponding to 1I as well as the point I have been replaced
by empty space. When the unitors in the category are trivial,4 this can be done with no loss of
information. This serves to simplify diagrams, the morphism εV ◦ ηV is

εV ◦ 1I ◦ ηV =

VV∗

V∗V

=

VV∗

V∗V

= εV ◦ ηV .

Another problem is what to do with associators. When the category is strict, they can be safely
ignored, however this will not be possible for this thesis. On the other hand including them
will massively clutter the string diagrams. Therefore, they will be omitted from string diagrams
throughout and this will mean that some care will need to be taken reading morphisms directly
off string diagrams. Note that by Theorem 2.2, any two morphisms read off the same string
diagram are equal.5

When the category is rigid, there is also a convenient way to represent dual objects. This
is by assigning directions to the lines with the convention that a line travelling up the page
corresponds to the object and one travelling down the page corresponds to its right dual. Then,
the the conditions on the ε and η correspond to the following isotopies.

= =

As a brief justification for the use of string diagrams let us go back and prove Lemma 2.7.

4Which they will be for this thesis.
5We need to be a little careful here. This holds provided the initial and final bracketing of the objects is unchanged

for both morphisms

§2.1 Monoidal Category Theory 9

Proof. Observe that the two morphisms f ∗ and ∗ f are defined by the following strings

f ∗

Y∗

X∗

Y∗

X∗

= f ∗ f

∗Y

∗X

=

∗X

∗Y

f

Then, the following isotopies of string diagrams shows that ∗ f ∗ = f .

∗ f ∗

∗X∗ ∼= X

∗Y∗ ∼= Y

= f ∗

X

Y

= f

X

Y

= f

X

Y

= f

X

Y

Similarly, different isotopies prove that (f ◦ g)∗ = g∗ ◦ f ∗

X∗

g∗ ◦ f ∗

Z∗

=

f ∗

g∗

X∗

Y∗

Z∗

=

X∗

f Y∗

g

Z∗

=

X∗

f

Y g

Z∗

=

X∗

f

Y
g

Z∗

=

X∗

f ◦ g

Z∗

=

X∗

(f ◦ g)∗

Z∗

If the category is pivotal, the pivotal isomorphism allows for the creation of closed loops.
This gives rise to the definition of a trace. Given a morphism f ∈ C (V → V) define the left and
right traces of f to be

f

φVtrL(f) =

φ−1
V

f
trR(f) =

10 Preliminaries

These are morphisms in C (I → I). Commonly, C (I → I) will be isomorphic to a field K and
when this is the case, a trace corresponds to an evaluation map from C (V → V)→ K. In Vec,
the category of finite dimensional vector spaces with morphisms linear maps, the trace of a
morphism is exactly the trace of the matrix representing the morphism after a basis is chosen.

Definition 2.13. A pivotal monoidal category is spherical if all string diagrams behave as if they where
on the surface of a sphere, [9]. Equivalently, trL(f) = trR(f) for all f .

In particular in a spherical category, strings can be pulled around the back of the sphere
which identifies the two possible traces.6 In a spherical category, the dimension of an object is
defined to be the trace of the identity.

dim(V) = tr(1V)

Combining all the structure and properties that have been defined so far brings us to ribbon
categories.

Definition 2.14. A ribbon category is a braided spherical monoidal category.

These categories possess a twist map θV for each object satisfying

θV⊗W = σV,WσW,V(θV ⊗θW).

This map is defined by the string diagram

φV

θV =

V

V∗
V∗∗

.

The proof that this morphism satisfies the alleged condition is easily shown using string
manipulations and so will be omitted. The reason that these are called ribbon categories is
because, if one-dimensional strings are replaced by ribbons embedded in 3-space, θ can be
represented by a full twist in the ribbon.

2.1.3 Fusion and Modular Categories

Definition 2.15. Given a field K, a K-linear category is a category C whose morphism spaces C (X →
Y) are K-vector spaces with the composition map being bilinear.

Any K-algebra is naturally a K-linear category with a single object. More generally, a
K-linear category is equivalent to a K-algebroid. A linear functor is a functor whose action
on morphism spaces corresponds to a linear map. All functors whose source and target are
linear categories will be assumed to be linear functors. If an endomorphism space End(X) =
C (X → X) is one dimensional, it must be generated by the identity morphism 1X and so, as
F(1X) = 1F(X), the action of a linear functor F on End(X) is determined by its action on X.

6Pulling a string around the back of a sphere will possibly invertφ or have other small effects like sending ηV to
ηV∗ , these minor changes can be read directly off the string diagram.

§2.1 Monoidal Category Theory 11

Definition 2.16. An initial object is an object X ∈ C such that for all Y ∈ C , C (X → Y) contains
only one element. Similarly, X is a terminal object if for all Y ∈ C , C (Y → X) contains only one
element.

Lemma 2.17. Initial and terminal objects are unique up to isomorphism.

Proof. This is a standard result in category theory, a proof can be found in [8] for the interested
reader.

An object that is both initial and terminal is said to be a zero object and by Lemma 2.17 this
is also unique up to isomorphism. In a K-linear category, these conditions exactly require that
C (X → Y) is the 0 dimensional vector space, {0}.

Definition 2.18. A K-linear category with a 0 object is semisimple if there exists a collection of objects
{Xi}i∈I called the simple objects with the following set of properties:

1. For all i and j in I,

C (Xi → X j) =

{
K if i = j

{0} otherwise.

2. All finite coproducts exists.

3. Any object X ∈ C is isomorphic to a (possibly infinite or null) direct sum of simple objects.

An object which is isomorphic to a finite direct sum of simple objects is called finitely
semisimple. A semisimple category is said to be finitely semisimple if every object is finitely
semisimple and there are only finitely many isomorphism classes of simple objects.

When a category is semisimple this often allows for analysis of the category to be restricted
to merely analysing the simple objects. This comes from the fact that many of the structures
that can be placed on a category respect these decompositions. For example, if a semisimple
category has a monoidal structure, then the associator will satisfy

αW⊕X,Y,Z = αW,Y,Z ⊕αX,Y,Z.

This feature of semisimple categories will be implicitly used throughout this thesis as it will
massively simplify proofs. Additionally, functors whose sources and targets are semisimple
categories will also respect such decompositions

F(X⊕Y) = F(X)⊕ F(Y).

Definition 2.19. A fusion category is a finitely semisimple rigid linear monoidal category such that the
unit object I is simple.

This thesis will focus on a particular subclass of fusion categories called pointed fusion
categories.

Definition 2.20. A pointed fusion category is a fusion category such that every simple object is invertible.

The rank of a fusion category rank(C) is the number of isomorphism classes of simple
objects. If C is a pivotal fusion category then the left and right traces are maps from C (V → V)
to K as C (I → I) is identified with K via the identification 1I 7→ 1. If C is spherical then we

12 Preliminaries

can define a dimension of the category. To find dim(C), choose a representative Vi from each
isomorphism class of simple objects and then7

dim(C) = ∑
i

dim(Vi)
2.

If C is a ribbon category then there is a matrix we can construct by taking traces of the double
braiding applied to pairs of simple objects.

Definition 2.21. Let C be a ribbon fusion category with simple objects {Vi} for i ∈ {1, · · · , n}. Define
the S̃ matrix by the string diagram

S̃i, j =

Vi Vj

Then C is a modular tensor category if S̃ is invertible.

The matrix S̃ is also known as the unnormalised S-matrix. The normalised S-matrix, S, is
equal to 1√

dim(C)
S̃.

There is a second matrix that can be created from a modular tensor category. By definition,
for every simple object Vi, C (Vi → Vi) = K. Therefore, the twist θV is some multiple of the
identity idVi defined as ti.

θVi = ti

Then, the T matrix is defined to be the diagonal matrix with i’th diagonal element equal to ti.
Taking a trace, T can be calculated by evaluating the string diagram

Ti, j =
δi, j

dim(Vi)
V∗i

V∗i

V∗∗i

Vi

In general, the matrix produced by this would also need to be normalised however, in this
thesis we only deal with categories where the normalisation factor is 1. For a modular tensor
category C , the pair of matrices S, T is known as the modular data.

The reason that it is called modular data is because it gives a representation of the modular
group SL(2,Z) by way of the map[

0 −1
1 0

]
7→ S and

[
1 1
0 1

]
7→ T.

7It is an easy proof that this definition is independent of the chosen representatives; isomorphic objects have
equal dimensions.

§2.1 Monoidal Category Theory 13

This means that the modular data must satisfy the relations S2 = (ST)3 and S4 = I and in
practise it also satisfies more complex relations [10] which I will discuss in more detail in
Chapter 5.

2.1.4 The Drinfeld centre

The Drinfeld centre [11] is an operation that takes a monoidal category C and produces a
braided monoidal category denoted Z(C). Often Z(C) is referred to as the centre of C . The
construction of the Drinfeld centre is as follows.

Let (C ,⊗, I,α, λ,ρ) be a monoidal category. Fixing any object X ∈ C , a half braiding for X
is a natural isomorphism β : X⊗ ∼−→ ⊗ X such that

βY⊗Z

X Y⊗ Z

Y⊗ Z X

=
βY

βZ

X Y⊗ Z

XY⊗ Z

Writing this out as a condition on morphisms, the condition is

α−1
Y,Z,X ◦ (1⊗βZ) ◦αY,X,Z ◦ (βY ⊗ 1) ◦α−1

X,Y,Z = βY⊗Z. (2.10)

Then, objects of Z(C) are pairs (X,β) of X an object in C and β a half braiding for X.
Morphisms in Z(C) are morphisms in C that commute with the half braidings. Explicitly,
f ∈ Z(C)

(
(X,β)→ (Y,γ) if and only if f ∈ C (X → Y) and

f

γZ

X Z

YZ

=
βZ

f

X Z

YZ

for all Z ∈ C . The monoidal structure on Z(C) is8

(X,β)⊗ (Y,γ) = (X⊗Y,α ,X,Y ◦ (β⊗ 1) ◦α−1
X, ,Y ◦ (1⊗γ) ◦αX,Y,). (2.11)

The identity object is simply (I, λ ◦ ρ−1) and the left and right unitors and associator come
directly from the category C . Observe that the action of the tensor product on half braidings is

8The blank sections are where the object to be twisted should appear. E.g. if given a Z ∈ C the natural
transformation isαZ,X,Y ◦ (βZ ⊗ 1) ◦α−1

X,Z,Y ◦ (1⊗γZ) ◦αX,Y,Z

14 Preliminaries

exactly given by the string diagram

(β⊗γ)Z

X⊗Y Z

Z X⊗Y

=
γZ

βZ

X⊗Y Z

X⊗YZ

Theorem 2.22. The Drinfeld centre of a category can be made into a braided monoidal category.

Proof. The easiest way to prove this theorem is to produce a braiding. Hence define the braiding
σ by

σ(X,β),(Y,γ) = βY .

Note that
σ ′(X,β),(Y,γ) = γ−1

X = σ−1
(Y,γ),(X,β)

is another possible braiding. A priori neither of these braidings is the correct one to ascribe and,
as we will observe later, in our particular case we will use the inverse braiding. Note that Z(C)
will refer to the regular braiding and Z(C)bop will refer to the inverse braiding.9

It is of course required to show that these braidings both satisfy the relevant commutative
diagrams, namely Diagrams 2.8 and 2.9. But, these follow directly from the fact that half
braidings satisfy Equation 2.10 and by the definition of how the tensor product acts on half
braidings given in Equation 2.11.

An important aspect of the Drinfeld centre is that it preserves both the monoidal properties
of C as well as any added monoidal structures on C .

Theorem 2.23. If C is rigid, pivotal, spherical or fusion then so isZ(C). In particular if C is a spherical
fusion category then Z(C) is a modular tensor category.

The proof of this theorem is outside the scope of this thesis but can be found in [12] for an
interested reader. In particular it is important to note that both rigidity and pivotality can be
directly induced by the corresponding properties and structures on Z(C). Interestingly, while
it is certainly true that equivalent categories have equivalent centres, the converse is not true.

Definition 2.24. Two monoidal categories C and D are said to be Morita equivalent if Z(C) ∼= Z(D).

Note that Morita equivalence is a weaker condition than equivalence of categories this is
shown explicitly by Figure 6.2. It should also be noted that there is a relationship between the
dimension of the category and the dimension of its centre. Indeed we have the simple formula

dim(Z(C)) = dim(C)2.

There is not however a well understood relationship between the rank of a category and the
rank of its centre. This will be explored briefly in Chapter 6.

9bop stands for opposite braiding and C bop is a well defined category whenever C is braided. We can similarly
define C op and C mop which correspond to reversing all morphisms and the tensor product respectively. These
adjectives can be stacked leading to mouthfuls like C op,mop,bop.

§2.2 Backgroup Algebra 15

2.2 Backgroup Algebra

2.2.1 Group Cohomology

There is a small amount of group cohomology that will be useful later and so is given here.
Let G be a finite group with identity e and let K be an algebraically closed field. Define

Cn(G,K) to be the group under pointwise multiplication of all functions from Gn → K×. Note
that these functions are not a priori required to interact with G’s group structure. Define the
maps ∂n+1 : Cn(G,K)→ Cn+1(G,K) by

∂
n+1(φ)(g1, · · · , gn+1) = φ(g2, · · · , gn+1)

×
n

∏
i=1
φ(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn+1)

(−1)i
(2.12)

×φ(g1, · · · , gn)
(−1)n+1

.

Theorem 2.25. The sequence

· · · Cn+1 Cn Cn−1 · · ·dn+1 dn
(2.13)

is a cochain complex.

This is a standard result in group cohomology, see [13].
Define Zn(G,K) = ker(dn+1), Bn(G,K) = Im(dn) and Hn(G,K) = Zn(G,K)/Bn(G,K).

Elements of Cn(G,K) are known as n-cochains, elements of Zn(G,K) as n-cocycles and elements
of Bn(G,K) as n-coboundaries.

Definition 2.26. Two cocycles,α,β, are cohomologous ifαβ−1 is a coboundary. A cocycle is cohomo-
logically trivial if it is cohomologous to the 1 cocycle or equivalently if it is a coboundary.

Definition 2.27. A normalized cochain is a cochain which outputs 1 whenever any of its inputs are e.

Definition 2.28. A normalized cochainα is unitary ifα|G| = 1.

This leads up to the theorem that will be needed later on.

Theorem 2.29. Every cocycle is cohomologous to a unitary cocycle.

Proof. See Appendix A.

2.2.2 Hopf Algebras

For any finite group G its representations form a category known as Rep(G). The objects of
this category are representations of G and the morphisms are intertwining maps. Moreover,
there is a natural equivalence between Rep(G) and Rep(K[G]), the category of representations
of the group algebra K[G]. It is well known that Rep(G) carries much more structure than
merely a category. Indeed, Rep(G) is a ribbon fusion category whose simple objects correspond
to the irreducible representations of G. A natural question then is if this extra structure on
Rep(G) ∼= Rep(K[G]) can be visualised down in the algebra K[G]. Indeed it can be and
corresponds to added structures on K[G] such as co-multiplication, and an antipode. The
general term for algebras with these two extra structures is a Hopf algebra and representations
of Hopf Algebras naturally form rigid monoidal categories.

If a category can be shown to be equivalent to a representation category of a Hopf algebra
then often this vastly simplifies the study of that category. In particular, categorical calculations

16 Preliminaries

can be replaced by algebraic ones which allow for a wealth more methods to simplify and solve
them. The following sections will give an introduction to Hopf algebras and their representation
categories. For more discussion on the structures presented here, see [14].

Let K be an algebraically closed field and assume for the rest of the section that all maps are
K linear and all tensor products are over K. Initially let H be a K vector space.

Definition 2.30. An algebra is a triple (H, η,∇) where

η : K→ H

∇ : H ⊗ H → H

satisfy the commutative diagrams.

H ⊗ H ⊗ H H ⊗ H

H ⊗ H H

∇⊗1

1⊗∇ ∇
∇

K⊗ H ∼= H ∼= H ⊗K H ⊗ H

H ⊗ H H

1⊗η

η⊗1 1 ∇
∇

The first commutative diagram is precisely forcing the multiplication map to be associative
and the second commutative diagram is forcing a multiplicative identity, η(1).

Define F : H1 ⊗ H2 → H2 ⊗ H1 to be the flip map F(x ⊗ y) = y ⊗ x. An algebra is
commutative if ∇ = ∇ ◦ F. Given two algebras, (H1, η1,∇1), (H2, η2,∇2), there is a natural
algebra structure on H1 ⊗ H2 given by

(
H1 ⊗ H2, η1 ⊗ η2, (∇1 ⊗∇2) ◦ (1⊗ F⊗ 1)

)
.

Moving on, a coalgebra is defined by reversing every arrow in the definition of an algebra.

Definition 2.31. A coalgebra is a triple (H,ε, ∆) where

ε : H → K
∆ : H → H ⊗ H

satisfy the commutative diagrams

H H ⊗ H

H ⊗ H H ⊗ H ⊗ H

∆

∆ 1⊗∆
∆⊗1

H H ⊗ H

H ⊗ H K⊗ H ∼= H ∼= H ⊗K

∆

∆
1

1⊗ε
ε⊗1

Similarly to the algebra case, the first commutative diagram represents coassociativity
and, cocommutativity occurs if ∆ = F ◦ ∆. Additionally, if (H1,ε1, ∆1) and (H2,ε2, ∆2) are
coalgebras then the tensor product coalgebra will be

(
H1⊗H2,ε1⊗ε2, (1⊗ F⊗ 1) ◦ (∆1⊗∆2)

)
.

A bialgebra is a vector space with algebra and a coalgebra structures (η,∇) and (ε, ∆) such
that both η and∇ are coalgebra homomorphisms and bothε and ∆ are algebra homomorphisms.

Definition 2.32. A bialgebra is a tuple (H, η,∇,ε, ∆) such that (H, η,∇) is an algebra, (H,ε, ∆) is
a coalgebra and the following four diagrams commute.

H ⊗ H H H ⊗ H

H ⊗ H ⊗ H ⊗ H H ⊗ H ⊗ H ⊗ H

∇

∆⊗∆

∆

1⊗F⊗1

∇⊗∇ (2.14)

§2.2 Backgroup Algebra 17

K H

K

1

η

ε (2.15)

H ⊗ H H

K⊗K ∼= K

∇

ε⊗ε
ε

(2.16)

K⊗K ∼= K

H ⊗ H H
η⊗η

η

∆

(2.17)

The tensor product structure on algebras and coalgebras defined earlier extends to bialgebras
in the obvious way.

A Hopf algebra is a bialgebra with an extra map called an antipode.

Definition 2.33. A Hopf algebra is a pair (H, S) where H is a bialgebra and S an automorphism of H
such that the following diagram commutes

H ⊗ H H ⊗ H

H K H

H ⊗ H H ⊗ H

S⊗1

∇
ε

∆

∆

η

1⊗S

∇

(2.18)

The tensor product of two Hopf algebras (H1, S1) and (H2, S2) is the Hopf algebra (H1 ⊗
H2, S1 ⊗ S2). In general it is too much to ask for Hopf algebras to be cocommutative but there
is a weaker notion known as almost cocommutative that uses the algebra structure on H ⊗ H.

Definition 2.34. A Hopf algebra H, is almost cocommutative if there exists an invertible element
R ∈ H ⊗ H such that

∆op(h) = F ◦ ∆(h) = R∆(h)R−1 (2.19)

for all h ∈ H.

Note that∇ has been omitted in the above equations for clarity and for the same reason will
be omitted from here on out.

Define the mapsφi j : H ⊗ H → H ⊗ H ⊗ H by

φ12(a⊗ b) = a⊗ b⊗ 1

φ13(a⊗ b) = a⊗ 1⊗ b

φ23(a⊗ b) = 1⊗ a⊗ b.

Additionally, define Ri j = φi j(R).

Definition 2.35. A quasitriangular Hopf algebra is an almost cocommutative Hopf algebra such that

(∆⊗ 1)(R) = R13R23 (2.20)

(1⊗ ∆)(R) = R13R12. (2.21)

18 Preliminaries

It can also occur that the coproduct is not coassociative. Again if there is an algebra structure
it is possible to weaken coassociativity to allow for it to fail up to conjugation by an invertible
element.

Definition 2.36. A quasi bialgebra is a tuple (H,ε, ∆, Φ, l, r) with H an algebra and Φ is an invertible
element of H ⊗ H ⊗ H satisfying the following equations for every h ∈ H.

(∆⊗ 1) ◦ ∆(h) = Φ
(
(1⊗ ∆) ◦ ∆(h)

)
Φ−1 (2.22)[(

1⊗ 1⊗ ∆
)
(Φ)

][(
∆⊗ 1⊗ 1

)
(Φ)

]
= (1⊗Φ)

[(
1⊗ ∆⊗ 1

)
(Φ)

]
(Φ⊗ 1) (2.23)

(ε⊗ 1)(∆(h)) = l−1hl (2.24)

(1⊗ε)(∆(h)) = r−1hr (2.25)(
1⊗ε⊗ 1

)
(Φ) = 1⊗ 1 (2.26)

For the purposes of this thesis assume that l = r = 1. This will simplify some proofs later
on. In particular it makes the unitors in the representation category of a quasi bialgebra trivial.
Also note that Φ−1 will also satisfy Equations 2.23 and 2.26.

Definition 2.37. A quasi Hopf algebra is a tuple (H, S,α,β) with H a quasi bialgebra,α,β ∈ H and
S : H → H satisfying the following conditions. Let ∆(h) = ∑i hi1 ⊗ hi2 , Φ = ∑i Xi1 ⊗ Xi2 ⊗ Xi3 and
Φ−1 = ∑i Yi1 ⊗Yi2 ⊗Yi3 , then we require that

∑
i

Xi1βS(Xi2)αXi3 = 1

∑
i

S(Yi1)αYi2βS(Yi3) = 1

and for all h ∈ H,

∑
i

S(hi1)αhi2 = ε(h)α

∑
i

hi1βS(hi2) = ε(h)β.

The quasitriangular structure can also be extended to quasi Hopf algebras.

Definition 2.38. A quasitriangular quasi Hopf algebra is a tuple (H, R) with H a quasi Hopf algebra
and R and invertible element in H ⊗ H satisfying

∆op(h) = F ◦ ∆(h) = R∆(h)R−1

for all h ∈ H and

(∆⊗ 1)R = Φ321R13Φ
−1
132R23Φ123 (2.27)

(1⊗ ∆)R = Φ−1
231R13Φ213R12Φ

−1
123 (2.28)

where Φabc = ∑i Xia ⊗ Xib ⊗ Xic and Φ123 = Φ = ∑i Xi1 ⊗ Xi2 ⊗ Xi3

2.2.3 Representation Theory of Hopf Algebras

Definition 2.39. A representation of an algebra H is a vector space V with an algebra homomorphism
ρ : H → EndK(V).

§2.2 Backgroup Algebra 19

This ρ can either be thought of as a map H → (V → V) or a map H × V → V. With the
second interpretation, a representation is exactly the same as a left module. Note that, ρ being
an algebra homomorphism, means that ρ(h1) ◦ ρ(h2) = ρ

(
∇(h1, h2)

)
and for all k ∈ K, and

v ∈ V, ρ(η(k), v) = kv.
Let Rep(H) be the category whose objects are representations of H and morphisms are

intertwining maps. Equivalently, from the above interpretation, Rep(H) can be thought of as
the category whose objects are left modules with morphisms module homomorphisms. These
two points of view will be used interchangeably.

Theorem 2.40. If H is a quasitriangular quasi Hopf algebra then Rep(H) is a rigid braided monoidal
category.

While ideally this thesis would prove the above theorem, in practise the proof would be
far too lengthy. Instead we will prove the following three lemmas which combine to a slightly
weaker theorem. It should however be clear in the proofs of these lemma’s how they could be
extended to stronger statements so as to prove the above theorem.

Lemma 2.41. If H is a quasi bialgebra then Rep(H) is a monoidal category.

Lemma 2.42. If H is a Hopf algebra then the antipode S gives Rep(H) the property of a rigid monoidal
category.

Lemma 2.43. If H is a quasitriangular Hopf algebra then the quasitriangular element induces a braiding
on Rep(H).

Note that Lemmas 2.42 and 2.43 assume that the underlying coalgebra is coassociative.

Proof of Lemma 2.41. Let (U,ρ), (V,σ) and (W, τ) be representations of H. Initially we must
construct the tensor product of representations. Clearly U ⊗ V is a representation of H ⊗ H
via the map ρ ⊗ σ . In order to make this a representation of H, recall that the coproduct
∆ is an algebra homomorphism. Hence define (U,ρ) ⊗ (V,σ) =

(
U ⊗ V, (ρ ⊗σ) ◦ ∆

)
. An

easy calculation checks that if f : U → W and g : V → X are intertwining maps, then
f ⊗ g : U ⊗V →W ⊗ X is also an intertwining map.

The identity object is exactly (K,ε) and the isomorphisms (K,ε)⊗ (V,σ) ∼−→ (V,σ) and
(V,σ) ⊗ (K,ε) ∼−→ (V,σ) follow from Equations 2.24 and 2.25 after the simplification that
l = r = 1.

This leaves us to define the associator. The two possible tensor products of the three
representations are10

(
(U,ρ)⊗ (V,σ)

)
⊗ (W, τ) =

(
U ⊗V ⊗W, (ρ⊗σ ⊗ τ) ◦ (∆⊗ 1) ◦ ∆

)
and

(U,ρ)⊗
(
(V,σ)⊗ (W, τ)

)
=
(
U ⊗V ⊗W, (ρ⊗σ ⊗ τ) ◦ (1⊗ ∆) ◦ ∆

)
Recall that there is an identified element Φ ∈ H ⊗ H ⊗ H satisfying

(∆⊗ 1) ◦ ∆(h) = Φ
(
(1⊗ ∆) ◦ ∆(h)

)
Φ−1.

Therefore,

(ρ⊗σ ⊗ τ)(Φ−1) ◦ (ρ⊗σ ⊗ τ)
(
(∆⊗ 1) ◦ ∆(h)

)
= (ρ⊗σ ⊗ τ)

(
Φ−1((∆⊗ 1) ◦ ∆(h)

))
10Note that we are working here with a model of Vec where the monoidal structure is strict. If our model of Vec

had a non strict monoidal structure this theorem would still certainly be true, all the formulas would simply become
slightly more complicated.

20 Preliminaries

= (ρ⊗σ ⊗ τ)
((

(1⊗ ∆) ◦ ∆(h)
)
Φ−1

)
= (ρ⊗σ ⊗ τ)

(
(1⊗ ∆) ◦ ∆(h)

)
◦ (ρ⊗σ ⊗ τ)(Φ−1).

This means thatαρ,σ ,τ = (ρ⊗σ ⊗ τ)(Φ−1) is an intertwining map

αρ,σ ,τ :
(
(U,ρ)⊗ (V,ψ)

)
⊗ (W,φ)→ (U,ρ)⊗

(
(V,ψ)⊗ (W,φ)

)
.

Moreover, Equation 2.23 directly forces α to satisfy Commutative Diagram 2.1 and, as the
unitors are trivial Equation 2.26 shows thatα will satisfy Commutative Diagram 2.2. Therefore
α is an and so with these structures, (Rep(H),⊗, (K,ε),α, 1, 1) is a monoidal category.

It is unfortunate that in the definition ofα, Φ−1 is used instead of Φ. This is the commonly
used notation in the field but will cause some trouble later on. Moving on, we next wish to
prove that for a Hopf algebra H, Rep(H) is rigid.

Proof of Lemma 2.42. Note that a bialgebra is equivalent to a quasi bialgebra with Φ = 1⊗ 1⊗ 1
and l = r = 1. Thus, the previous proof gives us a strict monoidal structure on Rep(H).

Let (V,ρ) be an object in Rep(H). Define a new object (V∗,ρ∗) where V∗ is the vector space
dual of V and, for all h ∈ H, f ∈ V∗ and m ∈ V,

ρ∗(h, f)(m) = f
(
ρ(S(h), m)

)
.

Claim: This constructed object (V∗,ρ∗) is the dual object of (V,ρ).
Let γV be the usual linear map V∗ ⊗V → K and recall that the action of H on V∗ ⊗V and

K is given by (ρ∗ ⊗ ρ) ◦ ∆ and ε respectively. Then the following computation shows that γV
commutes with the action of H.

γV ◦
(
(ρ∗ ⊗ ρ) ◦ ∆(h)

)
(f ⊗m) = ∑

i
γV ◦

(
(ρ∗ ⊗ ρ)(hi1 ⊗ hi2)(f ⊗m)

= ∑
i
γV

(
ρ∗(hi1 , f)⊗ ρ(hi2 , m)

)
= ∑

i
ρ∗(hi1 , f)

(
ρ(hi2 , m)

)
= ∑

i
f
(
ρ
(

S(hi1),ρ(hi2 , m)
))

= f ◦ ρ ◦ (S⊗ ρ) ◦ (∆⊗ 1)(h, m)

= f ◦ ρ ◦ (1⊗ ρ) ◦ (S⊗ 1⊗ 1) ◦ (∆⊗ 1)(h, m)

= f ◦ ρ ◦ (∇⊗ 1) ◦ (S⊗ 1⊗ 1) ◦ (∆⊗ 1)(h, m) ∗
= f ◦ ρ ◦

(
(η ◦ε)⊗ 1

)
(h, m) ∗∗

= ε(h) f (m) ∗ ∗ ∗
= ε(h) ◦ γV(f ⊗m)

Note that the steps ∗ and ∗ ∗ ∗ are simple using the definition of ρ as an algebra homomorphism
and in particular in ∗ ∗ ∗ observing that ε(h) ∈ K. Then, step ∗∗ is a direct consequence of
Commutative Diagram 2.18. In order for (V∗,ρ∗) to be the dual, there also needs to be a map
from (K,ε)→ (V,ρ)⊗ (V∗,ρ∗). Again, we can use the regular vector space map ζV , which is,
for a basis {vi} of V with corresponding basis {v∗i } of V∗

ζV(1) = 1 ∑
i

vi ⊗ v∗i .

§2.2 Backgroup Algebra 21

A calculation no worse than the above will show that ζV commutes with the action of H. This
shows that every element has a right dual. An identical argument will also show that every
element must have a left dual and so Rep(H) is a rigid monoidal category.

In the case where H is only a quasi Hopf algebra, the α and β in Definition 2.37 increase
the complexity of the evaluation and co-evaluation maps. For the right dual of a left module
(V,ρ), the evaluation map γV is replaced by γV ◦ (1⊗ ρ(α)) and the co-evaluation map ζV will
be replaced by (1⊗ ρ∗(β)) ◦ζV . Similar modifications will be made to the regular vector space
structures for left duals. Next, consider the case when the the Hopf algebra is quasitriangular.
This will allow us to assign a braiding to Rep(H).

Proof of Lemma 2.43. Let H be a quasitriangular Hopf algebra. This means that there is an
invertible R ∈ H ⊗ H such that F ◦ ∆(h) = R∆(h)R−1 and R satisfies Equations 2.20 and 2.21.

Let (V,ρ) and (W, τ) be elements of Rep(H) with the strict monoidal structure defined
earlier. Then, a braiding will be an isomorphism between

(
V ⊗W, (ρ ⊗ τ) ◦ ∆

)
and

(
W ⊗

V, (τ ⊗ ρ) ◦ ∆
)
. Using the flip map F, we have ∀h ∈ H, w ∈W, v ∈ V the equality

(
(τ ⊗ ρ) ◦ ∆(h)

)
(w, v) = F ◦

(
(ρ⊗ τ) ◦ F ◦ ∆(h)

)
◦ F(w, v)

= F ◦ (ρ⊗ τ)(R∆(h)R−1) ◦ (w, v)

= F ◦ (ρ⊗ τ)(R) ◦ (ρ⊗ τ)(∆(h)) ◦
(

F ◦ (ρ⊗ τ)(R)
)−1

(w, v).

Rewriting this gives

F ◦ (ρ⊗ τ)(R) ◦ (ρ⊗ τ)(∆(h)) ◦ (v, w) =
(
(τ ⊗ ρ) ◦ ∆(h)

)
◦ F ◦ (ρ⊗ τ)(R)(v, w). (2.29)

This shows that σρ,τ = F ◦ (ρ⊗ τ)(R) is an isomorphism

σρ,τ :
(
V ⊗W, (ρ⊗ τ) ◦ ∆

) ∼−→ (
W ⊗V, (τ ⊗ ρ) ◦ ∆

)
.

In order forσ to be a braiding it needs to satisfy Commutative Diagrams 2.8 and 2.9 (These give
conditions on how the braiding needs to interact with the tensor product and associators.).

Let (U,ψ), (V,ρ) and (W, τ) be three objects in Rep(H). Then, as the associators are trivial,
Commutative Diagram 2.8 requires the equality

(1⊗σψ,τ) ◦ (σψ,ρ ⊗ 1) = σψ,(ρ⊗τ)◦∆

Equation 2.21 states that

(1⊗ ∆)R = R13R12 = (F⊗ 1)
(

1⊗ R
)
× (R⊗ 1).

Therefore,

σψ,(ρ⊗τ)◦∆ = F ◦
(
ψ⊗

(
(ρ⊗ τ) ◦ ∆

))
(R)

= (1⊗ F) ◦ (F⊗ 1) ◦
(
ψ⊗ ρ⊗ τ)(1⊗ ∆)

)
(R)

= (1⊗ F) ◦ (F⊗ 1) ◦ (ψ⊗ ρ⊗ τ)(R13R12)

= (1⊗ F) ◦ (F⊗ 1) ◦ (ψ⊗ ρ⊗ τ)(R13) ◦ (ψ⊗ ρ⊗ τ)(R12)

= (1⊗ F) ◦ (F⊗ 1) ◦
(
(ψ⊗ ρ⊗ τ) ◦ (F⊗ 1)(1⊗ R)

)
◦ (ψ⊗ ρ⊗ τ)(R⊗ 1)

= (1⊗ F) ◦ (ρ⊗ψ⊗ τ)(1⊗ R) ◦ (F⊗ 1) ◦ (ψ⊗ ρ⊗ τ)(R⊗ 1)

22 Preliminaries

=
(

1⊗
(

F ◦ (ψ⊗ τ)(R)
))
◦ (F⊗ 1) ◦

((
F ◦ (ψ⊗ ρ)(R)

)
⊗ 1
)

= (1⊗σψ,τ) ◦ (σψ,ρ ⊗ 1).

The key step in this proof is the observation that

(F⊗ 1) ◦
(
(ψ⊗ ρ⊗ τ) ◦ (F⊗ 1)(1⊗ R)

)
= (ρ⊗ψ⊗ τ)(1⊗ R) ◦ (F⊗ 1).

The idea is essentially that (F⊗ 1) can be pulled through the action
(
(ψ⊗ ρ⊗ τ) ◦ (F⊗ 1)

)
(1⊗

R)
)

and act upon each component permuting (ψ⊗ρ⊗τ) 7→ (ρ⊗ψ⊗τ) and (F⊗ 1)(1⊗ R) 7→
(F⊗ 1) ◦ (F⊗ 1)(1⊗ R) = (1⊗ R).

Therefore as required, σ satisfies Diagram 2.8. A very similar calculation using Equation
2.20 will show that σ also satisfies Diagram 2.9. For brevity this calculation will be skipped.

Therefore σ is indeed a valid braiding and so (Rep(H),σ) is a braided tensor category.

In the more general case when H is a quasitriangular quasi Hopf algebra, Equations 2.20
and 2.21 will be replaced by Equations 2.27 and 2.28. Looking at these new equations, it should
be clear that they are exactly taking into account the non trivial cocycle. Hence, in the general
case the braiding will still be given by σ as defined above.

2.2.4 Projective Representation Theory

This section is based on the paper “A Character Theory for Projective Representations of Finite
Groups” by Chuangxun Cheng [15].

Let G be a finite group, let V be a complex vector space and let β be a unitary 2-cocycle.
Recall GL(V) and PGL(V); the first is the ring End(V) and the second is GL(V)/C. Where C
is naturally identified with the subring of End(V) of multiples of the identity map.

Definition 2.44. A β-projective representation is a pair (V,ρ) with V a vector space and ρ a function
ρ : G→ GL(V) satisfying

ρ(g)ρ(h) = β(g, h)ρ(gh)

As β is a 2-cocycle ρ is associative but ρ is clearly not a group homomorphism when β 6= 1.
This is a slightly unusual definition of a projective representation. In general, a projective
representation is defined as a group homomorphism G → PGL(V). For our purposes this
second definition is unsatisfactory because we care about the value of the 2-cocycle β. When
mapped through to PGL(V), constants disappear and as such there would be no difference
between different values of β.

As an example of the difference between these perspectives, consider the case when G =
Z/2Z = {0, 1}. If we view projective representations as a map to PGL(V), the only one
dimensional projective representation is the trivial one. However, there are non trivial one
dimensional β-projective representations. For example when β is given by β(1, 1) = −1 and all
other pairs map to 1, two projective representations are given by 1 7→ i and 1 7→ −i.

Much of classical representation theory carries across to projective representations. This
includes the following definitions and results, stated here without proof. Proofs of these
theorems can be found in [15].

Definition 2.45. Two projective representations (V,ρ), (W,ψ) are linearly equivalent if there exists an
isomorphism f : V →W such that f ◦ ρ(g) = ψ(g) ◦ f for all g ∈ G.

There is another coarser notion of equivalence called projective equivalence. It is essen-
tially the same definition but the equality occurs in PGL(W) instead of GL(W). The two

§2.2 Backgroup Algebra 23

β-projective representations of Z/2Z given a moment ago are examples of representations that
are projectively but not linearly equivalent.

Definition 2.46. Given twoβ-projective representations (V,ρ), (W,ψ), we can form a newβ-projective
representation (V ⊕W,ρ⊕ψ) called the direct sum.

Theorem 2.47. Let (V,ρ) be a β-projective representation and W ⊂ V a G invariant subspace.
Then (V,ρ) can be decomposed into the direct sum of two β-projective representations, (W,ρ|W) and
(W ′,ρ|W ′) where W ⊕W ′ = V and ρ|W represents the action of ρ on V restricted to W.

Definition 2.48. A projective representation (V,ρ) is said to be irreducible if the only G invariant
subspaces are V and {0}.

Theorem 2.49. All projective representations can be decomposed into a direct sum of irreducible
representations. This decomposition is unique up to reordering and linear equivalences.

Definition 2.50. Given a projective representation, the character χρ of the representation is defined to be

χρ(g) = tr
(
ρ(g)

)
.

Theorem 2.51. A β-projective representation is entirely determined by its character.

Note that unlike classical representation theory, χρ(g) need not be constant across conjugacy
classes. Indeed a simple calculation shows that for a β-projective representation

χρ(hgh−1) = tr
(
ρ(hgh−1)

)
=

1
β(h, g)β(hg, h−1)

tr
(
ρ(h)ρ(g)ρ(h−1)

)
=

1
β(h, g)β(hg, h−1)

tr
(
ρ(g)ρ(h−1)ρ(h)

)
=

β(h−1, h)
β(h, g)β(hg, h−1)

χρ(g).

Another calculation that will be useful later is the relationship between χρ(g) and χρ(g−1).
In order to prove this we will first prove that the eigenvalues of χρ(g) must be roots of unity.
Let n < ∞ be the order of g. Then

I = ρ(1) = ρ(gn) = β(g, gn−1)−1 · · ·β(g, g)−1ρ(g)n.

As β is unitary, β|G| = 1 and so
I = I|G| = ρ(g)n|G|.

Therefore the eigenvalues of ρ(g) must be roots of unity which means that the eigenvalues of
ρ(g)−1 are the complex conjugates of the eigenvalues of ρ(g). Thus as ρ(g)ρ(g−1) = α(g, g−1)I
we find that

χρ(g−1) = tr
(
ρ(g−1)

)
= tr(α(g, g−1)ρ(g)−1) = α(g, g−1) tr(ρ(g)−1) = α(g, g−1)χ∗ρ(g−1),

(2.30)
where χ∗ denotes the complex conjugate of χ.

Usefully, it turns out that it is possible to visualise β-projective representations as true linear
representations of a larger group. The following theorem will be essential later on when we try
and compute the β-projective character table for a given group and 2-cocycle.

24 Preliminaries

Theorem 2.52. Let G be a group andβ a unitary 2-cocycle. Then there exists a group Gβ called the group
extension of G and an injective map f from β-projective representations of G to linear representations of
Gβ.

Proof. First to construct Gβ. As β is unitary it takes values in the group of |G|’th roots of unity in

C. This group is naturally identified with A = C|G| = 〈x|x|G|〉 by the isomorphism e
2π i
|G| 7→ x. Let

β̃ be image of β under the isomorphism into A. As a set, Gβ = G× A and its group structure
comes from a twisted multiplication map

(g, xn)× (h, xm) = (gh, β̃(g, h)xn+m).

Associativity of the multiplication follows from the associativity of the multiplication in G and
A as well as the 2-cocycle condition which β satisfies. As β is normalized, there is an identity
element (e, 1), and inverses are given by (g, xm)−1 = (g−1,

(
β(g, g−1)

)−1x−m. This proves that
Gβ is indeed a group.

Note that A is isomorphic to the normal subgroup of Gβ generated by (e, x) and that G is
not a subgroup of Gβ but is a quotient group given by G = Gβ/A.

Next let (V,ρ) be some β-projective representation of G. Define f (ρ) : Gβ → GL(V) by

f (ρ)
(

g, xm) = e
2mπ i
|G| ρ(g).

The following calculation shows that (V, f (ρ)) is indeed a linear representation of Gβ.

f (ρ)
(

g, xm) f (ρ)
(
h, xn) = e

2(m+n)π i
|G| ρ(g)ρ(h)

= β(g, h)e
2(m+n)π i
|G| ρ(gh)

= f (ρ)
(

gh, β̃(g, h)xn+m)
= f (ρ)

(
(g, m)× (h, m)

)
.

The injectivity of f is immediate from noting that f (ρ)
(

g, 1
)
= ρ(g) and this completes the

proof of Theorem 2.52.

An important corollary of this theorem is as follows.

Corollary 2.53. The β-projective representation (V,ρ) will be irreducible if and only if (V, f (ρ)) is an
irreducible linear representation.

Proof. Let W be a Gβ invariant subspace of V. Then as f (ρ)
(

g, 1
)
= ρ(g), W must also be

a G invariant subspace. Conversely, assume that W is not a Gβ invariant subspace. Then
there exists some element w ∈W and (g, xm) ∈ Gβ such that f (ρ)

(
g, xm)

)
(w) /∈W. Therefore

ρ(g)(w) = e
−2mπ
|G| f (ρ)

(
g, xm)(w) /∈ W and so W is not a G invariant subspace. Therefore G

invariant subspaces of V correspond to Gβ invariant subspace of V.

Importantly for us, when looking at β-irreducible representations this map f has a well
behaved inverse on Im(f). It is also easy to check if an irreducible representation of Gβ is in
Im(f).

Let (V,ρ) be an irreducible linear representation of Gβ. As A ∼= 〈(e, x)〉 is in the center of

Gβ and x|A| = 1, Schur’s Lemma gives us that ρ(e, x) = e
2kπ i
|A| In for some integer k. Then define

f ′(ρ)(g) = ρ(g, 1). Note that f ′(f (ρ′)) = ρ′ and so

f ′(ρ)(g) f ′(ρ)(h) = ρ(g, 1)ρ(h, 1) = ρ(gh, β̃(g, h)) = β(g, h)kρ(gh, 1) = β(g, h)k f ′(ρ(gh)).

§2.2 Backgroup Algebra 25

Clearly, f ′ will be a β-projective representation if and only if k = 1 and, when restricted to such
representations f (f ′(ρ)) = ρ. Additionally, there turns out to be an easy check to see if k = 1

using characters, as this is equivalent to asking if χ(e,x)
χ(e,1) = e

2π i
|A| .

This gives us a method of producing the β-character table of G only using linear represen-
tations. First we construct Gβ and find its character table. Then we create a subtable of all

characters that satisfy χ(1,x)
χ(e,1) = e

2π i
|A| . Restricting this subtable to G, Corollary 2.53 shows that this

is exactly the β-character table of G. This exact method has been encoded into GAP and the
code will be displayed in chapter 5.

One final observation is that, as with linear representations, β-projective representations can
also be viewed as left modules of an algebra. When β = 1, it is well known that representations
of G are equivalent to left modules of K[G]. Recall that elements of K[G] are sums ∑g∈G agg
with each ag some constant in K and multiplication is defined by(

∑
g∈G

agg
)(

∑
h∈G

bhh
)
= ∑

k∈G

(
∑

gh=k
agbh

)
k.

This is exactly the linearised version of multiplication in G. More generally, β-projective
representations can be viewed as left modules of the twisted group algebra Kβ[G] whose
underlying vector space is identical but multiplication is twisted by β. That is to say g× h =
β(g, h)gh or for a more general element(

∑
g∈G

agg
)(

∑
h∈G

bhh
)
= ∑

k∈G

(
∑

gh=k
β(g, h)agbh

)
k.

The proof of the equivalence between β-projective representations of G and left modules of
Kβ[G] is immediate from the definitions of β-projective representations and left modules.

26 Preliminaries

Chapter 3

Classifying equivalence classes of
Pointed Fusion Categories

There exists the following well known theorem about pointed fusion categories.

Theorem 3.1. All pointed fusion categories are equivalent to VecαG for some group G and 3-cocycle,α.

Proof. See [16].

This allows us to restrict the problem of studying the equivalence classes of pointed fusion
categories to these concrete examples. This chapter will explain what these categories VecαG
are and prove several theorems that will allow further restrictions on the equivalence classes of
these categories.

3.1 Twisted G-graded Vector Spaces

Fix a field K, which we suppress for the rest of the chapter and let G be a finite group. A
G-graded vector space V is a vector space which can be decomposed into a direct sum of vector
spaces each sitting over a different element of G

V =
⊕
g∈G

Vg.

Given two G-graded vector spaces V and W, a G-graded homomorphismψ : V →W is a linear
map that respects the G grading. This means that for all g ∈ G, the restriction of ψ to Vg is a
linear map from ψg : Vg →Wg.

Definition 3.2. The category Vec G is a skeletal category whose objects are G-graded vector spaces and
morphisms are G-graded homomorphisms.

Lemma 3.3. The category Vec G is linear and semisimple.

Proof. Clearly Vec G is linear as there is a natural vector space structure on G-graded homomor-
phisms. Explicitly, for all r, s ∈ K and ρ,ψ ∈ Vec G(V →W), (rρ+ sψ) is defined by

(rρ+ sψ)(v) = rρ(v) + sψ(v).

Bilinearity of the composition map follows from the linearity of morphisms. To prove semisim-
plicity define the objects δg for each g ∈ G to be the one dimensional G−graded vector spaces

(δg)h =

{
K if h = g
{0} if h 6= g.

27

28 Classifying equivalence classes of Pointed Fusion Categories

Observe that if g 6= h then as (δg)h = (δh)g = {0}, the only element of Vec G(δg → δh) is 0. On
the other hand, as (δg)g = K, maps from δg → δg are identified by their action on (δg)g = K.
Hence End(δg) ∼= K with the identification 1δg 7→ 1. Then the composition map in End(δg)
corresponds to multiplication in K. Additionally, it should be clear that every G-graded vector
spaces V, is isomorphic to a direct sum of these objects as

V ∼=
⊕
g∈G

|Vg|⊕
i=1

δg.

Therefore Vec G is a linear and semisimple category.

Consider the following tensor product on Vec G. Letting V, W ∈ Vec G, define V ⊗W to be
the G-graded vector space with g’th component

(V ⊗W)g =
⊕
hk=g

Vh ⊗Wk.

This tensor product is defined similarly on morphisms. In order to create a monoidal category,
this proposed tensor product must admit an associator and there must exist a unit object
and unital morphisms. The unit object is clearly δe but there is more choice in the rest of the
structures. Letα be a natural isomorphism

αX,Y,Z : (X⊗Y)⊗ Z ∼−→ X⊗ (Y⊗ Z).

As G is a group, its multiplication is associative and so

(δg ⊗ δh)⊗ δk = δ(gh)k = δg(hk) = δg ⊗ (δh ⊗ δk).

As End(δghk) ∼= K, for any tuple (g, h, k) ∈ G× G× G,αg,h,k is1 some scalar in K. Hence, when
restricted to only simple objects, α is exactly a map from G × G × G → K×. Then, setting
W = δg, X = δh, Y = δk and Z = δl, Commutative Diagram 2.1 (The commutative diagram
equating the two possible maps from (((W ⊗ X)⊗Y)⊗Z→W⊗ (X⊗ (Y⊗ Z))) is an equality
in End(δghkl) which corresponds to the equality in K

αh,k,lαg,hk,lαg,h,k = αgh,k,lαg,h,kl .

As α is uniquely defined by its action on the simple objects, the above equation implies that
there is a bijection between possible associators and 3-cocycles in Z3(G,K). We can classify the
possible unitors using a similar method. Setting X = δg and Y = δh, Commutative Diagram
2.2 (The commutative diagram equating the two possible maps from (X ⊗ I)⊗ Y → X ⊗ Y)
corresponds to the equality

ρg = αg,e,hλh.

Fix λe = k ∈ K× and observe that the 3-cocycle condition on the tuple (e, e, e, e) forces that
αe,e,e = 1. Then, as the above equation is satisfied for all g, h, this means that ρe = λe = k and
more generally all of the λ’s and ρ’s on simple objects can be written in terms ofα and k

ρg = kαg,e,e (3.1)

1For simplicity, whenever we subscriptα or more generally any natural transformation by group elements, this
refers to the corresponding simple object. e.g. αh,k,l = αδh ,δk ,δl .

§3.2 Functors between VecαG and VecβH 29

λh =
k

αe,e,h
. (3.2)

While all possible choices of k produce different monoidal categories it can be easily proven
that these categories are all monoidally equivalent. For α a 3-cocycle and k ∈ K×, let Vecαk G
denote the monoidal category of G graded vector spaces whose associator on the simple
objects corresponds to multiplication by α and unitors on the simple objects corresponds to
multiplication by ρ and λ as defined in Equations 3.1 and 3.2. Additionally, define VecαG =
Vecα1 G. Note that there is a mild abuse of notation here in thatα will be simultaneously referred
to both as a 3-cocycle and as the associator.

Lemma 3.4. The categories Vecαk G and VecαG are equivalent monoidal categories.

Proof. Consider the monoidal functor (F, Φ,φ) from VecαG to Vecαk G with F the identity functor,
Φ the identity natural transformation andφ multiplication by k in K ∼= End(I). It is a simple
check to confirm that these definitions satisfy Commutative Diagrams 2.3, 2.4, and 2.5. Therefore
this defines a monoidal functor which is clearly invertible and so the two categories Vecαk G and
VecαG are equivalent monoidal categories.

The following theorem will be stated without proof; the proof is provided later on in the
chapter as a more complete understanding of the monoidal equivalence classes of VecαG is
required.

Theorem 3.5. The monoidal categories VecαG are pointed fusion categories.

One method of describing monoidal equivalence classes is to first understand the possible
functors that can occur between categories.

3.2 Functors between VecαG and VecβH

This section will focus on the proof of Theorem 3.6. This theorem is certainly known to experts
in the field but I have been unable to find a citation with either a proof or a statement of it.

Theorem 3.6. There is a bijection between the monoidal functors from VecαG→ VecβH up to monoidal
natural isomorphism and the set{

(θ, Γ)|θ ∈ Hom(G→ H), Γ ∈ H2
(

G,K×;
α

β ·θ

)}
.

The notation β ·θ refers to the function defined by β ·θ(g, h, k) = β(θ(g),θ(h),θ(k)) for
g, h, k ∈ G. Additionally, H2

(
G,K×; α

β·θ

)
is the relative homology of G with respect to α

β·θ . This

is defined as (∂3)−1
(
α
β·θ

)
modulo the relation x ∼ y if xy−1 ∈ Im ∂2.

The proof of this theorem will be the combination of the following four lemmas. The first
two show that H2

(
G,K×; α

β·θ

)
is well defined and the second two are proving the bijection.

Lemma 3.7. Given β a 3-cocycle on H and a group homomorphism θ from G to H, β ·θ is a 3-cocycle
on G.

Lemma 3.8. Let Φ ∈ (∂3)−1
(
α
β·θ

)
and γ ∈ Im ∂2. Then Φγ ∈ (∂3)−1

(
α
β·θ

)
where Φγ is the

pointwise multiplication ofφ and γ.

30 Classifying equivalence classes of Pointed Fusion Categories

Lemma 3.9. There is a bijection between the monoidal functors from VecαG→ VecβH and the set{
(θ, Γ)|θ ∈ Hom(G→ H), Γ ∈ (∂3)−1

(
α

β ·θ

)}
.

Denote Fθ,Γ the monoidal natural transformation corresponding to a pair (θ, Γ) using the
above bijection.

Lemma 3.10. Two monoidal natural transformations Fθ,Γ and Fθ′ ,Γ ′ are monoidally naturally isomor-
phic if and only if θ = θ′ and Γ(Γ ′)−1 ∈ Im ∂2.

Proof of Lemma 3.7. Let β and θ be as given. Then for any four elements g, h, k, l ∈ H, β must
satisfy

β(h, k, l)β(g, hk, l)β(g, h, k) = β(gh, k, l)β(g, h, kl).

Hence for any four elements w, x, y, z ∈ G, β ·θ satisfies

β ·θ(x, y, z)β ·θ(w, xy, z)β ·θ(w, x, y)

= β(θ(x),θ(y),θ(z))β(θ(w),θ(x)θ(y),θ(z))β(θ(w),θ(x),θ(y))

= β(θ(w)θ(x),θ(y),θ(z))β(θ(w),θ(x),θ(y)θ(z))

= β ·θ(wx, y, z)β ·θ(w, x, yz).

Proof of Lemma 3.8. Let Φ ∈ (∂3)−1
(
α
β·θ

)
and γ ∈ Im ∂2. Then the proof follows the properties

of the boundary maps in group cohomology. These boundary maps satisfy ∂3(f g) = ∂3(f)∂3(g)
for all f , g ∈ C2(G,K×) and ∂3 · ∂2(f) = 1 for all f ∈ C1(G,K×). Hence, as γ ∈ Im ∂2,
γ = ∂2(f) for some f and so

∂
3(Φγ) = ∂

3(Φ)∂3(∂2(f)) =
α

β ·θ .

This proves that H2
(

G,K×; α
β·θ

)
is indeed a well defined set. Therefore we can move on to

proving the bijection.

Proof of Lemma 3.9. The outline for this proof is relatively simple. We will first show that given
a monoidal functor F , we can produce a pair (θ, Γ) ∈ (∂3)−1

(
α
β·θ

)
. Then it will be shown that

given such a pair we can produce a monoidal functor.
Let Vg and Wh be the simple objects in VecαG and VecβH respectively.
Initially let F = (F, Φ,φ) be a monoidal functor from VecαG → VecβH. Then φ is an

isomorphism between We and F(Ve). As the only element of VecβH isomorphic to We is We,
this shows that F(Ve) = We. Therefore, as End(We) = K, φ corresponds to multiplication by
some element in K×. Observe that as Ve = Vg ⊗Vg−1 there is an isomorphism

We
φ
' F(Ve) = F(Vg ⊗Vg−1)

(Φg,g−1)
−1

' F(Vg)⊗ F(Vg−1).

Thus F(Vg) must be an invertible object in VecβH. It follows from the definition of the tensor
product that the only invertible objects in VecβH are the simple ones. Therefore there exists
a map θ : G → H such that F(Vg) = Vθ(h). Previously, it has been shown that θ(e) = e and
θ(g−1) = θ(g)−1. Additionally the isomorphism

Wθ(gh) = F(Vgh) = F(Vg ⊗Vh)
(Φg,h)

−1

' F(Vg)⊗ F(Vh) = Vθ(g) ⊗Vθ(h) = Wθ(g)θ(h)

§3.2 Functors between VecαG and VecβH 31

shows that θ(gh) = θ(g)θ(h) and so θ is a group homomorphism from G to H. We have now
produced the first half of the pair (θ, Γ). The second half will be found by closer analysis of the
tensorator.

Consider Commutative Diagram 2.3 (The commutative diagram that relates the two possible
maps from (F(X) · F(Y)) · F(Z)→ F (X⊗ (Y⊗ Z))), with X = Vg, Y = Vh and Z = Vl. Then,
every object becomes Wθ(ghl) and so, as End(Wθ(ghl)) = K, composition can be replaced by
multiplication and the diagram exactly corresponds to the equation

Φg,hΦgh,lα(g, h, l) = (β ·θ)(g, h, l)Φh,lΦg,hl . (3.3)

Therefore, defining Γ by Γ(g, h) = Φg,h, a rearrangement of the above equation gives

∂
3(Γ)(g, h, l) =

Γ(h, l)Γ(g, hl)
Γ(g, h)Γ(gh, l)

=
Φh,lΦg,hl

Φg,hΦgh,l
=

(
α

β ·θ

)
(g, h, l).

This shows that ∂3(Γ) = α
β·θ and hence that Γ ∈ (∂3)−1

(
α
β·θ

)
. This completes the proof of first

direction of the bijection.
Next, let

(θ, Γ) ∈
{
(θ, Γ)|θ ∈ Hom(G→ H), Γ ∈ (∂3)−1

(
α

β ·θ

)}
Then define a triple (F, Φ,φ) as follows. First F is defined to a functor from VecαG to VecβH
defined on a simple objects Vg by F(Vg) = Wθ(g) and extended by semisimplicity. Similarly,
define Φ to be a natural isomorphism between F(X)⊗ F(Y) and F(X⊗Y) with action Φg,h on
a pair of simple objects Vg, Vh corresponding to multiplication by Γg,h inside End(Wgh) ∼= K.
Finally, define φ to be an isomorphism from F(Ve) = We to itself given by multiplication by
Γ−1

e,e ∈ End(We).
It follows easily from the definition of ∂3 and Equation 3.3 that the triple (F, Φ,φ) satisfies

the Diagram 2.3. Next consider Diagram 2.4 (The commutative diagram relating the left unitors).
Plugging in the simple object X = Vg, this diagram corresponds to the equation in Wθ(g)

β−1(e, e,θ(g)) = Γ−1(e, e)Γ(e, g)α−1(e, e, g).

Rearranging, this is equivalent to requiring that(
α

β ·θ

)
(e, e, g) =

Γ(e, g)
Γ(e, e)

.

By the definition of Γ we find that(
α

β ·θ

)
(e, e, g) = ∂

3Γ(e, e, g)

=
Γ(e, g)Γ(e, g)
Γ(e, e)Γ(e, g)

=
Γ(e, g)
Γ(e, e)

.

Therefore (F, Φ,φ) satisfies Diagram 2.4. A similar calculation shows that this triple also satisfies
Diagram 2.5 (The commutative diagram relating the right unitors.) and so (F, Φ,φ) is indeed a
monoidal functor from VecαG to VecβH. This completes the other direction of bijection and as
such completes the proof of Lemma 3.9.

32 Classifying equivalence classes of Pointed Fusion Categories

This gives us a bijection between monoidal functors and the set (∂3)−1
(
α
β·θ

)
. Next we show

that the equivalence relation that two monoidal functors are equivalent if there is a monoidal
natural isomorphism between them, will act thorough this bijection to quotient out (∂3)−1

(
α
β·θ

)
by Im(∂2).

Proof of Lemma 3.10. Let Fθ,Γ = (F, Φ,φ) and Fθ′ ,Γ ′ = (F′, Φ′,φ′) be two monoidal functors
from Vecαk1

G→ Vecβk2
H.

Initially assume that θ 6= θ′. Then there exists exist some g ∈ G such that θ(g) 6= θ′(g).
Hence, as the Wk are all simple objects, VecβH(Wθ(g), Wθ′(g)) = 0. Any natural isomorphism
from Fθ,Γ to Fθ′ ,Γ ′ needs to give an invertible map from Wθ(g) = F(Vg) → F′(Vg) = Wθ′(g).
Clearly this is impossible and hence the two functors F and F ′ cannot be naturally isomorphic.

Therefore assume that θ = θ′ and now consider the conditions on Γ and Γ ′.
Initially, assume that Γ(Γ ′)−1 is in the image of ∂2. Then there exists a γ ∈ C1(G,K×) such

that
Γ(g, h)
Γ ′(g, h)

=
γ(g)γ(h)
γ(gh)

. (3.4)

Hence, define a natural isomorphism ψ : F→ F′ as follows. On a simple object Vg, ψg needs to
be a map from Wθ(g) = F(Vg) → F′(Vg) = Wθ(g). Hence ψg ∈ End(Wθ(g)) ∼= K and so define
ψg to be multiplication by γ(g). Extend this definition to all objects using semisimplicity. We
claim that ψ is in fact a monoidal natural isomorphism from Fθ,Γ to Fθ,Γ ′ .

First we need to prove that ψ is actually a natural isomorphism from F to F′. Considering
only the simple objects, recall that there are no non-zero morphisms from Wg → Wh unless
g = h. Hence given any morphism f ∈ Vecαk1

G(Vg → Vh), if f = 0 we trivially have that
ψg ◦ 0 = 0 ◦ψg = 0. Then, when f 6= 0, we must have that g = h and so f = λ1g and thus,
again using the fact that End(Wθ(g)) ∼= K, ψg ◦ F(λ1g) = ψgλ = λψg = G(λ1g) ◦ψg. Therefore
ψ is indeed a natural transformation from F→ F′.

In order for ψ to be a monoidal natural transformation is needs to satisfy Commutative
Diagrams 2.6 and 2.7 (these diagrams describe how monoidal natural transformations must
interact with the actions of the tensorators and unit isomorphisms). Plugging X = Vg and
Y = Vh into Diagram 2.6 yields the equality in End(Wθ(gh))

γ(g)γ(h)Γ ′(g, h) = Γ(g, h)γ(gh). (3.5)

Clearly this follows from Equation 3.4. Similarly, Diagram 2.7 produces an equality in End(We)

Γ−1
e,e γ(e) = Γ ′−1

e,e .

Once again this follows from Equation 3.4 by setting g = h = e. Therefore as required ψ is a
monoidal natural isomorphism between Fθ,Γ = (F, Φ,φ) and Fθ′ ,Γ ′ = (F′, Φ′,φ′). This proves
one direction of Lemma 3.10. In this case, the other direction is almost immediate.

Assume that there exists a monoidal natural isomorphism ψ from Fθ,Γ to Fθ,Γ ′ . Define
γ(g) to be the element of K ∼= End(Wθ(g)) which corresponds to the map ψg. Then, the
commutative diagram 2.6 with X = Vg and Y = Vh will again produce Equation 3.5 which is
clearly equivalent to Equation 3.4 which shows that Γ(Γ ′)−1 ∈ Im ∂1.

Combining the four aforementioned lemmas proves Theorem 3.6.
This bijection has a nice interaction with composition of functors. Given two monoidal natu-

ral transformations Fθ1 ,Γ1 : Vecαk1
G→ Vecβk2

H and Fθ2 ,Γ2 : Vecβk2
H → Vecγk3

K, their composition
is given by Fθ2 ,Γ2 ◦ Fθ1 ,Γ1 = Fθ2◦θ1 ,Γ1(Γ2·θ1). In particular, observe that if θ is invertible, then Fθ,Γ

§3.3 Equivalence classes of Pointed Fusion Categories 33

is also invertible with two-sided inverse Fθ−1 ,Γ−1·θ−1 . On the other hand, if θ is not invertible
then Fθ,Γ cannot have an two-sided inverse2.

This leads to the following useful corollary. While the version presented and proved here
only contains an if statement, it turns out that this will still be true if the if statement is replaced
by an if and only if [1, 16].

Corollary 3.11. Two categories VecαG and VecβH are monoidally equivalent if there exists an invertible
θ ∈ Hom(G→ H) such that α

β·θ ∈ Im ∂3.

Proof. The proof of the corollary is almost immediate from the previous discussion. If there
exists an invertible θ ∈ G such that α

β·θ ∈ Im ∂3 then by definition there exists a Γ such that
∂3Γ = α

β·θ . Therefore Fθ,Γ is an invertible monoidal functor from VecαG → VecβH and so these
categories are monoidally equivalent.

3.3 Equivalence classes of Pointed Fusion Categories

Corollary 3.11 is a powerful tool for establishing equivalences of pointed fusion categories.
Observe that given any pairα,α′ of cohomologous 3-cocycles, Corollary 3.11 with θ = 1G

shows that VecαG and Vecα
′
G must be monoidally equivalent. Combining this with Theorem

2.29 allows us to conclude that every category of the form VecαG is equivalent to some category
VecβG where β is unitary. This is a useful observation because, for unitary cocycles, both the
unitors of the corresponding category become trivial. With this observation in mind, let us jump
back and prove that all categories VecαG are fusion categories.

Proof of Theorem 3.5. It is well known that equivalences of categories preserve properties. There-
fore it is good enough to prove this Theorem in the case that thatα is unitary.

Previously it has been shown that VecαG is a semisimple linear monoidal category, with
finitely many simple objects {δg}g∈G and a simple unit object δe. We must show then that VecαG
is pointed and rigid.

Initially observe that given any simple object δg, we have the equality

δg ⊗ δg−1 = δg−1 ⊗ δg = δe.

Therefore VecαG is a pointed category.
Next, let V be any object in VecαG. Define its dual to be

V∗ =
⊕
g∈G

(Vg−1)∗

where (Vg−1)∗ is the usual vector space dual of Vg−1 . Then we need an evaluation map εV :
V∗ ⊗V → I and a co-evaluation map ηV : I → V ⊗V∗. Let {vgi} be a basis for Vg with v∗gi

the
corresponding dual basis of V∗g−1 . Then define for any k ∈ δe ∼= K

ηV(k) = k ∑
g∈G

ω−1(g, g−1, g)∑
i

vgi ⊗ v∗gi
.

Similarly to in Vec, εV will be exactly given by function application. The two equalities that this
is required to satisfy follow either instantly, or from the observation that the 3-cocycle condition
on the tuple (g, g−1, g, g−1) implies that ω(g, g−1, g) = ω−1(g−1, g, g−1). Left duals will be
defined in an identical manner.

2It could have a 1-sided inverse however.

34 Classifying equivalence classes of Pointed Fusion Categories

Additionally, we can also give VecαG a pivotal structure. This is defined on the simple
objects byφg = ω(g, g−1, g)φ whereφ is the usual pivotal structure on Vec. With this pivotal
structure it can be easily checked that VecαG is spherical. Note that inside any G graded piece,
the constants from φV and ηV or φ−1

V and ηV∗ cancel out and so the trace map is identical to
Vec. Hence as all morphisms are G-graded and Vec is spherical, VecαG must also be spherical.
As might be expected, with these structures defined, the dimension of any object is exactly the
dimension of the vector space.

Looking again at Corollary 3.11, observe that fixing any 3-cocycleα, every category Vecα·θG
for θ ∈ Aut(G) is equivalent. This allows for a stronger statement of 3.1.

Fix a positive integer k and let Sk denote the set of all isomorphism classes of finite groups
of order k. For each equivalence class in S choose a representative Gk,i and define the set {Hk,i, j}
to be the set of orbits of H3(Gk,i, K ×) under the action of Aut(Gk,i) with θ ∈ Aut(Gk,i) acting
on a 3-cocycle cohomology class with representativeα by the map

θ · [α] = [α ·θ−1].

Let βk,i, j be a set of representative cocycles of a representative cohomology class of Hk,i, j. By
Theorem 2.29, it can be assumed that β is unitary.

Theorem 3.12. Let C be a pointed fusion category of rank k. Then there exists a Gk,i and βk,i, j such that
C is equivalent to Vecβk,i, j Gk,i.

Proof. By Theorem 3.1, C is equivalent VecαG for some G,α. Then as k = rank(C) =
rank(VecαG) = |G|, G must be isomorphic to Gk,i for some i. Letting θ be that isomorphism,
Corollary 3.11 shows that VecαG is equivalent to Vecα◦θ

−1
Gk,i. Then, [α ◦θ−1] is in the same

orbit at βk,i, j for some j and so Vecα◦θ
−1

Gk,i is equivalent to Vecβk,i, j Gk,i.

This theorem provides the starting point for the construction of a database of modular data of
Drinfeld centres of pointed fusion categories. Due to this quotient by the automorphism group,
the number of non equivalent fusion categories can be massively reduced from uncomputable
values down to more reasonable values. This is particularly apparent when dealing with groups
with large automorphism groups such as powers of Z/2Z. While

∣∣∣H3((Z/2Z)5 ,C×)
∣∣∣ = 225 =

33554432, the number of orbits under the action of the automorphism group is merely 88.
Theorem 3.12 is a special case of a much more general theorem proven by an ANU PhD

student, Cain Edie-Michell, in his soon to be published paper [4]. Broadly, given any monoidal
category C we can define a group extension D of C . As a category, D is a direct sum of copies
of C , each sitting over a difference element of G

D =
⊕
g∈G

Cg.

Similarly to above, we require that the tensor product interact with this decomposition in the
sense that

⊗ : Cg × Ch → Cgh.

Additionally, when we consider the sub monoidal category Ce with monoidal structure given
by the restriction from D , this is required equivalent to be the original category.

Again there are a variety of choices that can be made in defining the monoidal structure.
Edie-Michell gives a complete description of the equivalence classes of the possible monoidal
structures on these categories. Corollary 3.11 is exactly the specialisation of Edie-Michell’s more
general theorem to the case where C = Vec. This being said, the method of proof is different.

§3.3 Equivalence classes of Pointed Fusion Categories 35

Edie-Michell does not produce a more general result of Theorem 3.6 and then use this to classify
the equivalences like was done here. It is likely however that the techniques he uses could be
retooled to expand Theorem 3.6.

36 Classifying equivalence classes of Pointed Fusion Categories

Chapter 4

Modular Data for the Drinfeld Centre
of Twisted G-graded Vector Spaces

For simplicity, in this chapter and for the rest of this thesis all fields will be assumed to be C.
Most of the results here hold true over arbitrary fields but a couple of them do require the field
to be algebraically complete and or to have characteristic1 0.

The goal of this section is to compute the S and T matrices for Z
(
Vecω

−1
G
)bop. This

will be done by constructing a quasitriangular quasi Hopf Algebra DωG and showing that
Z
(
Vecω

−1
G
)bop ∼= Rep(DωG). This will then allow us to translate the morphisms defining the

S and T matrices into algebraic expressions in DωG which will then allow us to simplify and
solve them. The main result from this section is the following theorem. For a group G and a
unitary 3-cocycleω we define

θg(x, y) =
ω(g, x, y)ω(x, y, (xy)−1gxy)

ω(x, x−1gx, y)
. (4.1)

Additionally, for each conjugacy class K, fix a representative a and for every other g ∈ K
a group element ag such that a = agga−1

g and recall the definition of the centraliser of a,
C(a) = {g ∈ G|ag = ga}.

Theorem 4.1. The simple objects of Z
(
Vecω

−1
G
)bop correspond to tuples (K, a,ρa) with K a conjugacy

class of G with representative a and ρa an irreducible θa-projective representation of the centraliser of a,
C(a). Then the entries of the S and T matrices of Z

(
Vecω

−1
G
)bop are given by the formulas

T(K,a,ρa),(L,b,ψb) = δK,Lδρa ,ψb

χρa(a)
χρa(e)

. (4.2)

and

S(K,a,ρa),(L,b,ψb) =
1
|G|∑g∈K

h∈L∩C(g)

(
θa(ag, h)θa(agh, a−1

g)θb(bh, g)θb(bhg, b−1
h)

θg(a−1
g , ag)θh(b−1

h , bh)

)∗

× χ∗ρa
(agha−1

g)χ∗ψb
(bhgb−1

h). (4.3)

These equations for the S and T matrices have appeared in the literature before such as
Equations 5.23 and 5.24 in a paper by Antoine Coste, Terry Gannon and Philippe Ruelle [5].
Simplified versions of these formula whenω equals 1 have appeared throughout the literature

1More explicitly often the characteristic is required to not divide some integer, (usually the order of a group) and
it is easier to just work over C than explicitly deal with this each time.

37

38 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

[5, 17–19]. This being said, no detailed derivation of these formulas has appeared previously.

4.1 An Intricate Hopf Algebra

Let G be a finite group with identity e andω ∈ H3(G,C) a unitary 3-cocycle. Let

γx(h, l) =
ω(h, l, x)ω(x, x−1hx, x−1lx)

ω(h, x, x−1lx)
. (4.4)

and recall the definition of θg(x, y) given in Equation 4.1.
Then the quasitriangular quasi Hopf algebra DωG is defined following [14]. Start with the

vector space over C generated by symbols δgx with g, x ∈ G. The algebra structure is

∇(δgx, δh y) = θg(x, y)δg,xhx−1δgxy =

{
θg(x, y)δgxy if g = xhx−1

0 else
(4.5)

η(k) = k ∑
g∈G

δge. (4.6)

where δg,h is the Kronecker delta function. The coalgebra structure is

∆(δgx) = ∑
h∈G

γx(h, h−1g)δhx⊗ δh−1gx (4.7)

ε(δgx) = δg,e. (4.8)

This structure is not coassociative but is quasi coassociative with invertible element

Φ = ∑
g,h,k∈G

ω(g, h, k)δge⊗ δhe⊗ δke.

This means that
(∆⊗ 1) ◦ ∆(h) = Φ(1⊗ ∆) ◦ ∆(h)Φ−1.

Next, the quasi Hopf algebra structures are

S(δhg) = θh−1(g, g−1)−1γg(h, h−1)−1δg−1h−1gg−1 (4.9)

with α = 1 = η(1) = ∑g∈G δge and β = ∑gω(g, g−1, g)δge. Additionally, the quasitriangular
element is

R = ∑
g,h∈G

δge⊗ δhg.

There is clearly a lot that would need to be checked here to show that these definitions indeed
produce a quasitriangular quasi Hopf algebra. For brevity most of these will be skipped but
they all essentially follow from repeated use of the 3-cocycle condition forω as will be seen in
the following proof.

Proof that (∆⊗ 1) ◦ ∆(h)Φ = Φ(∆⊗ 1) ◦ ∆(h) for all h ∈ DωG. As both ∆ and multiplication
by Φ are linear maps, it suffices to show that this equality holds on the vector space generators
of DωG. Therefore, observe that on an arbitrary generator (δgx), the left hand side expands to

(∆⊗ 1) ◦ ∆(δgx)Φ = (∆⊗ 1)
(

∑
h∈G

γx(h, h−1g)δhx⊗ δh−1gx
)
Φ

§4.1 An Intricate Hopf Algebra 39

= ∑
h,k∈G

γx(h, h−1g)γx(k, k−1h)ω(x−1kx, x−1k−1hx, x−1h−1gx)δkx⊗ δk−1hx⊗ δh−1gx,

whereas the right hand side expands to

Φ(1⊗ ∆) ◦ ∆(δgx) = Φ(1⊗ ∆)
(

∑
h∈G

γx(h, h−1g)δhx⊗ δh−1gx
)
Φ−1

= ∑
h,k∈G

ω(h, k, k−1h−1g)γx(h, h−1g)γx(k, k−1h−1g)δhx⊗ δkx⊗ δk−1h−1gx

= ∑
h,k∈G

ω(h, h−1k, k−1g)γx(h, h−1g)γx(h−1k, k−1g)δhx⊗ δh−1kx⊗ δk−1gx

= ∑
h,k∈G

ω(k, k−1h, h−1g)γx(k, k−1g)γx(k−1h, h−1g)δkx⊗ δk−1hx⊗ δh−1gx.

In the last two steps k was relabelled by h−1k and then the labels h and k were swapped. Clearly,
these two expressions will be equal in general if

ω(k, k−1h, h−1g)γx(k, k−1g)γx(k−1h, h−1g) = ω(x−1kx, x−1k−1hx, x−1h−1gx)γx(h, h−1g)γx(k, k−1h).

In order to show this equality the first step will be to expand out all the γ’s. Additionally, to
simplify the expressions replace k−1h and h−1g with l and m respectively. Then, the left hand
side of the equation becomes

LHS =
ω(k, l, m)ω(k, lm, x)ω(x, x−1kx, x−1lmx)ω(l, m, x)ω(x, x−1lx, x−1mx)

ω(k, x, x−1lmx)ω(l, x, x−1mx)

and the right hand side becomes

RHS =
ω(x−1kx, x−1lx, x−1mx)ω(kl, m, x)ω(x, x−1klx, x−1mx)ω(k, l, x)ω(x, x−1kx, x−1lx)

ω(kl, x, x−1mx)ω(k, x, x−1lx)
.

Using the 3-cocycle condition on the tuple (k, l, m, x) on the left hand side simplifies it to

LHS =
ω(k, l, mx)ω(x, x−1lx, x−1mx)ω(kl, m, x)ω(x, x−1kx, x−1lmx)

ω(k, x, x−1lmx)ω(l, x, x−1mx)
.

In a similar vein, the 3-cocycle on (x, x−1kx, x−1lx, x−1mx) simplifies the right hand side to

RHS =
ω(kx, x−1lx, x−1mx)ω(k, l, x)ω(kl, m, x)ω(x, x−1kx, x−1lmx)

ω(kl, x, x−1mx)ω(k, x, x−1lx)
.

Definitionally, these expressions will be equal if and only if 1 is equal to

LHS
RHS

=
ω(k, l, mx)ω(x, x−1lx, x−1mx)
ω(k, x, x−1lmx)ω(l, x, x−1mx)

ω(kl, x, x−1mx)ω(k, x, x−1lx)
ω(kx, x−1lx, x−1mx)ω(k, l, x)

.

Using the 3-cocycle condition on (k, l, x, x−1mx) simplifies this expression further to

LHS
RHS

=
ω(k, lx, x−1mx)ω(x, x−1lx, x−1mx)ω(k, x, x−1lx)

ω(k, x, x−1lmx)ω(kx, x−1lx, x−1mx)
.

Finally, the 3-cocycle condition on (k, x, x−1lx, x−1mx) shows that this expression is equal to 1

40 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

and so, as all simplifying steps were equivalences, this proves as required that for all h ∈ DωG

(∆⊗ 1) ◦ ∆(h)Φ = Φ(∆⊗ 1) ◦ ∆(h).

More generally, all the equalities that need to be satisfied follow from either a single appli-
cation of the 3-cocycle condition, a consequence ofω being unitary and hence normalized, or
one of the following three identities which can be themselves proven by repeated use of the
3-cocycle condition.

θg(x, y)θg(xy, z) = θg(x, yz)θx−1gx(y, z) (4.10)

θg(x, y)θh(x, y)γx(g, h)γy(x−1gx, x−1hx) = θgh(x, y)γxy(g, h) (4.11)

γx(g, h)γx(gh, k)ω(x−1gx, x−1hx, x−1kx) = γx(h, k)γx(g, hk)ω(g, h, k). (4.12)

Observe that by renaming k → g, k−1h → h, h−1g → k, Equation 4.12 was just shown to hold
in the preceding proof. One important observation from Equation 4.10 is that for any element
g ∈ G, θg(x, y) is a 2-cocycle on C(g).

4.2 The Modular Equivalence between Rep(DωG) and Z(Vecω−1
)bop

The main goal of this section will be to prove the following theorem.

Theorem 4.2. The ribbon fusion categories Rep(DωG) and Z
(
Vecω

−1
G
)bop are equivalent.

Note the −1 and bop in Z
(
Vecω

−1
G
)bop. These are unfortunate consequence of differing con-

ventions in the algebraic and categorical worlds with the associator on Rep(DωG) originating
from Φ−1 as opposed to Φ and the half braidings in Z

(
Vecω

−1
G
)bop being required to satisfy a

right group action as opposed to a left group action.
This theorem will be proven incrementally, by use of the following lemmas.

Lemma 4.3. There is an equivalence on the level of categories between Rep(DωG) andZ
(
Vecω

−1
G
)bop.

Lemma 4.4. The equivalence on the level of categories between Rep(DωG) and Z
(
Vecω

−1
G
)bop

extends to a monoidal equivalence.

Lemma 4.5. The monoidal equivalence between Rep(DωG) and Z
(
Vecω

−1
G
)bop can be made into a

braided equivalence.

Lemma 4.6. The monoidal equivalence between Rep(DωG) and Z
(
Vecω

−1
G
)bop can be made into a

pivotal equivalence.

Recall from Section 2.2.3 that a representation of DωG is exactly a left module of the un-
derlying algebra. Looking back at Equation 4.5, observe that ∇(δgx, δh y) 6= 0 if and only if
g = xhx−1. In particular, this means that g and h must be in the same conjugacy class. Hence
the underlying algebra of DωG can be written as the direct sum over the conjugacy classes I(G)
of G

DωG =
⊕

K∈I(G)

Dω(K, G).

Here Dω(K, G) is the subalgebra of DωG generated by δgx for g ∈ K and x ∈ G with identity
∑g∈K δge. This splitting of DωG will be essential in describing the simple objects of Rep(DωG).

§4.2 The Modular Equivalence between Rep(DωG) and Z(Vecω−1
)bop 41

The functor Eq : Rep(DωG) → Z
(
Vecω

−1
G
)bop is defined as follows. Let (V,ρ) be a left

DωG module. For any g ∈ G, as ∇(δge, δge) = δge, ρ(δge) must be a projection matrix and thus
diagonalizable. Additionally, for any other h ∈ G,

∇(δge, δhe) = ∇(δhe, δge) =

{
δge if g = h
0 otherwise.

Therefore the set of matrices S = {ρ(δge)}g∈G must be simultaneously diagonalisable as they
all commute. Hence, with respect to a basis {v1, · · · , vn} diagonalizing S, ρ(δge) will be a
projection onto some subspace {vg1 , · · · , vgkg

}. As ∑g∈G δge = 1, every basis element will be in
the image of a unique ρ(δge) and so V splits as

V =
⊕
g∈G

Vg.

where Vg = Im(ρ(δge)) = Span(vg1 , · · · , vgkg
).

Two useful observation are as follows. Given any element δgx, note the equality

ρ(δgx) ◦ ρ(δx−1gxe) = ρ
(
∇(δgx, δx−1gxe)

)
= ρ(δgx) = ρ

(
∇(δge, δgx)

)
= ρ(δge) ◦ ρ(δgx)

As ρ(δx−1gxe) and ρ(δge) are projections onto Vg and Vx−1gx, this equality shows that ρ(δgx) is a
linear map from Vx−1gx → Vg and acts as 0 on Vh for h 6= x−1gx. As δgx is invertible, Vg and
Vx−1gx must have the same dimension for all x ∈ G. Hence for every conjugacy class K, the
dimension of Vg is fixed for all g ∈ K.

Define Dω(g, C(g)) to be the subalgebra of Dω(K, G) generated by δgx for x ∈ C(g). Then,
Vg is a left module of Dω(g, C(g)) with action given by the restricting the domain of ρ to
Dω(g, C(g)) and Vg.

So far we have shown that a left DωG module is naturally a G-graded vector space however,
elements of Z

(
Vecω

−1
G
)bop also require a half braiding, β. Let Wg be the one dimensional

G-graded vector space sitting over the element g ∈ G and let βg = ρ (∑k∈G δkg). Define a map
βg from V ⊗Wg →Wg ⊗V by βg = F ◦ (β−1

g ⊗ 1). With F, the flip map defined in Chapter 2.2.

Lemma 4.7. This map βg defines a half braiding on the simple objects of Vecω
−1

G and as such extends

to a half braiding on all of Vecω
−1

G.

Proof. First we show that β−1
g exists and βg is a G-graded map. Then we will show that βg is

natural and that it satisfies the half braiding equality (ω−1
g,h,V)

−1 ◦ (1⊗βh) ◦ω−1
g,V,h ◦ (βg ⊗ 1) ◦

(ω−1
V,g,h)

−1 = βgh.

Initially, observe that (∑k∈G δkg)−1 = ∑l∈Gθglg−1(g, g−1)−1δl g−1 and so β−1
g exists. Next

note that (βg)−1 restricted to Vhg−1 will be a map from Vhg−1 to→ Vg−1h. Hence as

V ⊗Wg =
⊕
h∈G

Vhg−1

and
Wg ⊗V =

⊕
h∈G

Vg−1h,

βg is indeed a G-graded map.
Naturality of βg is immediate as it is acts by the identity map on Wg. Finally, we are left

with showing the half braiding condition. To make the calculations simpler, let us first invert

42 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

both sides of the equality to get

ω−1
V,g,h ◦ (β

−1
g ⊗ 1) ◦ (ω−1

g,V,h)
−1 ◦ (1⊗β−1

h) ◦ω−1
g,h,V = β

−1
gh .

Then, pick a representative element (u, w, v) ∈ Wg ⊗Wh ⊗ V with v = ∑k∈G vk where each
vk ∈ Vk. The right hand side of the proposed equivalence acts upon this element by

u⊗ w⊗ v
β
−1
gh7−−→ βgh(v)⊗ u⊗ w = ∑

k∈G
βgh(vk)⊗ u⊗ w.

In order to calculate the action of the left hand side, observe that if vk ∈ Vk, then βh(vk) ∈ Vhkh−1 .
Using this fact we can derive that left hand side will act by

u⊗ w⊗ v = ∑
k

u⊗ w⊗ vk

ω−1
g,h,V7−−−→∑

k
ω−1(g, h, k)u⊗ w⊗ vk

1⊗β−1
h7−−−→∑

k
ω−1(g, h, k)u⊗βh(vk)⊗ w

(ω−1
g,V,h)

−1

7−−−−−→∑
k

ω−1(g, h, k)
ω−1(g, hkh−1, h)

u⊗βh(vk)⊗ w

β−1
g ⊗1
7−−−→∑

k

ω−1(g, h, k)
ω−1(g, hkh−1, h)

βg(βh(vk))⊗ u⊗ w

ω−1
V,g,h7−−−→∑

k

ω−1(g, h, k)ω−1(ghk(gh)−1, g, h)
ω−1(g, hkh−1, h)

βg(βh(vk))⊗ u⊗ w

= ∑
k
θ−1

ghk(gh)−1(g, h)βg(βh(vk))⊗ u⊗ w.

Simply observe now that

βg(βh(vk)) = ρ
((

∑
l,m
∇(δl g, δmh

)
, vk

)
= ρ

(
∑

l
θl(g, h)δl gh, vk

)
= θghk(gh)−1ρ(δghk(gh)−1 gh, vk)

= θghk(gh)−1βgh(vk).

Substituting this in shows that the left hand side and the right hand side act identically and so
the proposed morphism is indeed a half braiding.

This defines how Eq maps objects in DωG to objects in Z
(
Vecω

−1
G
)bop. On, morphisms,

Eq will correspond to the identity map as a morphism that commutes with the action of DωG
must commute with ρ(δge) and βg which means it must respect the derived G-grading and will
commute with the half braiding.

It also needs to be shown that Eq has an inverse2. For brevity I will only give a brief outline
of this inverse as explaining the finer details is essentially a rehash of the work done above.

2In general an equivalence of categories requires a slightly weaker condition than in inverse existing but in this
case the constructed functor Eq is really on the nose invertible.

§4.2 The Modular Equivalence between Rep(DωG) and Z(Vecω−1
)bop 43

Given, an object (V,β) in Z
(
Vecω

−1
G
)bop, the corresponding DωG module is created by

forgetting the G grading on V and equipping it with the action

ρ(δgx) = (β
−1
x) ◦ P(x−1gx)

where P(h) is the projection of V onto Vh. Morphisms will again be mapped across by the
identity map.

This completes the proof of Lemma 4.3.
Next we move on to showing that this equivalence between Rep

(
DωG

)
and Z

(
Vecω

−1
G
)bop

is a monoidal one.

Proof of Lemma 4.4. Let (V,ρ) and (W,ψ) be two left DωG modules. Denote the associated
elements of Z

(
Vecω

−1
G
)bop by Eq(V,ρ) = (V,α) and Eq(W,ψ) = (W,β). Initially let us show

that
Eq(V,ρ)⊗ Eq(W,ψ) = Eq((V,ρ)⊗ (W,ψ)) = Eq(V ⊗W, (ρ⊗ψ) ◦ ∆).

Recall that (
V ⊗W

)
g
=
⊕
hk=g

Vh ⊗Wk =
⊕
h∈G

Vh ⊗Wh−1g

and Vg is exactly the fixed subspace of V corresponding to the projection by the action of δge.
Then the action on V ⊗W of δge is given by

(ρ⊗ψ)
(
∆(δge)

)
= (ρ⊗ψ)

(
∑

h∈G
δhe⊗ δh−1ge

)
=
(

∑
h∈G

ρ(δhe)⊗ψ(δh−1ge)
)

.

Hence as required, (ρ⊗ψ)
(
∆(δge)

)
is exactly a projection onto the space⊕

h∈G

Vh ⊗Wh−1g

and so the monoidal structure on the vector space part matches up. Next recall that the tensor
product on half braidings is given on a simple object Ug ∈ Vecω

−1
G by

(α ⊗β)g =ω−1
g,V,W ◦ (αg ⊗ 1) ◦ (ω−1

V,g,W)−1 ◦ (1⊗βg) ◦ω−1
V,W,g.

Similarly, the half braiding from the tensor product of DωG modules is

µg = F ◦ (µ−1
g ⊗ 1)

where

µg = (ρ⊗ψ) ◦ ∆
(

∑
h∈G

δhg

)

= (ρ⊗ψ)
(

∑
h,k∈G

γg(k, k−1h)δkg⊗ δk−1hg

)
= ∑

h,k∈G
γg(k, k−1h)ρ(δkg)⊗ψ(δk−1hg)

= ∑
l,m∈G

γg(l, m)ρ(δl g)⊗ψ(δmg).

In order to prove that these are equal we will prove that their inverses are equal. Hence, consider

44 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

these acting on a sample element (u⊗ v⊗ w) ∈ Ug ⊗V ⊗W. Additionally, assume that v and
w split as v = ∑g vg and w = ∑g wg with vh ∈ Vh and wk ∈Wk. Then

((α⊗β)g)
−1(u⊗ v⊗ w) = (ω−1

V,W,g)
−1 ◦ (1⊗βg) ◦ω−1

V,g,W ◦ (αg ⊗ 1) ◦ (ω−1
g,V,W)−1(u⊗ v⊗ w)

= ∑
h,k
(ω−1

V,W,g)
−1 ◦ (1⊗β−1

g) ◦ω−1
V,g,W ◦ (α

−1
g ⊗ 1) ◦ (ω−1

g,V,W)−1(u⊗ vh ⊗ wk)

= ∑
h,k
ωg,h,k(ω

−1
V,W,g)

−1 ◦ (1⊗β−1
g) ◦ω−1

V,g,W ◦ ((αg ⊗ 1) ◦ F⊗ 1) ◦ (u⊗ vh ⊗ wk)

= ∑
h,k

ωg,h,k

ωV,g,k
(ω−1

V,W,g)
−1 ◦ (1⊗βg ⊗ 1) ◦ F ◦ (αg(vh)⊗ u⊗ wk)

= ∑
h,k

ωg,h,kωghg−1 ,gkg−1 ,g

ωghg−1 ,g,k
αg(vh)⊗βg(wk)⊗ u

= ∑
h,k,l,m

γg(ghg−1, gkg−1)ρ(δl g, vh)⊗ψ(δmg, wk)⊗ u

= ∑
h,k,l,m

γg(ghg−1, gkg−1)ρ(δl g, vh)⊗ψ(δmg, wk)⊗ u

= ∑
l,m
γg(l, m)ρ(δl g, vg−1 lg)⊗ψ(δmg, wg−1kh)⊗ u

= µg(v⊗ w)⊗ u

= µg(u⊗ v⊗ w).

Therefore the equivalence preserves the operation of tensor product on objects. It is easy to
show that the operation of tensor product on morphisms is also preserved. It remains to show
that Eq preserves the rest of the monoidal structure.

Note that the identity object of Rep(DωG) is given by (K,ε) and it can be easily checked
that F(K,ε) = (Ve, 1) where 1 represents the trivial braiding, which is the identity object
of Z

(
Vecω

−1
G
)bop. In addition, observe that both the unitors of both categories are trivial.

Then using Lemma 2.41, we see that the associator on Rep(DωG), Φ−1 exactly corresponds
to multiplying an element in Ug ⊗ Vh ⊗Wk by ω−1(g, h, k). This is exactly the associator on

Z
(
Vecω

−1
G
)bop and so the three Commutative Diagrams 2.3, 2.4 and 2.5 are all satisfied with

a trivial tensorator and unit isomorphism. Therefore the previously constructed categorical
equivalence is also monoidal equivalence.

Now we show that this equivalence extends to the braiding.

Proof of Lemma 4.5. Let (V,ρ) and (W,ψ) be two left DωG modules with corresponding objects
in Z

(
Vecω

−1
G
)bop, (V,α) and (W,β).

Recall that there are two possible braidings that can be given to Z
(
Vecω

−1
G
)bop. Both are

directly induced from the half braiding and are

σV,W = αW

and
σ ′V,W = β

−1
V = σ−1

W,V .

On Rep(DωG), Lemma 2.43 gives the braiding to be F ◦ (ρ⊗ψ)(R). If we try the first braiding,
we find that

σV,W = αW = F ◦ (α−1
W ⊗ 1)

§4.2 The Modular Equivalence between Rep(DωG) and Z(Vecω−1
)bop 45

= F ◦ ∑
g∈G

ρ
(

∑
h∈G

δhg
)−1
⊗ 1

= F ◦ ∑
g,h∈G

θ−1
ghg−1(g, g−1)ρ(δhg−1)⊗ψ(δhe)

= ∑
g,h∈G

θ−1
ghg−1(g, g−1)ψ(δhe)⊗ ρ(δhg−1) ◦ F

= (ψ⊗ ρ)(R−1) ◦ F.

An identical calculation shows that σ ′V,W = σ−1
W,V = F ◦ (ρ⊗ψ)(R). Therefore, Rep(DωG) is

braided equivalent to Z
(
Vecω

−1
G
)bop where the braiding is given by the inverse of the half

braidings.

While usually Drinfeld centres are equipped with the opposite braiding to what we have
equipped Z

(
Vecω

−1
G
)bop with, fundamentally this is an arbitrary choice and will only have a

minor effect later on.
Finally we need to show that the rigid and pivotal structures are also equivalent under this

map.

Proof of Lemma 4.6. There are two parts to this theorem. Initially, we must show that the duals
with their evaluation and co-evaluation maps are equivalent. Then we can move on the
the pivotal structure. Recall that both these structures on Z

(
Vecω

−1
G
)bop are identical to the

structures on Vecω
−1

G discussed in the last chapter.
Dual objects must be preserved by the equivalence as being duals is a property of a pair

of object. We just need to show then that our choices for evaluation and co-evalutaion maps
also align. Recall that the two constants α and β from the definition of a quasi Hopf algebra
are given as α = 1 and β = ∑gω(g, g−1, g)δge. The means that the evaluation map is exactly
function application and the co-evaluation map is given by (1⊗ ρ∗(β)) ◦ ηV where, picking any
basis vi for V, ηV is the map

1
ηV7−→∑

i
vi ⊗ vi.

Observe that S(β) = β−1 = ∑gω
−1(g, g−1, g)δge. Hence, this ρ∗(β) term will exactly multiply

the g-th graded piece byω−1(g, g−1, g) and so this exactly corresponds to the rigid structure for
right duals as defined last chapter. Therefore the equivalence preserves the right rigid structure.
We will deal with the left rigid structure after showing that the equivalence preserves the pivotal
isomorphism.

To find the pivotal structure on Rep(DωG) we first make the observation that for all h ∈
DωG,

S2(h) = β−1hβ.

This means that β−1h = S2(h)β−1. Then, letting φ be the usual pivotal structure on Vec and
choosing an arbitrary f ∈ V∗ we find that

φ ◦ ρ(β−1) ◦ ρ(h)(v)(f) = ρ(β−1h, v)∗∗(f)

= f
(
ρ
(

S2(h)β−1, v
))

= ρ∗(S(h), f)
(
ρ(β−1, v)

)
=
(
ρ(β−1, v)

)∗ ∗ (ρ∗(S(h), f)
)

= ρ∗∗
(

h,
(
ρ(β−1, v)

)∗∗)
(f)

46 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

= ρ∗∗(h) ◦φ ◦ ρ(β−1)(v)(f).

Hence, the pivotal structure on Rep(DωG) is given byφ ◦ρ(β−1). Asβ−1 = ∑gω(g, g−1, g)−1δge
this is exactly multiplying the component of v in Vg byω−1(g, g−1, g) and so recalling the piv-

otal structure on Z
(
Vecω

−1
G
)bop defined in the last chapter, clearly the equivalence extends to

to these pivotal structures.
Recall that the pivotal isomorphism gives a canonical isomorphism between the left and

right duals. Hence, as the equivalence preserves the right rigid structure and and the pivotal
isomorphism it must also preserve the left rigid structure.

Over the course of these four lemma’s we have shown that the equivalence between
Z
(
Vecω

−1
G
)bop and Rep(DωG) is a braided pivotal equivalence. Further an equivalence of

categories will also preserve properties. Therefore as Z
(
Vecω

−1
G
)bop is ribbon and fusion so is

Rep(DωG). This proves Theorem 4.2 and in particular implies the following Corollary which
was in essence the point of defining this Hopf algebra in the first place.

Corollary 4.8. The S and T matrices of Z
(
Vecω

−1
G
)bop and Rep(DωG) are equivalent up to a re-

ordering of the simple objects.

Note that it doesn’t make sense to ask for the S and T to be equal as it is always possible
to relabel the simple objects which certainly will have no effect on the overall category. Let
S′ and T′ denote that S and T matrices of Z

(
Vecω

−1
G
)
. It seems reasonable that there should

be some connection between S and T and S′ and T′. Indeed we can show that S′ = S−1 and
T′ = T−1. Observe that the string diagram for T′i,i can be placed inside the graphical calculus

Z
(
Vecω

−1
G
)bop as it corresponds to the value of the twist θ using the inverse crossing. Then we

have, through string manipulations,

Ti,iT′i,i =

θVi

θ′Vi

=

φVi

φVi

=

φVi

φ−1
Vi

=

φVi

φ−1
Vi

=
.

Therefore T′i,i = T−1
i,i and, as T is diagonal this shows that T′ = T−1. We can do a similar trick

for the S matrix where we rotate the right loop around by 180 degrees out of the page.

S̃i, j =

Vi Vj

=

Vi Vj

= S̃′i, j∗

In this diagram, Vj∗ refers to the simple object dual to Vj. It turns out that S2 = S̃2

|G|2 is equal
to a matrix C, called the charge conjugation matrix. For the cases we are dealing with, C

§4.3 Deriving the S and T matrices for Z(Vecω−1
)bop 47

is exactly the permutation matrix corresponding to the operation of swapping every simple
object with its dual. Hence, recalling that S4 = I, the above diagram manipulations show that
S−1 = S3 = SC = S′. Therefore the modular data that we calculate for Z

(
Vecω

−1
G
)bop will be

the inverse of the modular data for Z
(
Vecω

−1
G
)
.

4.3 Deriving the S and T matrices for Z(Vecω−1
)bop

The equivalence proved above allows us to smoothly move betweenZ
(
Vecω

−1)bop and Rep(DωG)
which will allow us to translate categorical calculations into algebraic ones. This will allow us
to derive the formulas for the entries of the S and T matrices shown in Theorem 4.1.

I recommend this moment as the perfect time to make a cup of tea or coffee (or maybe even
a little whisky). The following sections will get a little intense at times.

4.3.1 Classifying the Simple Objects

With the equivalence between Rep(DωG) and Z
(
Vecω

−1
G
)bop, we can use what we know about

representations of DωG, to analyse Z
(
Vecω

−1
G
)bop. The end goal is of course to produce the

S and T matrices of Z
(
Vecω

−1
G
)bop and so the first step is to classify the simple objects of

Z
(
Vecω

−1
G
)bop.

For each conjugacy class K ⊂ I(G), fix an element a ∈ K.

Theorem 4.9. There is a bijection between the simple objects of Z
(
Vecω

−1
G
)bop and the set of tuples

(K, a,ρa) where K is conjugacy class of G with representative a and ρa is an irreducible θa-projective
representation of the centralizer C(a).

Proof. This theorem is easier to prove using the equivalence just shown and answering this
question in Rep(DωG). Recall that the simple objects of Rep(DωG) are exactly the irreducible
left modules. Then, as observed earlier, the algebra DωG splits over the conjugacy classes I(G)
with

DωG =
⊕

K∈I(G)

Dω(K, G).

Therefore an irreducible left module of DωG must entirely sit over exactly one of these Dω(K, G).
Consider the subalgebra Dω(a, C(a)) sitting inside Dω(K, G). Observe that this subalgebra is
exactly the θa-twisted group algebra of C(a) also known as Cθa [C(a)] discussed at the end of
Section 2.2.4. Therefore irreducible left modules of Dω(a, C(a)) exactly correspond to irreducible
θa-projective representations of C(a).

Next, observe that if (V,ρ) is a left Dω(K, G) module, then Va = Im(ρ(δae)) is a left
Dω(a, C(a)) module with action given by ρa = ρ|Dω(a,C(a))×Va .
Claim: This left module (Va,ρa) is irreducible if and only if (V,ρ) is irreducible.

Proof. Suppose (Va,ρa) is not irreducible. Then there must exist some decomposition Va =
Wa ⊕W ′a such that Wa and W ′a are non-trivial, disjoint and fixed by the action of Dω(a, C(a)).
Now consider the subspace W of V formed by the action of Dω(K, G) on Wa. If W is equal to V
this would imply the existence of an element h ∈ Dω(K, G) and a w ∈Wa such that h · w ∈W ′a.
But such an h would then be contained in Dω(a, C(a)) as it must send Va → Va and so Wa

would not be fixed by the action of Dω(a, C(a)). This is a contradiction and so W cannot be
equal to V. Therefore as W is clearly non-empty, and is fixed by the action of Dω(G), it must be
a proper submodule of V and therefore (V,ρ) is not irreducible.

48 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

Conversely, suppose that (V,ρ) is not irreducible. Then there exists a W a proper subspace
of V which is fixed by the action of Dω(K, G). Then recall that the dimension of Wk is fixed
for all k ∈ K. Hence as W is a proper subspace of V, each Wa must be a proper subspase of
Va. Additionally, as W is fixed by the action of Dω(K, G), Wa must be fixed by the action of
Dω(a, C(a)). Therefore Wa is a proper submodule of Va and so Va is not irreducible.

This proves that this restriction map gives a map from the irreducible left modules of
Dω(K, G) to the irreducible left modules of Dω(a, C(a)) which, as stated earlier is exactly the
irreducible θa-projective representations of C(a).

Importantly, this restriction to Va has an inverse. Given a left Dω(a, C(a)) module (Va,ρa),
the corresponding Dω(K, G) module is constructed as follows.3 Pick any k ∈ K and consider
the subvector space Wk of Dω(K, G) generated by elements δkgk with a = g−1

k kgk. This vector
space Wk has a right action of Dω(a, C(a)) given by ∇ and a left action of Dω(k, C(k)). Hence
we define

Vk = Wk ⊗Dω(a,C(a)) Va.

Then, Dω(K, G) has a left action on

V =
⊕
k∈K

Vk =
⊕
k∈K

Wk ⊗Dω(a,C(a)) Va.

induced by the action of Dω(K, G) on ⊕kWk.
Recalling that all left modules (V,ρ) of Dω(K, G) all admit a decomposition from the images

of idempotents δge as
V =

⊕
k∈K

Im
(
ρ(δke)

)
=
⊕
k∈K

Vk.

It should be clear that this construction is an inverse to the restriction map from V 7→ Va defined
earlier. Therefore every irreducible left module of Dω(K, G) corresponds to an irreducible
θa-projective representation (Va,ρa) of C(a).

This has proven the first statement in Theorem 4.1.

4.3.2 Deriving the S Matrix

In order to derive the S matrix, we first need to find the corresponding morphism inside
Rep(DωG)(I → I). Let (K, a,ρa) and (L, b,ψb) be two simple objects in Z(Vecω−1

G)bop. These
simple objects will be unambiguously referred to by the vector spaces V and W which corre-
spond to the left modules of DωG with action given by ρ andψ. Then, the value of S̃(K,a,ρa),(L,b,ψb)

is the morphism in Z(Vecω−1
G
)bop(I → I

)
given by Figure 4.1. Note that unitors in Figure 4.1

have been omitted because they are trivial.
In order to compute the value of the morphism in Figure 4.1 we will shift everything across

to DωG and use algebraic manipulations. In order to achieve this we must first move all of
the morphisms over, these have all been covered in the previous chapter but I will restate the
equivalences here. For any three left modules (U, τ), (V,ρ) and (W,ψ) we have

ηV ∼= (1⊗ ρ(β)) ◦ η 1 7→∑
i

∑
g∈G

ω(g, g−1, g)ρ(δge, vi)⊗ vi (4.13)

3This construction is equivalent to an induction functor. But the work required to construct the category that
we are inducting up to is exactly defining all of these Wk. Hence in this case it is easier to directly induct the
representation as opposed to using the induction functor.

§4.3 Deriving the S and T matrices for Z(Vecω−1
)bop 49

φWφV

I

V ⊗ (V∗ ⊗ I)

V ⊗
(
V∗ ⊗ (W ⊗W∗)

)
V ⊗

(
V∗ ⊗W)⊗W∗)

)
V ⊗

(
W ⊗V∗)⊗W∗)

)
V ⊗

(
V∗ ⊗W)⊗W∗)

)
V ⊗

(
V∗ ⊗ (W ⊗W∗)

)
V∗∗ ⊗

(
V∗ ⊗ (W∗∗ ⊗W∗)

)
V∗∗ ⊗ (V∗ ⊗ I)

I

ηV

1⊗ 1⊗ ηW

1⊗ (ω−1
V∗ ,W,W∗)

−1

1⊗σV∗ ,W ⊗ 1

1⊗σW,V∗ ⊗ 1

1⊗ω−1
V∗ ,W,W∗

φV ⊗ 1⊗φW ⊗ 1

1⊗ 1⊗εW∗

εV∗

Figure 4.1: A detailed string diagram for deriving the entry of the S matrix corresponding to
the simple objects (K, a,ρa) and (L, b,ψb).

50 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

ω−1
U,V,W

∼= (τ ⊗ ρ⊗ψ)Φ−1 u⊗ v⊗ w 7→ ∑
g,h,k

1
ω(g, h, k)

τ(δge, u)⊗ τ(δhe, v)⊗ τ(δke, w)

(4.14)

σV,W ∼= τ ◦ (ρ⊗ψ)(R) v⊗ w 7→ ∑
g,h∈G

ψ(δhg, w)⊗ ρ(δge, v) (4.15)

φV ∼= φ ◦ ρ(β−1) v 7→∑
g

1
ω(g, g−1, g)

(
ρ(δge, v)

)∗∗ (4.16)

εV ∼= ε f ⊗ v 7→ f (v). (4.17)

Let us start by calculating the action of the double braiding. This will be easier now than if we
tried to do it directly in the larger morphism. This double braiding corresponds to the map on
(V,ρ), (W,ψ) given by

σ2
V,W = τ ◦ (ψ⊗ ρ)(R) ◦ τ ◦ (ρ⊗ψ)(R).

This map acts on a pair v⊗ w ∈ V ⊗W as follows

τ ◦ (ψ⊗ ρ)(R) ◦ τ ◦ (ρ⊗ψ)(R)(v⊗ w) = τ ◦ (ψ⊗ ρ)(R)
(

∑
g,h∈G

ψ(δhg, w)⊗ ρ(δge, v)
)

= ∑
g,h,k,l∈G

ρ
(
δlk,ρ(δge, v)

)
⊗ψ

(
δke,ψ(δhg, w)

)
.

Asψ and ρ are representations, composition is equivalent to multiplication. Thus, as θg(x, e) =
θg(e, x) = 1 for all g, x ∈ G,

ρ(δlk)ρ(δge) =

{
ρ(δkgk−1k) if l = kgk−1

0 else

and

ψ(δke)ψ(δhg) =

{
ψ(δhg) if k = h
0 else.

Thus we can remove the sums over k and l, replacing l with hgh−1 and k with h. Additionally,
replace g with hgh−1. This gives the double braiding to be

σ2
V,W = ∑

g,h∈G

(
ψ(δgh)(v),ρ(δhh−1gh)(w)

)
.

The simplifications performed in the above calculation will be continually used to simplify the
more complex expressions that will appear when calculating the coefficients of the S matrix.

Let us now jump right in to computing the S matrix morphism. Note that 7→ will denote the
steps where a new morphism is being applied and = will correspond to simplification steps.

1
ηV7−→∑

i
g∈G

ω(g, g−1, g)
1

ρ(δge, vi)⊗ vi

1⊗1⊗ηW7−−−−→∑
i, j

g,h∈G

ω(g, g−1, g)ω(h, h−1, h)
1

ρ(δge, vi)⊗ vi ⊗ ρ(δhe, w j)⊗ w j

§4.3 Deriving the S and T matrices for Z(Vecω−1
)bop 51

1⊗(ω−1
V∗ ,W,W∗)

−1

7−−−−−−−−−→∑
i, j

g,hk,l,m∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, l, m)

1
ρ(δge, vi)⊗ ρ∗(δke, vi)

⊗ψ
(
δle,ψ(δhe, w j)

)
⊗ψ∗

(
δme, w j)

= ∑
i, j

g,h,k,m∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

1
ρ(δge, vi)⊗ ρ∗(δke, vi)

⊗ψ(δhe, w j)⊗ψ∗
(
δme, w j)

1⊗σ2
V,W⊗1

7−−−−−→∑
i, j

g,h,k,m,p,q∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

1
ρ(δge, vi)⊗ ρ∗

(
δq pρ∗(δke, vi)

)
⊗ψ

(
δp p−1qp,ψ(δhe, w j)

)
⊗ψ∗

(
δme, w j)

= ∑
i, j

g,h,k,m∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

1
ρ(δge, vi)⊗ ρ∗(δkhkh−1k−1 khk−1, vi)

⊗ψ(δkhk−1 k, w j)⊗ψ∗
(
δme, w j)

1⊗ω−1
V∗ ,W,W∗7−−−−−−→∑

i, j
g,h,k,m,l,p,q∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

ω(l, p, q)
ρ(δge, vi)

⊗ ρ∗
(
δle,ρ∗(δkhkh−1k−1 khk−1, vi)

)
⊗ψ

(
δpe,ψ(δkhk−1 k, w j)

)
⊗ψ∗(δqe,ψ∗

(
δme, w j)

)
= ∑

i, j
g,h,k,m∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

ω(khkh−1k−1, khk−1, m)
ρ(δge, vi)⊗ ρ∗(δkhkh−1k−1 khk−1, vi)

⊗ψ(δkhk−1 k, w j)⊗ψ∗
(
δme, w j)

φV⊗1⊗φW⊗17−−−−−−−→∑
i, j

g,h,k,m,p,q∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, m)

ω(khkh−1k−1, khk−1, m)ω(p, p−1, p)ω(q, q−1, q)

(
ρ
(
δpe,ρ(δge, vi)

))∗∗

⊗ ρ∗(δkhkh−1k−1 khk−1, vi)⊗
(
ψ
(
δqe,ψ(δkhk−1 k, w j)

))∗∗
⊗ψ∗

(
δme, w j)

= ∑
i, j

g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(khkh−1k−1, khk−1, m)ω(khk−1, kh−1k−1, khk−1)

(
ρ(δge, vi)

)∗∗

⊗ ρ∗(δkhkh−1k−1 khk−1, vi)⊗
(
ψ(δkhk−1 k, w j)

)∗∗
⊗ψ∗

(
δme, w j)

εV∗◦(1⊗1⊗εW∗)7−−−−−−−−−→∑
i, j

g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(khkh−1k−1, khk−1, m)ω(khk−1, kh−1k−1, khk−1)

×
(
ρ(δge, vi)

)∗∗(
ρ∗(δkhkh−1k−1 khk−1, vi)

)
×
(
ψ(δkhk−1 k, w j)

)∗∗(
ψ∗
(
δme, w j)

)
= ∑

i, j
g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(khkh−1k−1, khk−1, m)ω(khk−1, kh−1k−1, khk−1)

× ρ∗(δkhkh−1k−1 khk−1, vi)
(
ρ(δge, vi)

)
×ψ∗(δme, w j)

(
ψ(δkhk−1 k, w j)

)
To shrink this expression slightly let, let q = khkh−1k−1 and p = khk−1. Then substituting this

52 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

in, and applying the definitions of the dual actions gives

∑
i, j

g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(q, p, m)ω(p, p−1, p)
× vi

(
ρ
(

S(δq p),ρ(δge, vi)
))

w j
(
ψ
(

S(δme),ψ(δpk, w j)
))

Next, apply the definition of the antipode S to produce the expression

∑
i, j

g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(q, p, m)ω(p, p−1, p)θq−1(p, p−1)γp(q, q−1)
×

vi
(
ρ
(
δp−1q−1 p p−1,ρ(δge, vi)

))
w j
(
ψ
(
δm−1 e,ψ(δpk, w j)

))
Then, ρ

(
δp−1q−1 p p−1,ρ(δge, vi)

)
will be zero unless p−1q−1 p = p−1gp which is clearly equiv-

alent to the equality g = q−1. Similarly, in order forψ
(
δm−1 e,ψ(δpk, w j) to be non-zero we must

have that m = p−1. Substituting these equalities in brings us to the equation

∑
i, j

g,h,k,m∈G

ω(h, h−1, h)ω(k, h, m)

ω(g−1, m−1, m)ω(m−1, m, m−1)θg(m−1, m)γm−1(g−1, g)
×

vi(ρ(δmgm−1 m, vi)
)
w j(ψ(δm−1 k, w j)

)
.

Choose a basis for V and W that diagonalises the action of δge for all g ∈ G. Then
w j(ψ(δm−1 k, w j)

)
will be zero unless k ∈ C(m) and w j lies in Wm−1 . As m = p−1 = kh−1k−1, this

means that m = h−1. Therefore k and h must commute and so g = q−1 = khk−1h−1k−1 = k−1.
Additionally, in order for vi(ρ(δmgm−1 m, vi) = vi(ρ(δgh−1, vi) to be non-zero, it is required that
vi ∈ Vg and h ∈ C(g). Let wh j be a basis for Wh and let vgi be a basis of Vg. Adding in all of
these conditions simplifies the expression further to

∑
g∈G

h∈C(g)
gi ,h j

1
θg(h, h−1)γh(g−1, g)

vgi
(
ρ(δgh−1, vgi)

)
wh j
(
ψ(δhg−1, wh j)

)
.

As V and W correspond to irreducible DωG modules they are entirely concentrated over
conjugacy classes K and L. Then ∑gi

vgi
(
ρ(δgh−1, vgi)

)
exactly gives the trace of the matrix

ρ(δgh−1) and, as ρ(δgh−1) acts by 0 outside Vg,

tr
(
ρ(δgh−1)

)
= tr

(
ρg(h−1)

)
= χρg(h

−1).

Additionally, observe that when g and h commute, γh(g−1, g) = θh(g−1, g). Plugging all these
in further simplifies the expression to

∑
g∈K

h∈KL∩C(g)

1
θg(h, h−1)θh(g−1, g)

χρg(h
−1)χψh(g−1).

This interpretation as projective characters allows us to use some projective character theory. In
particular we can use Equation 2.30 which gives

χρg(h
−1) = θg(h, h−1)χ∗ρg

(h).

§4.3 Deriving the S and T matrices for Z(Vecω−1
)bop 53

Using this equality and observing that the 2-cocycle condition for normalised cocycles implies
that θh(g−1, g) = θh(g, g−1), we can simplify the expression for the S matrix component further
to

∑
g∈K

h∈L∩C(g)

χ∗ρg
(h)χ∗ψh

(g).

Unfortunately, while this is the simplest version of the formula, it cannot be used for computa-
tions. This is because we will only have the representations ρa and ψb. Therefore we need to
find a way to express χ∗ρg

(h) in terms of a ρa character.
Let y be an element conjugate to a and h ∈ C(y). Then pick an element ay in G that witnesses

the conjugacy of a and y. That is to say, a = ay ya−1
y . Then consider the following calculation

χρy(h) = tr
(
ρ(δyh)

)
= θy(a−1

y , ay)
−1 tr

(
ρ
(
∇(∇(δya−1

y , δaay), δyh)
))

= θy(a−1
y , ay)

−1 tr
(
ρ(δya−1

y)ρ(δaay)ρ(δyh)
)

= θy(a−1
y , ay)

−1 tr
(
ρ(δaay)ρ(δyh)ρ(δya−1

y)
)

= θy(a−1
y , ay)

−1 tr
(
ρ
(
∇(∇(δaay, δyh), δya−1

y)
))

=
θa(ay, h)θa(ayh, a−1

y)

θy(a−1
y , ay)

tr
(
ρ(δaayha−1

y)
)

=
θa(ay, h)θa(ayh, a−1

y)

θy(a−1
y , ay)

χρa(ayha−1
y). (4.18)

Hence given a fixed a ∈ K and b ∈ L for each other g ∈ K and h ∈ L pick an ag and bh such that
a = agha−1

g and b = bhhb−1
h . Then, applying the formula we just derived to current expression

of the S matrix gives us

S(K,a,ρa),(L,b,ψb) = ∑
g∈K

h∈L∩C(g)

(
θa(ag, h)θa(agh, a−1

g)θb(bh, g)θb(bhg, b−1
h)

θg(a−1
g , ag)θh(b−1

h , bh)

)∗
χ∗ρa

(agha−1
g)χ∗ψb

(bhgb−1
h).

Then, simply dividing through by the normalisation constant, (|G|) will give the formula for
the S matrix as stated in Theorem 4.1.

4.3.3 Deriving the T Matrix

In order to find the T matrix let us draw another detailed picture as we did for the S matrix. Let
(K, a,ρa) be a simple object with corresponding left module (V,ρ), then |V|T(K,a,ρa) is given by
the morphism in Figure 4.2.

We find the corresponding morphism in the same manner as before.

1
ηV∗7−−→∑

i
g∈G

ω(g, g−1, g)ρ∗(δge, v∗i)⊗ v∗∗i

1⊗1⊗ηV7−−−−→∑
i, j

g,h∈G

ω(g, g−1, g)ω(h, h−1, h)ρ∗(δge, v∗i)⊗ v∗∗i ⊗ ρ(δhe, v j)⊗ v∗j

54 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

I

V∗ ⊗ (V∗∗ ⊗ I)

V∗ ⊗
(
V∗∗ ⊗ (V ⊗V∗)

)
V∗ ⊗

(
(V∗∗ ⊗V)⊗V∗

)
V∗ ⊗

(
(V ⊗V∗∗)⊗V∗

)
V∗ ⊗

(
V ⊗ (V∗∗ ⊗V∗)

)
V∗ ⊗ (V ⊗ I)

I

ηV∗

1⊗ 1⊗ ηV

1⊗ (ω−1
V∗∗ ,V,V∗)

−1

1⊗σV∗∗ ,V ⊗ 1

1⊗ω−1
V,V∗∗ ,V∗

1⊗ 1⊗εV∗

εV

Figure 4.2: A detailed string diagram for deriving the diagonal entry of the T matrix corre-
sponding to the simple object (K, a,ρa).

§4.3 Deriving the S and T matrices for Z(Vecω−1
)bop 55

1⊗(ω−1
V∗∗ ,V,V∗)

−1

7−−−−−−−−−→∑
i, j

g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)ρ∗(δge, v∗i)

⊗ ρ∗∗(δke, v∗∗i)⊗ ρ(δhe, v j)⊗ ρ∗(δle, v∗j)
1⊗σV∗∗ ,V7−−−−−→∑

i, j
g,h,k,l,m,n∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)ρ∗(δge, v∗i)⊗ ρ(
(
δnm,ρ(δhe, v j)

⊗ ρ∗∗
(
δme,ρ∗∗(δke, v∗∗i)

)
⊗ ρ∗(δle, v∗j)

= ∑
i, j

g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)ρ∗(δge, v∗i)⊗ ρ(δkhk−1 k, v j)

⊗ ρ∗∗(δke, v∗∗i)⊗ ρ∗(δle, v∗j)

1⊗ω−1
V,V∗∗7−−−−−→∑

i, j
g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)
ω(khk−1, k, l)

ρ∗(δge, v∗i)⊗ ρ(δkhk−1 k, v j)

⊗ ρ∗∗(δke, v∗∗i)⊗ ρ∗(δle, v∗j)

εV◦(1⊗1⊗εV∗)7−−−−−−−−→∑
i, j

g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)
ω(khk−1, k, l)

ρ∗(δge, v∗i)
(
ρ(δkhk−1 k, v j)

)
× ρ∗∗(δke, v∗∗i)

(
ρ∗(δle, v∗j)

)
= ∑

i, j
g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)
ω(khk−1, k, l)

v∗i
(
ρ
(

S(δge),ρ(δkhk−1 k, v j)
))

× v∗∗i
(
ρ∗
(

S(δke), (ρ∗(δle, v∗j)
))

= ∑
i, j

g,h,k,l∈G

ω(g, g−1, g)ω(h, h−1, h)ω(k, h, l)
ω(khk−1, k, l)

v∗i
(
ρ
(
δg−1 e,ρ(δkhk−1 k, v j)

))

× v∗∗i
(
ρ∗
(
δk−1 e, (ρ∗(δle, v∗j)

))
= ∑

i, j
h,k∈G

ω(kh−1k−1, khk−1, kh−1k−1)ω(h, h−1, h)ω(k, h, k−1)

ω(khk−1, k, k−1)
v∗i
(
ρ(δkhk−1 k, v j)

)
v∗∗i
(
ρ∗(δk−1 e, v∗j)

)

Observe now that

v∗∗i
(
ρ∗(δk−1 e, v∗j)

)
= v∗j

(
ρ(S(δk−1 e), vi)

)
= v∗j

(
ρ(δke, vi)

)
.

Hence this term is non-zero only if j = i and vi ∈ Vk in which case, this term is 1. Let vki be a
basis of Vk, then subbing this all in, the expression simplifies to

∑
h,k∈G

ki

ω(kh−1k−1, khk−1, kh−1k−1)ω(h, h−1, h)ω(k, h, k−1)

ω(khk−1, k, k−1)
v∗ki

(
ρ(δkhk−1 k, vki)

)

Then, this term can only be non-zero if khk−1 = k which clearly implies that h = k. Then, the

56 Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces

expression simplifies further to

∑
k∈G

ki

ω(k−1, k, k−1)ω(k, k−1, k)ω(k, k, k−1)

ω(k, k, k−1)
v∗ki

(
ρ(δkk, vki)

)
.

Observe that asω is normalized, the 3-cocycle condition on (k, k−1, k, k−1) implies that

ω(k−1, k, k−1)ω(k, k−1, k) = 1.

Next, recall the chosen element a ∈ K and pick an ak ∈ G such that a = akka−1
k . Then treating

∑ki

(
ρ(δkk, vki)

)
as a character and using Equation 4.18 again to replace χρk with a χρa we get

T(K,a,ρa),(L,b,ψb) =
δK,Lδρa ,ψb

|V| ∑
k∈K

χρk(k) =
δK,Lδρa ,ψb

|V| χρa(a) ∑
k∈K

θa(ak, k)θa(akk, a−1
k)

θk(a−1
k , ak)

.

Consider further the term
θa(ak, k)θa(akk, a−1

k)

θk(a−1
k , ak)

.

First observe that Equation 4.10 with g = k, x = a−1
k , y = a−1

k , and z = k gives the equality

θk(a−1
k , ak)θk(e, k) = θk(a−1

k , akk)θakka−1
k
(ak, k).

As θ is normalised, and akka−1
k = a, this summation term can be rearranged by

θa(ak, k)θa(akk, a−1
k)

θk(a−1
k , ak)

=
θa(akk, a−1

k)

θk(a−1
k , akk)

=
ω(a, ak, k, a−1

k)ω(akk, a−1
k , akk−1a−1

k aakka−1
k)ω(a−1

k , akka−1
k , akk)

ω(akk, k−1a−1
k aakk, a−1

k)ω(k, a−1
k , akk)ω(a−1

k , akk, k−1a−1
k akka−1

k akk)

=
ω(akka−1

k , ak, k, a−1
k)ω(akk, a−1

k , akka−1
k)ω(a−1

k , akka−1
k , akk)

ω(akk, k, a−1
k)ω(k, a−1

k , akk)ω(a−1
k , akk, k)

This expression appears complicated but it can be simplified using the 3-cocycle condition.
Applying the 3-cocycle condition on the tuple (akk, a−1

k , akk, a−1
k) simplifies this expression to

ω(akk, a−1
k , ak, k)ω(a−1

k , akk, a−1
k)ω(a−1

k , akka−1
k , akk)

ω(k, a−1
k , akk)ω(a−1

k , akk, k)

which the 3-cocycle condition on the tuple (a−1
k , akk, a−1

k , akk) shows must be 1. Therefore,
recalling that |V| = |K||Va| = |K|χρa(e) we are left with the simple formula

T(K,a,ρa),(L,b,ψb) = δK,Lδρa ,ψb

χρa(a)
χρa(e)

. (4.19)

This completes the proof of Theorem 4.1.

Chapter 5

Computing Modular Data in GAP

As described previously, given a group G and a unitary 3-cocycleω, there is a corresponding
modular tensor category Z(VecωG). This section details code created to construct the S and T
matrices of Z(Vecω−1

G)bop from a given G andω. This will then be used to create a database of
S and T matrices for all |G| < 48 with a uniqueω taken from every orbit of H3(G,C) under
the action of the automorphism group Aut(G). Symmetry arguments show that if {ωi} is
a complete set of representatives of H3(G,C)/Aut(G) then {ω−1

i } is also a complete set of
representatives. Thus as the modular data for Z(Vecω−1

G)bop is the inverse of the modular
data for Z(Vecω−1

G), the constructed database will contain inverted modular data for every
equivalence class of categories of the form Z(VecωG) with |G| less than 48.

The programming language GAP [20],was chosen for this project due to both its speed and
inbuilt functions. In particular, GAP can easily create groups from a given presentation and find
the corresponding character tables. On top of GAP there were two packages used, ’hap’ and
’IO’. The package ’hap’ [21], adds in numerous functions relating to group cohomology and was
required for the code written by Michaël Mignard and Peter Schauenburg. The package ’IO’ [22]
was used to aid the back end of storing the computed modular data. It added in background
file manipulations such as the ability to open and close files on demand.

The method of creating the database of modular data can be broken down into three distinct
steps.

The first step is to produce a compete set of representatives of H3(G,C)/Aut(G). Initially
we must compute H3(G,C). This is done using the Universal Coefficient Theorem and was
implemented by Michaël Mignard and Peter Schauenburg in their recent paper [1]. Their code
produces a basis for the cohomology space and then represents each unique cocycle by a vector.
Then, they have written a function to find the orbits of the cohomology space under the action
of Aut(G). For most groups this worked fine but there a couple of groups for which their code
was too slow. For groups of order 2n, my supervisor Scott Morrison wrote some bit-flipping
code that computed the orbits more quickly. Currently we have not expanded this to groups
whose orders are not powers of 2 but this would be an important exercise if we wanted to
increase the size of the modular data database.

The code then moves on to constructing the list of simple objects of Z(Vecω−1
G)bop. This is

done by finding the set of conjugacy classes of G. Then, for each conjugacy class K, choosing
a representative a and computing the 2-cocycle θa on C(a). Using the group extension from
Theorem 2.52, we construct the θa-character table of C(a) and each row of this character table
corresponds to a unique simple object.

Finally, the code needs to implement the pair of formulas found in Theorem 4.1 to produce
the S and T matrices. In practice, computing the S matrix using Equation 4.3 is slow. However,
it is possible to make several speed improvements using the numerous symmetries of the S
matrix. See Lemma 5.1 and the discussion following it.

57

58 Computing Modular Data in GAP

Some of the code given here has been modified for brevity. The full functions can be found
in the Appendix for an interested reader. They are also available at https://tqft.net/web/
research/students/AngusGruen along with the computed modular data to download
and use.

5.1 Choosing a Set of 3-cocycles

The following lines of code implement the algorithm written by Michaël Mignard and Peter
Schauenburg on a given group G. The variable orbits will then be a list of vectors correspond-
ing to a single cocycles from each orbit of H3(G,C)/Aut(G).

R := ResolutionFiniteGroup(G,4);
K := TensorWithIntegers(R);
UCT := UniversalCoefficientsTheorem(K, 3);
orbits := AutomorphismOrbits(G, R, K, UCT);
orbits := List(orbits, orbit -> UCT.lift*orbit[1]);

Given such a vector, the following lines of code turn it into the 3-cocycle that will be used in
the rest of the code.

omega := StandardCocycle(R, vector, 3, UCT.exponent);
val := Gcd(Gcd(vector), UCT.exponent);
exp := UCT.exponent/val;

Here omega is a map from G × G × G → {0, · · · ,UCT.exponent − 1|} ⊂ Z where
UCT.exponent is the LCM of the torsion coefficients of H3(G,C). Next, val is the GCD of ele-
ments in the image of omega, identifying 0 with UCT.exponent and exp is UCT.exponent/val.
The reason for computing val and exp is that all elements in the image of omega will be divisi-
ble by val. Therefore when viewed as a map into C×,

omega/val : G× G× G→ {0, · · · ,exp− 1}

is the same map as omega but, due to its smaller image, this second map will be quicker to
compute with.

With this data, the following function will produce the S and T matrices.

ComputeModularData := function(G, omega, val, exponent)
local simples;

simples := GenerateSimpleObjects(G, omega, val, exponent);

return GenerateModularData(G, omega, val, exponent, simples);
end;

5.2 Computing the Simple Objects

The function GenerateSimpleObjects begins by producing the set of conjugacy classes of G.
Then, for each conjugacy class K, it will pick a representative a and create a list of pairs1 [g, ag]

1Recall that ag is chosen so that a = agga−1
g .

https://tqft.net/web/research/students/AngusGruen
https://tqft.net/web/research/students/AngusGruen

§5.2 Computing the Simple Objects 59

for every element in K. Next it constructs the the group extension of C(a) using the function
GroupExtensionOfCentralizer and then finds all the θa-irreducible characters using the
function ProjectiveCharacters. Then, a list of simple objects is created with every pair
of a conjugacy class and an irreducible projective representation corresponding to a unique
simple object. For each simple object we record 4 pieces of data. We record the representative
element of the conjugacy class, the projective character of the projective representation, the list
of elements [g, ag] described earlier and the dimension of the projective representation. For
speed purposes, the projective character is stored as a lookup dictionary linking each element
of the centralizer to the projective character of that element.

GenerateSimpleObjects := function(G, omega, val, exponent)
local simples, conjClass, i, g, j, dict, h, reps, extensionData,

iso, Cg, projCharData, EmbedIntoPCGroupExtCg;

simples := [];
conjClass := ConjugacyClasses(G);

for i in conjClass do
g := Representative(i);
reps := [];
for j in i do

Add(reps, [j, RepresentativeAction(G, g, j)]);
od;

extensionData := GroupExtensionOfCentralizer
(G, g, omega, val, exponent);

iso := extensionData[1];
Cg := extensionData[2];
projCharData := ProjectiveCharacters(

extensionData[3].CgExtGens,
extensionData[3].CgExtPc,
extensionData[3].CgExtIso);

EmbedIntoPCGroupExtCg := extensionData[3].embedding;

for j in projCharData do

dict := NewDictionary(false, true, Cg);

for h in Cg do
AddDictionary(dict, h,
EmbedIntoPCGroupExtCg(hˆiso)ˆj);

od;

Add(simples, rec(representative := g,
character := dict,
conjugacyClass := reps,
dimension := j[1]));

od;
od;
return simples;

60 Computing Modular Data in GAP

end;

Note that this is a slightly simplified version of my code. In actual fact, the case where the
conjugacy class is {e} is treated differently for two reasons. Firstly as θe = 1, the projective
representations correspond to ordinary representations of G which can be computed quickly.
Additionally, this guarantees that the first simple object is the unit object and so the first row
and column of the S matrix will be strictly positive rational numbers and correspond to a list of
the normalised dimensions of each simple object. The normalised dimension of a simple object
V in a category C is dim(V)√

dim(C)
.

There are two functions that I wrote called here, GroupExtensionOfCentralizer and
ProjectiveCharacters. GroupExtensionOfCentralizer creates the centralizer of g as
a finitely presented group and specializes the 3-cocycleω to a 2-cocycleθg which is called bbeta
in the code. Inside GroupExtensionOfCentralizer, the function GroupExtension is
called to create C(g)θg as discussed in Section 2.2.4. This function is long and not particularly
illustrative and so has been placed in Appendix B as opposed to being given here.

The function GroupExtension creates C(g)θg by finding a finite presentations for it. The
finite presentation used is presented in more detail in [23]. Let 〈gi|r j〉 be a finite presentation of
G. Then define θg to be a map from words over the alphabet {gi, g−1

i } to {0, · · · , exp− 1} by

θg(ge1
i1
· · · gen

in
) =

n

∏
j=1
θg(ge1

i1
· · · ge j−1

i j−1
, g

e j
i j
)θg(gi j , g−1

i j
)

ei−1
2 .

A finite presentation for Gθg is given by

Gθg =
〈

gi, x|xexp, xgix−1g−1
i , r jx−θg(r j)

〉
.

Comparing this to the description of this group in Section 2.2.4 in terms of G ⊗ Cexp with a
twisted multiplication, observe that the generator gi here corresponds to the element (gi, 1) ∈
G⊗ Cexp and the generator x corresponds to (e, x).

GroupExtension returns a record containing the generators of C(g)θg , an isomorphism
from C(g)θg to a polycyclic group if C(g)θg is solvable or a permutation group if it is not,
the image of this isomorphism and an embedding function from C(g) through C(g)θg into
its isomorphic polycyclic/permutation group. The reason for representing C(g)θg as a poly-
cyclic/permutation group is because it will speed up the calculation of the character table of
the group.

GroupExtensionOfCentralizer := function(G, g, omega, val, exponent)
local centralizer, iso, beta, bbeta;
centralizer := Centralizer(G, g);
iso := IsomorphismFpGroup(centralizer);
beta := TwoCocycleOnCentralizer(omega, g);

bbeta := function(h, k)
return beta(PreImage(iso, h), PreImage(iso, k))/val;

end;

return [iso, centralizer,
GroupExtension(Image(iso), exponent, bbeta)];

end;

§5.3 Computing the S and T Matrices 61

GroupExtensionOfCentralizer will return a list with 3 elements. The first is an iso-
morphism from a finitely presented version of C(g) to C(g). The second is C(g) and the third is
the record returned by GroupExtension.

After constructing the group extension we then use it to find theθg-projective representations
using the function ProjectiveCharacters as described in Section 2.2.4.

ProjectiveCharacters := function(CgExtGens, CgExtPc, iso)
local irr, elm, exp, ident;
irr := Irr(CgExtPc);
elm := CgExtGens[Length(CgExtGens)]ˆiso;
exp := Order(elm);
ident := Identity(CgExtPc);

return Filtered(irr, i -> elmˆi = (identˆi)*E(exp));
end;

This function is fairly self-explanatory. It first constructs a list of irreducible characters of
C(g)θg and finds the element (e, x) inside C(g)θg which is given by the last generator of the
finite presentation. Then it checks the condition

χ(e, x)
χ(e, 1)

= e
2π i

Order(x)

on every irreducible character. The characters that satisfy this correspond to θg-projective
irreducible characters and so are returned.

It is important to note that some of the inbuilt GAP functions used here are non-deterministic.
This means that running this piece of code twice will likely produce different permutations of
the list of simple objects. In particular this means that the S and T matrices produced will not
necessarily by identical. They will of course be equivalent up to conjugative by a permutation
matrix.

After generating the simple objects, the code moves on to creating the S and T matrices
using the function GenerateModularData.

5.3 Computing the S and T Matrices

The code below is a simplification of what my code does and there are several large optimisations
that I have removed for clarity. These optimisations are discussed after Lemma 5.1 later in this
section. The full function can also be found in Appendix B.2 Essentially we directly implement
the formulas from Theorem 4.1. The function CoefficientSSum is exactly calculating the
coefficient

θa(ag, h)θa(agh, a−1
g)θb(bh, g)θb(bhg, b−1

h)

θg(a−1
g , ag)θh(b−1

h , bh)
.

Then, sVal is exactly implements Equation 4.3 when given 2 simple objects. To make the S
matrix, we iterate over the created list of simple objects twice and call sVal on each pair to
create the corresponding entry of the matrix. The T matrix is comparatively easier to make as
we only need to compute the diagonal. Therefore we only need to loop over the simple objects
once, directly implementing Equation 4.2.

2As a warning, the function is several pages long.

62 Computing Modular Data in GAP

CoefficientSSum := function(exponent, val, beta, a, b, h, l, xh, yl)
local int;

int := beta(a, xh, l) + beta(a, xh*l, xhˆ-1)
+ beta(b, yl, h) + beta(b, yl*h, ylˆ-1)
- beta(h, xhˆ-1, xh) - beta(l, ylˆ-1, yl);

return E(exponent)ˆ(int/val);
end;

sVal := function(G, exponent, val, beta, gData, hData)
local num, ggg, hhh, iii, jjj, coeff, charVal;

num := 0;
ggg := gData.representative;
hhh := hData.representative;

for iii in gData.conjugacyClass do
for jjj in hData.conjugacyClass do
if iii[1]*jjj[1] = jjj[1]*iii[1] then

coeff := CoefficientSSum(exponent, val, beta,
ggg, hhh, iii[1], jjj[1], iii[2], jjj[2]);

charVal := LookupDictionary(gData.character,
iii[2]*jjj[1]*(iii[2]ˆ-1))*
LookupDictionary(hData.character,
jjj[2]*iii[1]*(jjj[2]ˆ-1));

num := num + coeff*charVal;
fi;

od; od;

return ComplexConjugate(num) / Order(G);
end;

GenerateModularData := function(G, omega, val, exponent, simples)
local tMatrixDiagonal, sMatrix, beta;

beta := function(g, h, k)
return omega(g, h, k) + omega(h, k, (kˆ-1)*(hˆ-1)*g*h*k)

- omega(h, (hˆ-1)*g*h, k);
end;

tMatrixDiagonal := List(simples, simple ->
LookupDictionary(simple.character, simple.representative)/

simple.dimension);

sMatrix := List(simples, simple1 ->
List(simples, simple2 ->

§5.3 Computing the S and T Matrices 63

sVal(G, exponent, val, beta, simple1, simple2)))

return rec(S := sMatrix, T := DiagonalMat(tMatrixDiagonal));
end;

In practise, this code can be sped up a lot. This comes from the fact that calling sVal is
expensive and the S matrix has several symmetries.

The first trick is observing that when G is abelian, all conjugacy classes contain only 1
element and all centralizers are the entire group. This simplifies the formula for elements of the
S matrix to be

S({g},g,ρg),({h},h,ψh) = χ∗ρg
(h)χ∗ψh

(g).

Additionally, as S = ST we only need to compute the upper triangular half of S. Then, the S
matrix for abelian groups can be quickly implemented by two nested for loops.

When G is not abelian, more elaborate methods are needed. We use the following result
found in [10],

Lemma 5.1. Given any row Sx of the S matrix, and any element σ ∈ Gal(Q[Sx]/Q), denote σ(Sx),
the list given by applying σ to every element of Sx. Then either σ(Sx) or −σ(Sx) also appears as a row
in the S matrix.

For our specific case, as S1 is always a positive rational, −σ(Sx) will never be a row and so
σ(Sx) will always be one. Additionally, Gal(Q[Sx]/Q) ⊂ Gal(Q[T]/Q) and so this group can
be precomputed after calculating the diagonal of the T-matrix.

This allows for the following algorithm. Start with an empty S-matrix. Then repeat the
following steps:

1. Compute a random3 unknown row and add it to the S matrix.

2. If this computed row is not a Galois conjugate of an already computed row, save all of its
Galois conjugates to a list containing other rows that are Galois conjugates of computed
rows.

3. Go through the list of saved Galois conjugates and attempt to place them into the partially
filled S matrix using the constraint that S = ST. If there is only a single place that a row
could go, place it there.

4. If the S matrix is not yet complete, return to step 1.

In practise this algorithm can be hundreds of times faster than the direct approach. Exactly
what the speed differential is depends on the specific group and 3-cocycle but even for small
groups is it usually at least twice as fast.

Finally, there is some background code that saves the computed data to a GAP parseable
file as well as running some tests on it. All of this background code can be found at https:
//tqft.net/web/research/students/AngusGruen.

3The reason for computing a random row each time as opposed to going through the list of rows deterministically
is because we want to avoid computing rows that are equal to Galois conjugates of rows already computed. In practise
it is usually the case that many of the Galois conjugates of a row are the preceding and ensuing rows. Therefore it is
a lot faster in general to compute a Random row each time than go through the list of rows deterministically.

https://tqft.net/web/research/students/AngusGruen
https://tqft.net/web/research/students/AngusGruen

64 Computing Modular Data in GAP

Chapter 6

Analysis of Modular Data

While the main aim of this project was to construct the database and thus allow other people to
do more detailed analysis, there is a small amount of analysis that we do here. One interesting
question relates to the ranks ofZ(VecωG) given the order of G. Recall that the rank ofZ(VecωG)
is exactly the dimension of the S and T matrices. Interestingly, for the data that we have
constructed, the ranks appear to be heavily restricted by the order of G. As dim

(
Z(VecωG)

)
=

|G|2 we know that rank
(
Z(VecωG)

)
is bounded by |G|2 but, in general, only few of the values

in the range {1, · · · , |G|2} are obtained. Figure 6.1 gives the possible ranks of Z(VecωG) for a
fixed value of |G| it also gives the multiplicities of these ranks with respect to the equivalence
classes of VecωG and the equivalences of the modular data of Z(VecωG).

There are some clear patterns that can be seen in these results. For example, for all odd
primes p, there is only 1 group of order p which has exactly 3 orbits of H3(G,C)/Aut(G) each
of which corresponds to a different Morita equivalence class. Note that we know that each
orbits corresponds to a different Morita equivalence class because the numbers in columns
3 and 4 are identical. Additionally, when p is two times an odd prime, there are 2 groups of
order p both with 6 orbits of H3(G,C)/Aut(G) with each orbit corresponding to a to a different
Morita equivalence class. There also appears to be a a pattern when |G| is three times a prime
larger than 3.

As for some more general observations, at every order |G| numerous categories have rank
|G|2. This is to be expected as for any abelian group G, rank

(
Z(Vec G)

)
= |G|2. Interestingly

though, for the majority of groups calculated, the rank of the centre is independent of the cocycle
chosen. This may be an effect of small groups however as, as |G| increases, the percentage of
groups exhibiting at least 2 different ranks of their centre appears to rise.

Another interesting feature is that, for all groups so far computed, rank
(
Z(Vec G)

)
is an

upper bound to rank
(
Z(Vecω−1

G)
)
. It is clear that this should be the case for Abelian groups,

but it is far less clear if this should be expected to hold for non-Abelian groups.
We can also use these calculations to get a lower bound on the number of Morita equivalence

classes of pointed fusion categories of a fixed dimension. Two categories with modular data
S, T and S′, T′ cannot be Morita equivalent unless there exists a permutation matrix P such that
S = PS′P−1 and T = PT′P−1. However it is non trivial to find such a P matrix or show that one
does not exist. In order to solve this, we convert the problem to a graph isomorphism question
and then use the program nauty written by Brendan Mackay and Adolfo Piperno [24]. This
program nauty accepts a pair of graphs and returns either an automorphism or states that no
automorphism exists. How to convert a matrix to an edge coloured graph is explained on page
60 of the user manual: http://pallini.di.uniroma1.it/nug26.pdf. To test if S and S′

are equivalent, we convert them both to edge coloured graphs making sure that the colours
correspond to the same values and them give the pair of graphs to nauty.

Table 6.2, details the upper and lower bounds that we have constructed. The naive upper

65

http://pallini.di.uniroma1.it/nug26.pdf

66 Analysis of Modular Data

|G| Ranks of the Center Multiplicities up to regular equivalence Multiplicities up to modular data equivalence

2 4 2 2
3 9 3 3
4 16 8 7
5 25 3 3
6 8, 36 6, 6 6, 6
7 49 3 3
8 22, 64 25, 22 20, 18
9 81 10 9

10 16, 100 6, 6 6, 6
11 121 3 3
12 14, 32, 144 6, 30, 24 6, 27, 21
13 169 3 3
14 28, 196 6, 6 6, 6
15 225 9 9
16 46, 88, 256 66, 189, 73 47, 125, 58
17 289 3 3
18 44, 72, 324 20, 18, 20 18, 18, 18
19 361 3 3
20 22, 64, 400 4, 30, 24 4, 27, 21
21 25, 441 3, 9 3, 9
22 64, 484 6, 6 6, 6
23 529 3 3
24 21, 42, 56, 86, 128, 198, 576 24, 36, 12, 141, 120, 75, 66 24, 30, 12, 114, 99, 60, 54
25 625 10 9
26 88, 676 6, 6 6, 6
27 105, 729 31, 30 23, 24
28 112, 784 30, 24 27, 21
29 841 3 3
30 116, 144, 200, 900 18, 18, 18, 18 18, 18, 18, 18
31 961 3 3
32 79, 100, 121, 142, 184, 352, 1024 60, 589, 72, 129, 1978, 1081, 172 60, 330, 72, 94, 1072, 580, 108
33 1089 9 9
34 148, 1156 6, 6 6, 6
35 1225 9 9
36 36, 64, 126, 176, 288, 1296 8, 42, 30, 100, 90, 80 8, 42, 28, 81, 81, 63
37 1369 3 3
38 184, 1444 6, 6 6, 6
39 65, 1521 3, 9 3, 9
40 88, 214, 256, 550, 1600 20, 141, 120, 75, 66 18, 114, 99, 60, 54
41 1681 3 3
42 44, 100, 224, 252, 392, 1764 6, 6, 18, 18, 18, 18 6, 6, 18, 18, 18, 18
43 1849 3 3
44 256, 1936 30, 24 27, 21
45 2025 30 27
46 268, 2116 6, 6 6, 6
47 2209 3 3

Figure 6.1: The distribution of the ranks of Z(VecωG) for a fixed order of G between 2 and 47.

67

bounds originate directly from the number of equivalence classes of VecωG and the lower
bounds are the number of in equivalent pairs of modular data.

For |G| between 2 and 31 this table is identical to a table in Mignard and Schauenburg’s
paper [1] and in their paper they prove that for |G| ≤ 31 categories whose centres had equivalent
modular data were Morita equivalent. At |G| = 32 we have improved on the lower bound given
by Mignard and Schauenburg from 2315 to 2316 and for 33 ≤ |G| ≤ 47 these lower bounds
have never been published before. Due to the exactness of the lower bounds for |G| ≤ 31, it is
likely that the bounds for |G| ≥ 32 are either optimal or at least very close.

The invariants used by Mignard and Schauenburg were the Frobenius-Schur indicators
and the T matrix. Therefore the improvement in the lower bound means that the S and T
matrices are strictly stronger invariants than the Frobenius-Schur indicators and the T matrix.
Unfortunately, as we do not have the equivalence files produced by Mignard and Schauenburg
while we know that an example exists, we cannot yet explicitly give a pair of categories which
show this fact. It would be relatively simple to compute the Frobenius-Schur indicators from
our data and thus pin down this example exactly but for now this is beyond the scope of this
project. While the result that the S and T matrices are strictly stronger invariants than the
Frobenius-Schur indicators and the T matrix was already known [25], the counterexample given
in [25] involves more exotic categories than the ones presented here and so it would be a useful
exercise to explicitly find the counterexample at |G| = 32.

There were two effects that prevented us from calculating all of the modular data for groups
of order bigger than 47, both caused by abelian groups. The first issue was related to cyclic
groups Cn. In generating the simple objects, GAP needs to produce the character tables of
(C(a))θa for every a ∈ G. When G = Cn, C(a) = Cn and the LCM of the torsion coefficients
of H3(Cn,C) is n. This means that the group extension (Cn)θa will in general1 be a group of
order n2. For n = 48, this group has 2304 elements and computing the character table of this
takes a little over half an hour. As there are 48 conjugacy classes of Cn, computing a single set
of modular data for these groups can take over a day. The other slowdown originated from
groups with large automorphism groups. While computing the cohomology classes remains
quick, finding representatives of the Aut(G) orbits can be very slow. While we could deal
with

(
Z/2Z

)5 by writing some bit-flipping code we were unable to extend this to the group

G =
(
Z/2Z

)4 ×
(
Z/3Z

)
. This meant that we could not find the orbits of H3(G,C)/Aut(G).

Both of these problems could probably be fixed to some degree with either more work or
more computing power and then the database could be extended further possibly even past
|G| = 100.

1The extension can be smaller if val is bigger than 1 but for the majority of cases this is not the case.

68 Analysis of Modular Data

|G| # of Groups Naive upper bound of # of Z(VecωG) Lower Bound of # of Z(VecωG)

2 1 2 2
3 1 3 3
4 2 8 7
5 1 3 3
6 2 12 12
7 1 3 3
8 5 47 38
9 2 10 9
10 2 12 12
11 1 3 3
12 5 60 54
13 1 3 3
14 2 12 12
15 1 9 9
16 14 328 230
17 1 3 3
18 5 58 54
19 1 3 3
20 5 58 52
21 2 12 12
22 2 12 12
23 1 3 3
24 15 474 393
25 2 10 9
26 2 12 12
27 5 61 47
28 4 54 48
29 1 3 3
30 4 72 72
31 1 3 3
32 51 4081 2316
33 1 9 9
34 2 12 12
35 1 9 9
36 14 350 303
37 1 3 3
38 2 12 12
39 2 12 12
40 14 422 345
41 1 3 3
42 6 84 84
43 1 3 3
44 6 54 48
45 1 30 27
46 6 12 12
47 1 3 3

Figure 6.2: The lower and upper bounds for the number of Morita equivalence classes of pointed
fusion categories of ranks 2 through 47.

Appendix A

Group Cohomology

We present the proof of Theorem 2.29, which states that all cocycles are cohomologous to a
unitary cocycles.

In order to prove this Theorem it is usually easiest to first prove the following lemma.

Lemma A.1. Every cocycle is cohomologous to a normalized cocycle.

Proof. See Section 6.5 of [13].

Proof of Theorem 2.29. Due to the Lemma just proved it suffices to prove Theorem 2.29 for
normalized cocycles. Thus letα be a normalized n-cocycle. Then define

β(g1, · · · , gn−1) = ∏
gn∈G

α(g1, · · · , gn−1, gn).

Asα is an n-cocycle

1 = α(g2, · · · , gn+1)×α(g1, · · · , gn)
(−1)n+1

×
n

∏
i=1
α(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn+1)

(−1)i
.

Rearranging, we find that(
α(g1, · · · , gn)

(−1)n
)|G|

= ∏
gn+1∈G

(
α(g2, · · · , gn+1)

×
n

∏
i=1
α(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn+1)

(−1)i
)

= β(g2, · · · , gn)×
n−1

∏
i=1
β(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn)

(−1)i

×β(g1, · · · , gn−1)
(−1)n

= ∂
nβ(g1, · · · , gn).

Hence let β′ be a normalized (n− 1)-cochain such β′|G| = β. Define α′ = α(∂nβ′)−1, clearly
α′ is cohomologous to α. As β′ is normalized so is dβ′ and so as α is also normalized so is
α′. Additionally, α′|G| = α|G|(∂nβ′−|G|) = ∂nβ∂nβ−1 = 1 and so α′ is unitary. Therefore α is
cohomologous to a unitary cocycle.

69

70 Group Cohomology

Appendix B

More Code

This section contains the code that was omitted from Chapter 5. First we give the complete
version of the function GenerateSimpleObjects.

GenerateSimpleObjects := function(G, omega, val, exponent)
local simples, conjClass, i, g, j, dict, h, reps,

extensionData, iso, Cg, projCharData, EmbedIntoPCGroupExtCg;

simples := [];
conjClass := ConjugacyClasses(G);

for i in conjClass do
g := Representative(i);
if g = Identity(G) then

for j in Irr(G) do
dict := NewDictionary(false, true, G);

for h in G do
AddDictionary(dict, h, hˆj);

od;

Add(simples, rec(representative := g,
character := dict,
conjugacyClass := [[g, g]],
dimension := j[1]));

od;
else

reps := [];
for j in i do
Add(reps, [j, RepresentativeAction(G, g, j)]);

od;

extensionData := GroupExtensionOfCentralizer
(G, g, omega, val, exponent);

iso := extensionData[1];
Cg := extensionData[2];
projCharData := ProjectiveCharacters(

extensionData[3].CgExtGens,
extensionData[3].CgExtPc,

71

72 More Code

extensionData[3].CgExtIso);

EmbedIntoPCGroupExtCg := extensionData[3].embedding;

for j in projCharData do

dict := NewDictionary(false, true, Cg);

for h in Cg do
AddDictionary(dict,

h,
EmbedIntoPCGroupExtCg(hˆiso)ˆj);

od;

Add(simples, rec(representative := g,
character := dict,
conjugacyClass := reps,
dimension := j[1]));

od;
fi;

od;
return simples;

end;

Next we give the functions GroupExtension and ListGenToElement.

GroupExtension := function(Cg, exponent, beta)
local gens, rels, m, n, RelationTwist, Embedding,

relations, i, rel, F, gensF, iso, EmbedIntoGroupExtension;

gens := GeneratorsOfGroup(Cg);
rels := RelatorsOfFpGroup(Cg);
m := Length(gens);
n := m + 1;

RelationTwist := function(word)
local start, i, val;
start := Identity(Cg);
val := 0;
for i in word do

if i > 0 then
val := val + beta(start, gens[i]);
start := start*gens[i];

else
val := val + beta(start, gens[-i]ˆ-1);
start := start*(gens[-i]ˆ-1);
val := val - beta(gens[-i]ˆ-1, gens[-i]);

fi;
od;

73

return (-val) mod exponent;
end;

Embedding := function(h)
local word;
word := LetterRepAssocWord(h);
return Concatenation(word,

ListWithIdenticalEntries(RelationTwist(word), n));
end;

relations := [ListWithIdenticalEntries(exponent, n)];

for i in [1..m] do
Add(relations, [i, n, -i, -n]);

od;

for rel in rels do
Add(relations, Embedding(rel));

od;

F := FreeGroup(n);
gensF := GeneratorsOfGroup(F);

relations := List(relations, x -> ListGenToElement(x, F, gensF));
F := F / relations;
gensF := GeneratorsOfGroup(F);

if IsSolvableGroup(Cg) then
iso := IsomorphismPcGroup(F);

else
iso := IsomorphismPermGroup(F);

fi;

EmbedIntoGroupExtension := function(word)
local lst, ginChExt;
lst := Factorization(Cg, word);
ginChExt := ListGenToElement(Embedding(lst), F, gensF);
return ginChExtˆiso;

end;

return rec(CgExtGens := gensF,
CgExtPc := Image(iso),
CgExtIso := iso,
embedding := EmbedIntoGroupExtension);

end;

ListGenToElement := function(word, G, gens)
local v, i;

74 More Code

v := Identity(G);

for i in word do
if i > 0 then

v := v*gens[i];
else

v := v*((gens[-i])ˆ-1);
fi;

od;

return v;
end;

Finally we give the complete function GenerateModularData which implements all of
the discussed optimisations involving Galois automorphisms.

GenerateModularData := function(G, omega, val, exponent, simples)
local i, j, k, numSimples, tMatrixDiagonal, cyclotomicDegree,

galoisGroup, beta, sMatrix, rowsToCompute, justComputed,
mysteryRows, mysteryRowPlacing, nextRow, entry, newRow,
galoisConjugates, conjugateRow, possible, stillMystery,
foundPlacing, mystery, possiblePlacings, stillPossible,
rowsComputed;

numSimples := Length(simples);
tMatrixDiagonal := List(simples, simple ->

LookupDictionary(simple.character, simple.representative)/
simple.dimension);

beta := function(g, h, k)
return omega(g, h, k)

+ omega(h, k, (kˆ-1)*(hˆ-1)*g*h*k)
- omega(h, (hˆ-1)*g*h, k);

end;

sMatrix := NullMat(numSimples, numSimples);

if IsAbelian(G) then
for i in [1..numSimples] do for j in [i..numSimples] do

entry := ComplexConjugate(LookupDictionary(
simples[j].character, simples[i].representative)*
LookupDictionary(simples[i].character,
simples[j].representative)/Order(G));

sMatrix[i][j] := entry;
sMatrix[j][i] := entry;

od; od;
else

cyclotomicDegree := Conductor(tMatrixDiagonal);
galoisGroup := PrimeResidues(cyclotomicDegree);

75

rowsToCompute := [1..numSimples];
rowsComputed := [];
justComputed := [];
mysteryRows := [];
mysteryRowPlacing := [];

while not rowsToCompute = [] do

if justComputed = [] then

nextRow := Remove(rowsToCompute,
Random(1, Length(rowsToCompute)));

Add(rowsComputed, nextRow);

sMatrix[nextRow][nextRow] := sVal(G, exponent, val,
beta, simples[nextRow], simples[nextRow]);

for i in rowsToCompute do
entry := sVal(G, exponent, val, beta,

simples[nextRow], simples[i]);
sMatrix[i][nextRow] := entry;
sMatrix[nextRow][i] := entry;

od;

justComputed := [nextRow];
newRow := sMatrix[nextRow];

if newRow in mysteryRows then
i := Position(mysteryRows, newRow);
Remove(mysteryRows, i);
Remove(mysteryRowPlacing, i);

else
galoisConjugates := [newRow];
for i in galoisGroup do

conjugateRow := GaloisCyc(newRow, i);
if not conjugateRow in galoisConjugates then

Add(galoisConjugates, conjugateRow);
Add(mysteryRows, conjugateRow);
possiblePlacings := [];
for j in rowsToCompute do

if ForAll(rowsComputed, k ->
conjugateRow[k] = sMatrix[j][k])

then
Add(possiblePlacings, j);

fi;
od;
Add(mysteryRowPlacing,

possiblePlacings);
fi;

76 More Code

od;
fi;

fi;

stillMystery := [];
foundPlacing := [];

for i in [1..Length(mysteryRows)] do
mystery := mysteryRows[i];
possiblePlacings := mysteryRowPlacing[i];
stillPossible := [];
for j in possiblePlacings do
if ForAll(justComputed, k -> (not j = k)

and (mystery[k] = sMatrix[k][j])) then
Add(stillPossible, j);

fi;
od;

if Length(stillPossible) = 1 then
Add(foundPlacing, [i, stillPossible[1]]);

else
mysteryRowPlacing[i] := stillPossible;
Add(stillMystery, i);

fi;
od;

justComputed := [];

for i in foundPlacing do
for j in rowsToCompute do
sMatrix[i[2]][j] := mysteryRows[i[1]][j];
sMatrix[j][i[2]] := mysteryRows[i[1]][j];

od;

Add(justComputed, i[2]);
Add(rowsComputed, Remove(rowsToCompute,

Position(rowsToCompute, i[2])));

od;

mysteryRows := mysteryRows{stillMystery};
mysteryRowPlacing := mysteryRowPlacing{stillMystery};

od;
fi;

return rec(S := sMatrix, T := DiagonalMat(tMatrixDiagonal));
end;

Bibliography

1. Michaël Mignard and Peter Schauenburg. Morita Equivalence of Pointed Fusion Categories
of small rank. arXiv:1708.06538.

2. Jacob Lurie. On the Classification of Topological Field Theories. Current Developments in
Mathematics, 2008:129–280, 2009. arXiv:0905.0465.

3. Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder. Dualizable tensor
categories. arXiv:1312.7188.

4. Cain Edie-Michell. Equivalences of graded categories. To appear.

5. Antoine Coste, Terry Gannon, and Philippe Ruelle. Finite Group Modular Data. Nuclear
Physics B, 581(3):679 – 717, 2000. arXiv:hep-th/0001158.

6. AnRan Chen. On Frobenius-Schur indicators for Spherical Fusion Categories. 2017. Honours
Thesis ANU.

7. Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor Categories. Ameri-
can Mathematical Society, 2015.

8. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

9. Peter J Freyd and David N Yetter. Braided compact closed categories with applications to
low dimensional topology. Advances in Mathematics, 77(2):156 – 182, 1989. DOI:10.1016/0001-
8708(89)90018-2.

10. A. Coste and T. Gannon. Remarks on Galois symmetry in rational conformal field theories.
Physics Letters B, 323(3):316 – 321, 1994. DOI:10.1016/0370-2693(94)91226-2.

11. Joyal Andre and Ross Street. Tortile Yang-Baxter operators in tensor categories. 71, 04 1991.

12. Michael Müeger. From subfactors to categories and topology II. Journal of Pure and Applied
Algebra, 180(1):159–219, 2003. arXiv:math/0111205.

13. Charles A Weibel. An Introduction to Homological Algebra. Cambridge University Press, 1994.

14. Vyjayanthi Chari and Andrew Pressley. A guide to Quantum Groups. Cambridge University
Press, 1994.

15. Chuangxun Cheng. A character theory for projective representations of finite
groups. Linear Algebra and its Applications, 469(Supplement C):230 – 242, 2015.
DOI:10.1016/j.laa.2014.11.027.

16. Dmitri Nikshych, Pavel Etingof, and Viktor Ostrik. On fusion categories. Annals of Mathe-
matics, 162:581–642, 2005. arXiv:math/0203060.

17. Robert Coquereaux. Character tables (modular data) for Drinfeld doubles of finite groups.
arXiv:1212.410.

77

http://arxiv.org/abs/1708.06538
http://arxiv.org/abs/0905.0465
http://arxiv.org/abs/1312.7188
https://arxiv.org/abs/hep-th/0001158
https://doi.org/10.1016/0001-8708(89)90018-2
https://doi.org/10.1016/0001-8708(89)90018-2
https://doi.org/10.1016/0370-2693(94)91226-2
http://arxiv.org/abs/math/0111205
https://doi.org/10.1016/j.laa.2014.11.027
http://arxiv.org/abs/math/0203060
http://arxiv.org/abs/1212.4010

78 BIBLIOGRAPHY

18. Robbert Dijkgraff and Edward Witten. Topological gauge theories and group coho-
mology. Communications in Mathematical Physics, 129(2):393–429, 1990. URL https:
//projecteuclid.org/euclid.cmp/1104180750.

19. P. Bantay. Orbifolds, Hopf Algebras, and the Moonshine. Letters in Mathematical Physics, 22
(3):187–194, Jan 1991. DOI:10.1007/BF00403544.

20. GAP. GAP – Groups, Algorithms, and Programming, Version 4.8.8. The GAP Group, 2017. URL
https://www.gap-system.org.

21. G.J Ellis. GAP package HAP – Homological Algebra Programming, 2017. URL http://www.
gap-system.org/Packages/hap.html.

22. Max Neunhöffer. GAP package IO – Bindings for low level C library I/O routines, 2017. URL
http://www.gap-system.org/Packages/io.html.

23. Dane Flannery and E.A. O’Brien. Computing 2-cocycles for central extensions and relative
difference sets. 28:1939–1955, 2000. DOI:10.1080/00927870008826937.

24. Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60(0):94 – 112, 2014. DOI:10.1016/j.jsc.2013.09.003.

25. Marc Keilberg. Applications of quasitriangular structures for the doubles of purely non-
abelian groups. arXiv:1708.06583.

https://projecteuclid.org/euclid.cmp/1104180750
https://projecteuclid.org/euclid.cmp/1104180750
https://doi.org/10.1007/BF00403544
https://www.gap-system.org
http://www.gap-system.org/Packages/hap.html
http://www.gap-system.org/Packages/hap.html
http://www.gap-system.org/Packages/io.html
http://dx.doi.org/10.1080/00927870008826937
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://arxiv.org/abs/1708.06583

	Acknowledgements
	Abstract
	Introduction
	Preliminaries
	Monoidal Category Theory
	Pivotal and Braided Categories
	String Diagrams
	Fusion and Modular Categories
	The Drinfeld centre

	Backgroup Algebra
	Group Cohomology
	Hopf Algebras
	Representation Theory of Hopf Algebras
	Projective Representation Theory

	Classifying equivalence classes of Pointed Fusion Categories
	Twisted G-graded Vector Spaces
	Functors between Vec a G and Vec b H
	Equivalence classes of Pointed Fusion Categories

	Modular Data for the Drinfeld Centre of Twisted G-graded Vector Spaces
	An Intricate Hopf Algebra
	The Modular Equivalence between Rep(Dw G) and Z(Vec G)bop
	Deriving the S and T matrices for Z(Vec G)bop
	Classifying the Simple Objects
	Deriving the S Matrix
	Deriving the T Matrix

	Computing Modular Data in GAP
	Choosing a Set of 3-cocycles
	Computing the Simple Objects
	Computing the S and T Matrices

	Analysis of Modular Data
	Group Cohomology
	More Code

