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Abstract

The aim of this thesis is to describe the Khovanov homology of rational tangles. To this
extent we describe rational tangles, followed by Khovanov homology, then combine the two
at the end.

In Chapter 1 we review the main points of the theory of rational tangles. In particular,
we show that rational tangles are classified by a function known as the tangle fraction,
which associates to each rational tangle a rational number. This classification theorem
implies that each rational tangle can be constructed by adding and multiplying together
multiple copies of certain types of tangle.

In Chapter 2 we review the Khovanov homology theory we will use to study rational
tangles. After discussing link invariants, the Kauffman bracket, and categorification in
general, we develop a generalization of Khovanov homology to tangles due to Bar-Natan
[Bar04]. We then specialize this to a ‘dotted’ theory, which is equivalent to Khovanov’s
original theory [Kho99] on links and is significantly easier to work with.

In Chapter 3, we combine the previous topics to develop a theory of the Khovanov
homology of rational tangles. We determine the Khovanov complexes of integer tangles,
before presenting a helpful isomorphism and discussing its implications. We then combine
these to prove Theorem 3.3.1, the main result of this thesis.

Finally, in Chapter 4 we briefly discuss some of the application of Theorem 3.3.1.
Unexpectedly, we find that the bigradings of the subobjects in the Khovanov complexes
can be described by matrix actions, and that one can recover from this action the reduced
Burau representation of B3, the three-strand braid group. The full ramifications of this
observation are yet to be determined!
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Chapter 1

Rational tangles

Tangles are topological objects that generalize knots and links. Rational tangles are in
some sense the simplest tangles consisting of two components. They satisfy a fairly strong
condition, and satisfy several nice properties. The purpose of this chapter is to describe
the main parts of the theory of rational tangles.

In Section 1.1 we define rational tangles (Definition 1.1.5), and discuss some their
basic properties. The material in this section, like the rest of the chapter, is adapted from
[KL03b].

In Section 1.2 we define the tangle fraction (Definition 1.2.4). This is a function that
takes rational tangles to rational numbers. The reason why rational tangles are called
rational is because this function actually classifies rational tangles up to isotopy: two
rational tangles are isotopic iff their tangle fraction is the same rational number.

In Section 1.3 we briefly examine rational links. These are links obtained by closing the
ends of rational tangles, and many of the simplest examples of knots can be obtained in
this manner. (Of the first 25 knots, 24 are rational.) The classification of rational tangles
with the tangle fraction can be used to classify rational links. This theorem provides many
elegant descriptions of properties such as chirality and invertibility for rational links in
terms of their tangle fractions.

1.1 Rational tangles

In this section we define rational tangles and describe their structure. Although they can be
defined quite generally (Definition 1.1.1), rational tangles satisfy a surprising set of isotopies
(Proposition 1.1.9) which allow us to write each in a standard form (Definition 1.1.12). The
standard form definition of a rational tangle is easier to understand than more abstract
definitions.

The notation we develop in this section will used extensively in Chapter 3 when we
describe the Khovanov homology of rational tangles.

Before we jump into the theory of rational tangles, let us first describe tangles in
general.

Definition 1.1.1 A tangle is an smooth embedding of a compact 1-manifold X, possibly
with boundary, into the three-ball B3 such that the boundary of X is sent to the boundary
of B3 transversely. By a smooth embedding we mean an injective smooth map whose
differential is nowhere zero.

We will identify tangles with their image in B3. Tangles may also be oriented – an
oriented tangle is a tangle where every connected component has the choice of one of the
two possible directions on it. We will consider tangles up to isotopy.
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2 Rational tangles

Definition 1.1.2 Two tangles T1, T2 are said to be isotopic, denoted T1 ∼ T2, if one can
be transformed into the other via a smooth isotopy fixing the endpoints. That is, via a
smooth map F : X × [0, 1]→ B3 such that:

• F (X, t) is a tangle for each t,
• F (X, 0) = T1, F (X, 1) = T2,
• F (∂X, t) is constant with respect to t.

The corresponding notion of isotopy for oriented tangles is clear.

We will depict tangles via tangle diagrams. That is, we take a regular projection (see
below) of the tangle onto a plane whose intersection with B3 is a great circle, and at each
crossing point in the projection (a point whose preimage consists of two points) mark the
overcrossings and undercrossings of the tangle in the obvious way. That is, after projection,
we mark which branches of the tangle are “higher” and “lower” than the others. Examples
of tangle diagrams can be found below in Figure 1.1.2.

By a regular projection we mean:

1. the boundary points of the tangle are sent to distinct points on the great circle and
non-boundary points are sent inside the circle;

2. lines tangent to the tangle, whenever defined, are projected onto lines in the plane;
3. no more than two points of the link are projected to the same point of the plane;
4. the set of crossing points is finite, and at each crossing point the projections of the

tangents to the points in the preimage do not coincide.

Oriented tangle diagrams are defined in the same way, only now one marks the orientations
of the connected components with arrows.

Isotopic tangles and their diagrams are related by a well-known Theorem due to
Reidemeister. ([Rei48])

Theorem 1.1.3 Two tangles S, T are isotopic iff they have the same endpoints and any
tangle diagram of S can be transformed into a tangle diagram of T via planar isotopies
fixing the boundary of the projection disk and a finite sequence of local moves taking place
in the interior of the disk of the following three types:

R1 R2 R3

This allows us to think about tangles almost entirely in terms of tangle diagrams. We
now introduce the central object of this chapter.

Definition 1.1.4 A rational tangle is a smooth embedding of two copies of the unit interval
I1, I2 into B3 (in which the boundary of I1t I2 is sent to the boundary of B3 transversely),
such that there exists a homeomorphism of pairs

h : (B3, I1 t I2)→ (D2 × I, {x, y} × I).

This definition is fairly abstract, and not as easy to understand as our next definition
of a rational tangle (Definition 1.1.5), but we have nonetheless included it for completeness.
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The definition is equivalent to saying that rational tangles are isotopic to tangles obtained by
applying a finite number of consecutive twists to neighbouring endpoints of two untangled
arcs, illustrated in Figure 1.1.1 below.

Figure 1.1.1: Constructing a rational tangle. Beginning with two untangled arcs, various twists
of neighbouring endpoints are applied. Each arrow represents a twist; the first three arrows are
twists of the top or bottom endpoints, the others are twists of the left and right endpoints.

It will be convenient to have a concise notation to describe the structure of rational
tangles, which we now develop.

The simplest rational tangles are those which admit a crossingless diagram; we call these
the [0] and [∞] tangles. The next simplest are the integer tangles [n] and the vertical tangles
[n], made of n horizontal or vertical twists respectively. Their tangle diagrams are in
Figure 1.1.2 below.

[−2] [−1] [0] [1] [2]

[−2] [−1] [∞] [1] [2]

Figure 1.1.2: Some simple integer [n] and vertical [n] tangles.

Note the sign conventions: if n is positive, so are the gradients of the overcrossings in
the tangle diagrams above. These are the same conventions that Conway used in [Con70],
but different to those used by Kauffman and Lambropoulou in [KL03b].

Rational tangles are a subclass of tangles with four boundary points, called 4 boundary
point tangles or just 4 point tangles. On 4 point tangles one can define binary operations
referred to as addition (+) and multiplication (∗). The definition of T + S and T ∗ S for
arbitrary 4 point tangles is given in Figure 1.1.3 below. The operations are well-defined up
to isotopy.

Note that addition and multiplication of 4 point tangles are associative but not com-
mutative. The sum or product of rational tangles is not necessarily rational.
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T1 T2

T1

T2

Figure 1.1.3: left The sum (+) of 4 point tangles T and S. middle The product (∗) of 4 point
tangles T and S. right The tangle [2̄] + [2̄] is not rational, since it contains three connected
components.

Using these operations and the [±1] tangles illustrated above, we can give an alternative,
and much more usable, definition of a rational tangle.

Definition 1.1.5 A tangle is rational if it it created from [0] or [∞] by a finite sequence
of additions and multiplications with the tangles [±1]. If a rational tangle is presented in
this way we say it is in twist form.

For instance, the rational tangle constructed in Figure 1.1.1 is in twist form, since it is
given by [−1] + [−1] + (([∞] ∗ [−1] ∗ [−1] ∗ [−1]) + [1]).

We omit the proof of the equivalence of this definition and that of Definition 1.1.4, but
refer the interested reader to Note 1 of [KL03b]. Unless otherwise stated, in the sequel we
assume that any rational tangle is in twist form.

One can also define operations on 4 point tangles T called mirror image, rotation
and inversion. The mirror image of T is the tangle obtained from T by switching all
the crossings, and is denoted −T . The rotation of T is obtained by rotating T by π/2
counterclockwise and is denoted T r. Finally, the inversion of T is defined by T−1 := −T r.
Examples of the mirror image and inverse of a tangle are below.

Figure 1.1.4: left A tangle and its mirror image. right A tangle and its inverse.

The reasons why the first two operations are called the mirror image and rotation of a
tangle are self-explanatory, but it may be unclear why their composition should be called
the inverse. This is because for rational tangles, the tangle fraction respects the the inverse
of a tangle. That is, F (T−1) = F (T )−1. We describe this, and other relations the tangle
fraction satisfies in the next section.

We now define a type of isotopy, and use it to show some surprising properties of
rational tangles. These in turn allow us to simplify the definition of a rational tangle.

Definition 1.1.6 A flype is an isotopy of a tangle applied to a 4 point subtangle of the
form [±1] + T or [±1] ∗ T as illustrated below in Figure 1.1.5. A flype fixes the endpoints
of the subtangle to which it is applied.

Flypes are important in the theory of alternating tangles.



§1.1 Rational tangles 5

R
R∼

R

R∼

Figure 1.1.5: Flypes are a family of isotopies specific to 4 point tangles.

Definition 1.1.7 A tangle diagram is said to be alternating if the crossings encountered
when following a component of the tangle around the diagram alternate from undercrossings
to overcrossings. A tangle is alternating if it admits an alternating tangle diagram.

For example, in Figure 1.1.4 above, the two rightmost tangle diagrams are alternating
while the first two diagrams are not alternating. It will follow from the main theorem of
the chapter, the classification of rational tangles, (Theorem 1.2.6) that rational tangles are
alternating.1

The proof of the classification theorem of rational tangles by the tangle fraction uses
some heavy machinery involving flypes. The Tait conjecture for knots, proved by W.
Menasco and M. Thistlethwaite in 1993 ([MT93]), states that two alternating knots are
isotopic iff any two diagrams of the knots on S2 are related by a finite sequence of flypes.

Using the Tait conjecture for knots, one proves the corresponding statement of the
conjecture for rational tangles, thereby characterizing how alternating rational tangles are
isotopic. Using this statement, one can then show that isotopic rational tangles have the
same tangle fraction simply by checking that the tangle fraction is invariant under flypes.
This task is not difficult once Proposition 1.1.9 below has been established.

Definition 1.1.8 The horizontal flip of a 4 point tangle T , denoted T h, is obtained by
rotating T by π through a horizontal line in the plane of T . Similarly the vertical flip of T ,
denoted T v, is obtained via rotation of T by π through a vertical axis in the plane.

R

T

R

T h

R

T v

Flypes can be described more concretely in terms of these operations. Namely, a flype
on a 4 point subtangle T is an isotopy of the form

[±1] + T ∼ T h + [±1] or [±1] ∗ T ∼ T v ∗ [±1].

Both horizontal and vertical flips are order 2 operations on 4 point tangles. Surprisingly,
on rational tangles these operations have order 1.

1To prove this theorem, one actually first shows that rational tangles are alternating, but for the sake of
space we omit this.
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Proposition 1.1.9 If T is rational, then T ∼ T h ∼ T v.

Proof: We prove that T ∼ T h; the other statement follows from this result by twisting T
by π/2, locally applying the result, and twisting back. The proof is by induction.

The statement is clearly true for the [0], [∞] and [±1] tangles. Assume the statement
is true for a rational tangle with n crossings. Any rational tangle with n+ 1 crossings can
be expressed as [±1] + T , T + [±1], [±1] ∗ T or T ∗ [±1] where T is a rational tangle with
n crossings.

The induction hypothesis easily gives

([±1] + T )h ∼ [±1] + T h ∼ [±1] + T,

and similarly for T + [±1]. Of the other two cases, we have

([±1] ∗ T )h ∼ T h ∗ [±1] ∼ T ∗ [±1] ∼ [±1] ∗ T v ∼ [±1] ∗ T.

(in the third isotopy we applied a flype) and similarly (T ∗ [±1])h ∼ T ∗ [±1]. 2

Corollary 1.1.10 Rotation and inversion are operations of order 2 on rational tangles

Corollary 1.1.11 For a rational tangle T ,

[±1] + T ∼ T + [±1] and [±1] ∗ T ∼ T ∗ [±1].

Proof: This is easy. With a flype, we have

[±1] + T ∼ T h + [±1] ∼ T + [±1].

The same argument shows multiplication by [±1] commutes. 2

Note that this means every rational tangle can be constructed from the [0] or [∞]
tangles by a sequence of right additions or bottom multiplications of [±1]: working from
the outermost to innermost crossings of a tangle in twist form, if a crossing was added to
the left or top, simply isotope it to the right or bottom respectively. We give a name to
such rational tangles.

Definition 1.1.12 A rational tangle is said to be in standard form if it created from [0]
or [∞] by consecutive additions or products of [±1] on the right and bottom respectively.
Every rational tangle is isotopic to a tangle in standard form.

(Note that as [∞] = ([0] + [1]) ∗ [−1], we could actually remove [∞] in the definition
above.)

Using the notation [n] := [1] + . . .+ [1]︸ ︷︷ ︸
n times

illustrated earlier in Figure 1.1.2, we can write

a rational tangle in standard form as an expression

(. . . ((([a1] ∗ [a2]) + [a3]) ∗ [a4]) + . . . ∗ [an−1]) + [an]

where ai are integers. We will abbreviate such an expression as 〈a1, . . . , an〉. Some
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a1

a2

a3

a4

a1
−a2

a3
−a4∼

Figure 1.1.6: Although most rational tangles we consider will be in standard form (left), it is
sometimes convenient to consider them as (partial closures) of elements of B3.

illustrative examples of this notation are included below.

〈−2, 1, 2〉 〈1, 1, 1, 1, 1〉

Most rational tangles we draw will be in standard form. We can also consider rational
tangles to be a partial closures of elements of B3, the three-strand braid group, as illustrated
in Figure 1.1.6. We will revisit this viewpoint in Chapter 4 when we look at how the
reduced Burau representation of B3 can be obtained from the Khovanov homology of
rational tangles.

From this point on, we will assume all rational tangles are in standard form, unless
otherwise stated.

1.2 The tangle fraction

We saw in the previous section that rational tangles are very structured. In particular, each
admits a standard form (Definition 1.1.12). Because of their structure, rational tangles
admit a nice classification. In this section we define the tangle fraction (Definition 1.2.4),
and state the classification of rational tangles that uses it (Theorem 1.2.6). A consequence is
that every rational tangle other than [∞] admits a unique canonical form (Corollary 1.2.9),
a result crucial to Theorem 3.3.1, the main result of our thesis.

The tangle fraction has several definitions2, but we consider the one presented in
this section to be the most intuitive. For the remainder of this chapter, it will often be
convenient to denote the inverse of a tangle as a fraction 1/T instead of T−1 .

Lemma 1.2.1 If a 4 point tangle T is rational, then

T ∗ [n̄] = 1
[n] + 1

T

, and [n̄] ∗ T = 1
1
T + [n]

. (1.2.1)

2The interested reader is referred to [KL03a] for alternative descriptions of the tangle fraction.
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Proof: Since
(T ∗ [n])r = T r + [−n],

we have
(T ∗ [n])−1 = −(T r + [−n]) = T−1 + [n].

The results follow. 2

Since every rational tangle is isotopic to a rational tangle in standard form

〈a1, . . . , an〉 = (. . . ((([a1] ∗ [ā2]) + [a3]) ∗ [ā4]) + . . . ∗ [an−1]) + [an] ,

the lemma allows us to write a rational tangle as ‘continued fraction’ of tangles.

Definition 1.2.2 A rational tangle is a continued fraction in integer tangles if it has the
form

[a1, a2, . . . , an] := [a1] + 1
[a2] + 1

[a3]+...+ 1
[an−1]+ 1

[an]

.

We stipulate that a2, . . . , an ∈ Z \ {0} and a1 ∈ Z. If a1 = 0 in a continued fraction of
integer tangles, when we write the expression we omit the [0].

Rational tangles in standard form can be converted to a continued fraction of tangles by
multiple applications of the relation [n]+T ∼ T+[n] and Lemma 1.2.1. The interconversion
can be summarized by

〈a1, a2, . . . , an〉 ∼ [an, an−1, . . . , a1].

We now list some properties of rational tangles in continued fraction form. The proof
of each is not difficult.

Lemma 1.2.3 Let T = [a1, . . . , an] be a rational tangle in continued fraction form. Then

1. T + [±1] = [a1 ± 1, a2, . . . , an],
2. 1

T = [0, a1, a2, . . . , an],
3. −T = [−a1,−a2, . . . ,−an].

We now come to the main definition of this section.

Definition 1.2.4 Let T = [a1, . . . , an] be a rational tangle in continued fraction form.
Define the fraction or tangle fraction F (T ) of T to be the rational number obtained by
replacing the integer tangles in the expression for T with their corresponding integers.
That is,

F (T ) = a1 + 1
a2 + 1

a3+...+ 1
an−1+ 1

an

. (1.2.2)

If T = [∞] we define F ([∞]) =∞.

Although the tangle fraction is well-defined for rational tangles in a continued fraction
form, it is not clear if this is well-defined for rational tangles up to isotopy. That is, is
isotopic rational tangles expressed as different continued fractions have the same tangle
fractions. This is one of the directions of the main theorem of this chapter (Theorem 1.2.6).
Namely, if S ∼ T , then F (S) = F (T ) for any choice of a continued fraction of tangles for
S and T .

We now list some properties of the tangle fraction. They all follow easily from
Lemma 1.2.3.
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Lemma 1.2.5 Let T = [a1, . . . , an] be as above. Then

1. F (T + [±1]) = F (T )± 1,
2. F ( 1

T ) = 1
F (T ) ,

3. F (T ∗ [ n ]) = 1
[n]+ 1

F (T )
,

4. F (−T ) = −F (T ).

We are now in a position to state the main result of this chapter, though omit its proof.
(The proof is given in [KL03b]. Though it is technical, it uses no other tools than the ones
previously described.)

Theorem 1.2.6 The tangle fraction is well-defined up to isotopy, and two rational tangles
are isotopic iff they have the same fraction.

Example 1.2.7 Consider the rational tangles below. The first has standard form 〈−3, 1, 1〉
with the second is 2 + [2̄], which has continued fraction form [2, 2].

After computing their fractions,

F (〈−3, 1, 1〉) = 1 + 1
1 + 1

−3
= 1 + 3

2 = 2 + 1
2 = F ([2, 2]),

we find the tangles are isotopic. This may not be immediately evident from inspection.

One consequence of the Theorem 1.2.6 is that every rational tangle is alternating. To
see this we introduce another definition.

Definition 1.2.8 A continued fraction

a1 + 1
a2 + . . .+ 1

an−1+ 1
an

is said to be in canonical form if n is odd and either a1 ≥ 0 and ai > 0, or ai ≤ 0 and
ai < 0 (for i 6= 1). The same definition extends to rational tangles, provided they are in
continued fraction form.

Corollary 1.2.9 Every rational tangle other than [∞] has a unique canonical form.

Proof: Consider an arbitrary rational tangle T . Without loss of generality assume F (T ) > 0.
By Euclid’s algorithm we can uniquely write F (T ) as a continued fraction

a1 + 1
a2 + . . .+ 1

an−1+ 1
an

where a1 ≥ 0 and ai > 0 for all 1 < i < n, and an > 1. If n is even, we replace an with
an−1+ 1

1 . Now F (T ) is in canonical form, and is unique by construction. The claim follows
from Theorem 1.2.6 by considering the corresponding continued fraction of tangles. 2
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Note that this implies that every rational tangle admits a diagram whose crossings are
all of the same type. (That is, the gradients of the overcrossing lines all agree.) This follows
by considering the standard form 〈a1, . . . , an〉 of a tangle in canonical form. If ai ≥ 0 or
ai ≤ 0 for all i then by definition of the standard form of a rational tangle, every crossing
has the same configuration. We will use this fact in Chapter 3 to inductively construct the
Khovanov homology of a rational tangle.

Corollary 1.2.10 Every rational tangle is alternating.

Proof: The claim follows by considering the standard form of a rational tangle in canonical
form. When this standard form is viewed as the partial closure of a 3-braid (as in
Figure 1.1.6 above), all the crossings in the top row are of one type, whereas the crossings
in the bottom row are of the other. It is easy to see that such a diagram is alternating,
from which the claim follows. 2

We have now seen the main components and highlights to the theory of rational tangles.
Strictly speaking, we’ve seen all we need for the later chapters, but it’d be a shame to
skip some of the nice results regarding rational links that the theory of rational tangles
provides. As such, before we begin the next topic, Khovanov homology, we briefly pause to
look at links obtained from rational tangles.

1.3 Rational links

Given a rational tangle, one can close the ends in several ways to obtain a rational link.
Two of these, the numerator closure N(·) and denominator closure D(·) are illustrated
below. The Hopf link, for example, can be expressed as N([2]). The links we consider in
examples in the sequel will be rational.

Sometimes both types of closure give isotopic links; trivially N([1]) and D([1]) are both
isotopic to the unknot. Sometimes non-isotopic tangles close to give the same link; trivially
N([n]) is isotopic to the unknot for any n. Since D(T ) = N(T r), we will only consider the
numerator closure of a rational tangle in the sequel.

TTT
D(·) N(·)

Since rational tangles are alternating, rational links are too. Once again, this can easily
be seen by examining an alternating diagram of a rational tangle depicted as the partial
closure of an element of B3 as described in the previous section. In such a presentation, it
is clear that when the ends are closed the link obtained is alternating.

Given a rational tangle, it may not be immediately clear if its numerator closure will
yield a link with one or two components. The distinction is trivial using the tangle fraction.
([KL03a])
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⇒
N(·)

Figure 1.3.1: The figure-8 knot, like any rational link, is alternating.

Proposition 1.3.1 Let N(p/q) denote the rational link obtained by taking the numerator
closure of the rational tangle with fraction p/q, where p and q are relatively prime. Then
N(p/q) has two connected components iff p is even and q is odd. That is, iff p/q has parity
e/o.

Given that the tangle fraction classifies rational tangles, it is perhaps unsurprising that
it classifies rational knots too. The following theorem is due to Schubert. ([Sch56])

Theorem 1.3.2 Rational links N(p/q) and N(p′/q′) are isotopic iff:

1. p = p′, and
2. either q ≡ q′ mod p or qq′ ≡ 1 mod p.

Schubert originally stated this classification of rational links in terms of 2-bridge links
as his work predates Conway’s theory of rational tangles. A combinatorial proof that uses
the classification of rational tangles appears in [KL03a]. An oriented version of the theorem
also exists and is due to Schubert too; its phrasing and proof can be found in [KL03a] as
well.

A consequence of Theorem 1.3.2 is that chiral rational links admit an easy classification.

Definition 1.3.3 A link L is chiral if it is isotopic to its mirror image. That is, if L ∼ −L.
A link is achiral if it is not chiral.

Proposition 1.3.4 Let L = N(p/q) as above. Then L is achiral iff q2 ≡ −1 mod p.

Example 1.3.5 It is well-known that the trefoil and figure-8 knot are chiral and achiral
respectively, these properties follow trivially from the previous proposition. The knots can
be realized as N([3]) and N([2, 2]), illustrated below. Since F ([3]) = 3/1 and 1 6≡ −1 mod
3, the trefoil is chiral. As F ([2, 2]) = 5/2, and 4 ≡ −1 mod 5, the figure-8 knot is achiral.

Definition 1.3.6 Given an oriented link K, the inverse of K, denoted K∗, is obtained
by reversing the orientation of each component. A link is invertible if it is isotopic to its
inverse, that is, if K ∼ K∗.

It is an easy consequence of Proposition 1.1.9 that every rational link is invertible. The
proof follows by applying a vertical flip to the knot, as illustrated below.
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A stronger notion of invertibility can be defined for links with more than one component.

Definition 1.3.7 A link L is said to be strongly invertible if any link formed by reversing
orientations of any of the components of L is isotopic to L.

Strongly invertible rational links admit a classification using the oriented version of the
classification theorem for oriented rational links. ([KL03b])

Proposition 1.3.8 Let L be a two-component oriented link with L = N(p/q) as above,
with |p| > |q|. Then L is strongly invertible iff q2 = 1 + op for some odd integer o.

Finally, for notation purposes, we note that oriented rational tangles that have well-
defined numerator closures are isotopic to one of two forms, illustrated below. We refer to
these as type I and type II (oriented) rational tangles. We use this notation in Chapter 3.

R

I

R

II

This concludes our foray into rational links.



Chapter 2

Khovanov homology

Khovanov homology is a categorification of the Jones polynomial. It was constructed by
Mikhail Khovanov in the late 90s for links, ([Kho99]) and has since been generalized to
tangles ([Kho01, Bar04]). Several variants of the theory also exist ([Lee02], [Bar04]).

The purpose of this chapter is to construct Bar-Natan’s dotted Khovanov homology
theory of tangles. We will use this version of Khovanov homology to study the Khovanov
homology of rational tangles in Chapter 3.

In Section 2.1 we introduce and discuss link invariants. These are maps taking links to
algebraic objects that are invariant under isotopy. The Jones polynomial, and Khovanov
homology, are both link invariants, though we delay the proof of these claims until
Sections 2.2 and 2.6 respectively. This section is based on material covered in more depth
in [Kas95, CDM11, PS96].

In Section 2.2 we introduce the Kauffman bracket. This is a tool that can be used to
define the Jones polynomial and give a simple proof of its existence. The primary resource
for this section was [Kau87].

In Section 2.3 we briefly discuss categorification in general, and motivate Khovanov’s
construction that categorifies the Jones polynomial. Categorification is an informal process
taking set-theoretic structures to category-theoretic structures. This section was inspired
from material in [Kho16].

In Section 2.4 we construct Bar-Natan’s extension of Khovanov homology to tangles, as
described in [Bar04]. His exposition is so generally excellent that we hardly deviate from
it. As such if the reader has any trouble with our ‘compressed’ version of his material, we
refer her to the source.

In Section 2.5 we modify the Khovanov homology theory developed in the previous
section to a ‘dotted’ version. In the dotted version complexes are far easier to manipulate,
and when restricted to links the theory is equivalent to ordinary Khovanov homology. The
dotted theory is described in [Bar06].

Finally, in Section 2.6 we prove the Khovanov bracket is invariant under the Reidemeister
moves, following the proof as hinted by Bar-Natan in [Bar06].

2.1 Link invariants

Khovanov homology, and the Jones polynomial it categorifies, are both link invariants.
This means they associate algebraic objects to links, and do so in such a way that that
isotopic links give the same algebraic object. As such they can help distinguish links: if
the value of a link invariant on two links differs, by definition the links are not isotopic.

In this section we illustrate the range of link invariants that exist. We begin by looking

13
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at link invariants defined from geometric and topological means, before transitioning to
link invariants defined by combinatorial data, such as the Jones polynomial.

Link invariants usually have wider applications than as a tool to classify links however,
and it is this point that underpins much of the research, and interest, in the field. The
Jones polynomial, for instance, has connections with statistical physics, operators algebras
and quantum field theories. Naturally Khovanov homology also has connections with
other areas, including geometric representation theory, symplectic geometry and algebraic
geometry ([Kho16]).

Despite their general promise to be interesting objects to study, link invariants are often
hard to define. The requirement that a link invariant respects isotopy imposes a barrier.

One way to overcome this problem when defining a link invariant is to measure some
quantity over all possible configurations of a link, then take the minimum. The stick
number of a link, for instance, is the minimum number of straight ‘sticks’ needed to realize
the link in R3. That is, if we view a knot as an embedding of S1 into R3 but require that
the image be a finite union of line segments (instead of the usual requirement that the
map be smooth), the stick number of the knot is the minimum number of line segments
used over all possible configurations. In this way an aspect of the geometry of the knot is
captured – the minimum number of times the knot will ‘turn’ in space. Upper bounds of
the stick number are easy to obtain, but like many invariants defined by taking minimums,
it is hard to obtain satisfactory lower bounds.

The space around a link is more interesting than the link itself: as topological spaces,
links are all essentially the same – a disjoint collection of circles. The same is not true for
the surrounding space. By considering a link L in B3 and taking a tubular neighborhood N
of L, we define the knot complement of L to be the compact 3-manifold XL = B3 \ int(N).
(Also note that this can be defined for links embedded in 3-manifolds other than B3.)
Isotopies of links induce homeomorphisms of the corresponding complements, so we can
produce knot invariants by studying knot complements. (In fact, the Gordon-Luecke
Theorem tells us that in the case of knots, the knot complement is a complete invariant –
that is, knots are isotopic iff their knot complements are homeomorphic. The corresponding
claim is not true for links, however.)

Figure 2.1.1: left The stick number is a basic, if difficult to compute, link invariant. right The
figure-8 knot is hyperbolic, so has hyperbolic volume. This in an invariant specific to hyperbolic
links.

Some links have a complement which has a hyperbolic geometry. Tools from this
field can then be used to define invariants for these links, such as the hyperbolic volume.
Methods from algebraic topology can also be applied to complements; the knot group π(K)
of a knot K is the fundamental group of its complement. This invariant is actually quite
powerful: π(K) = Zn iff K is the trivial link with n components, and two prime knots are
isotopic iff they have isomorphic knot groups. While algorithms exist for calculating the
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ε = −1 ε = 1

Figure 2.1.2: The two possible types of oriented crossing, referred to as negative and positive
crossings respectively.

knot group in terms of generators and relations (the Wirtinger presentation), showing two
presentations are non-isomorphic is a difficult question in general.

Another class of manifolds which yield information about links are Seifert surfaces.
These are compact, connected, oriented surfaces embedded in R3 with boundary that is a
link. A link can have several different Seifert surfaces, and the minimum genus over all
Seifert surfaces of a given link is called the genus of the knot.

The knot group and genus of a link both involved the construction of an object that
resembles the link, from which we extracted information to create the invariant. There is
however, another, perhaps simpler, approach to construct a link invariant. We create a
diagram that represents the link, and directly use the combinatorial information in the
diagram to compute the invariant of the link.

In the last chapter we saw link (tangle) diagrams, which are the most common and
intuitive of way of representing a link in two dimensions. Despite their simplicity, a variety
of link invariants have been constructed from these diagrams. Some are quite simple.
The crossing number is just the minimum number of crossings in any link diagram of the
link. The bridge number, meanwhile, is the minimum number of local maxima in any link
diagram of the knot.

These may be interesting, but it is often theoretically and computationally convenient
to have an invariant which can be calculated given a single link diagram, instead of needing
to consider all possible diagrams.

Reidemeister, and independently Alexander and Briggs showed that two link diagrams
represent isotopic links iff one can be obtained from the other via planar isotopies and a
finite number of Reidemeister moves. (There were illustrated before in Theorem 1.1.3 from
the previous chapter.) To check that a link invariant defined via link diagrams is really an
invariant, one simply needs to make sure it does not change under planar isotopies and the
Reidemeister moves.

Example 2.1.1 The linking number is easily proved to be a link invariant using the
previous criteria. We define this as follows. Given an oriented link, choose two components
L1, L2, and define the linking number of the two of the components as the integer

lk(L1, L2) = 1
2
∑
S

ε(S),

where S runs over all crossings of L1 and L2. The value ε(S) ∈ {±1} assigned to each
crossing depends on the crossing’s orientation and is indicated below.

To verify that this is a link invariant, note that the number of crossings, and their
orientations, are preserved under planar isotopy. We therefore just need to check invariance
of the linking number under the Reidemeister moves. Since we only consider crossings
composed of different link components, it is trivially invariant under R1. For R2 invariance,
first note that reversing the orientation of all the components of the link does not change
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the orientations of crossings.
This means we only need to check two of the possible orientation configurations of the

R2 components, illustrated below. Since the local contribution to the linking number from
each of these configurations is zero, it follows that the linking number does not change
after an application of R2.

To prove invariance under R3, we examine both sides of the move in Figure 2.1.3 below.
It is clear that if the orientations of the vertical and diagonal components of these diagrams
are consistent across both, the values assigned to the intersections in the left diagram
determine the values assigned to the intersections in the right diagram. The sum of the
values over the diagrams are the same. We have hence verified all the criteria, proving the
linking number is indeed a link invariant.

β

γ

α

β

γ

α

Figure 2.1.3: Showing the linking number is invariant under R2 and R3. The Greek letters
indicate crossings with the same orientation.

Although this invariant is rudimentary, it is easy to calculate and can quickly distinguish
many simple links. (For instance, the linking number of the 2-component unlink is trivially
0, whilst the Hopf links below take values ±1, proving that the Hopf link is not isotopic to
the unlink. This seemingly obvious fact is hard to prove directly from the definition of
isotopy.

lk(L1, L2) = −1 lk(L1, L2) = 1 lk(L1, L2) = 0

Figure 2.1.4: The linking number can be used to quickly prove the Hopf link is not trivial.

While this, and many of the invariants previously mentioned take values in the integers,
one of the most interesting classes of link invariants are polynomial invariants. These
assign to each link a polynomial in one or more variables, and most of the well-known link
invariants are of this type.

Such an example is the Alexander polynomial. This was the first polynomial invariant
to be discovered, and it has several definitions. One of these is in terms of the Seifert matrix
of a Seifert surface whose boundary is the link. In this definition, the Seifert matrix M of a
Seifert surface X is defined as (M)ij = lk(ai, a+

j ), where ai ∈ H1(X) are distinct generators
of the first homology group of X, and a+

i represents a copy of ai lifted slightly off the surface
in the positive direction. (Recall that Seifert surfaces are required to be oriented.) One
then obtains the Alexander polynomial via the formula ∆L(x) = det(x1/2M − x−1/2MT ).

Example 2.1.2 Let us compute the Alexander polynomial for the first Hopf link illustrated
in Figure 2.1.4 above. A Seifert surface for the Hopf link is an annulus with two twists.
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Since this Seifert surface is homotopic to a circle, the first homology has one generator x.
To compute lk(x, x+), since the Seifert surface is an annulus with two twists, we note that
the link formed by x and x+ is isotopic to the boundary of the surface. The Seifert matrix
is thus [−1]. We then obtain that ∆(Hopf) = −x1/2 + x1/2.

Alexander defined his invariant 1923, but it was only decades later in 1969 that it
received its simplest formulation. In his seminal paper [Con70], Conway introduced a link
invariant ∇L(t) defined using the diagrams X+, X−, X0 below, and showed that, after a
change of variables, his link invariant was the Alexander polynomial.

X− X+ X0

Define a Conway triple (L+, L−, L0) to be a triple of oriented links in R3 which can be
represented by link diagrams that are identical outside of a disk, but which are isotopic
inside to the diagrams X+, X−, X0 respectively. Define the Conway polynomial of an
oriented link L to be a polynomial in Z[t] taking value 1 on the unknot, and satisfying

∇(L+)−∇(L−) = t∇(L0)

for all Conway triples (L+, L−, L0).
The definition of this link invariant is quite different from the others we’ve encountered

so far. For starters, it isn’t obvious from the definition why this should be invariant under
the Reidemeister moves, or that it’s even well-defined.

Unlike the other link invariants defined so far, we are defining the polynomial by
describing a relation it satisfies. This is an example of a skein relation, and many polynomial
link invariants admit descriptions in terms of skein relations.

Example 2.1.3 Let us calculate the Conway polynomial of the first Hopf link in Exam-
ple 2.1.4 above.

Though the skein relation and the Seifert matrix seem to have little to do with one
another, the Alexander polynomial can be recovered from the Conway polynomial by the
simple change of variables ∆L(x) = ∇L(x1/2 − x−1/2). Indeed, when we apply the change
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of variables to the calculation for the Hopf link above, the result agrees with our calculation
via Seifert surfaces.

We now turn towards the Jones polynomial, VL(t). This is arguably the most important
polynomial link invariant to date, and was discovered in 1984 by Vaughan Jones [Jon85].
Like the Alexander polynomial, it can be defined in terms of a skein relation:

t−1VL+ − tVL− = (t1/2 − t−1/2)VL0 ,

and is normalized to take the value of 1 on the unknot. (Here, as before, (L+, L−, L0) is a
Conway triple.) The invariant was not discovered by playing around with skein relations
though. The original construction involved, among other things, Hecke and von Neumann
algebras, as well as the Ocneanu trace. The method was by no means elementary, but
we need not concern ourselves with the construction: as we shall see in the next section,
Kauffman devised an alternative definition of the Jones polynomial that allows for an easy
proof of its existence.

The discovery of the Jones polynomial led to the discovery of the Homfly polynomial.
This is a polynomial link invariant in two variables, defined by the skein relation

xP (L+)− x−1P (L−) = yP (L0)

and normalized to 1 on the unknot.
It was discovered by many people simultaneously and independently, and as such

has several names. Known also as the two-variable Jones polynomial or Jones-Conway
polynomial, the name Homfly is an acronym of the authors who were the first to publish it
in [FYH+85].1

The Homfly polynomial is a generalization of the Alexander and Jones polynomials.
These specializations are given by

∇(L) = P (1, t)

and
V (L) = P (t, t−1/2 − t1/2).

As we will see in the next section, the proof of the existence of the Jones polynomial is
easy with the Kauffmann bracket. Unfortunately, there is currently no analogous piece of
machinery that gives such an easy proof of the existence of the Homfly polynomial, though
purely skein theoretic constructions of the polynomial exist.

2.2 The Kauffman bracket

Soon after the discovery of the Jones polynomial, Louis Kauffman gave an alternative
description of the link invariant by introducing a gadget known as the bracket polynomial
[Kau87]. Known also as the Kauffman bracket, the tool had many benefits. The original
construction of the polynomial was technical and long; Kauffman constructed it in a very
elementary manner within the first six pages of his paper. Many proofs of the polynomial’s
properties became trivial when using the bracket, and many long-held conjectures were

1It has other names too; HOMFLY-PT acknowledges the work of two Polish mathematicians who
published later ([PT88]). Dror-Bar Natan suggested ([BN95]) the invariant carry the name LYMPH-TOFU.
Here the U. . . stands for unknown discoverers.



§2.2 The Kauffman bracket 19

proven using the bracket. Computations of the Jones polynomial before the bracket could
only really be done using the Skein relation; the Kauffman bracket by its definition provided
an alternative route.

Khovanov homology would not exist without the Kauffman bracket either. As we will
soon see, the bracket is fundamental to the construction at the core of the theory. As such
it will be of great benefit to discuss Kauffman’s beautiful tool.

In this section we define the Kauffman bracket (Definition 2.2.2), then use it to redefine
the Jones polynomial (Theorem 2.2.6). Our exposition follows the layout that Kauffman
used in his paper that defined it [Kau87], but we use the conventions appropriate for
Khovanov homology.2 We construct the Kauffman bracket, show how it can be tweaked
into a link invariant, and show this link invariant is the Jones polynomial. In this section,
unless otherwise specified, by a link diagram we mean an unoriented link diagram.

The main idea of the Kauffman bracket is that of smoothings.
Define the 0-smoothing and 1-smoothing of a crossing in a link diagram to be the link

diagram obtained by replacing the crossing with the [0] or [∞] tangle. When replacing a
crossing, we rotate the diagram around until the crossing locally looks like the [−1] tangle,
perform the appropriate replacement, then rotate the diagram back.

[−1] [0] [∞]

In a given link diagram, a state is a assignment of a 0- or 1-smoothing to every crossing.
(So a diagram with n crossings has 2n states.) The diagram obtained after applying the
smoothings of a state S is called the smoothing associated to the state S. For brevity we
often refer to such a diagram as a smoothing. Note that a smoothing of a link diagram is a
union of disjoint (perhaps nested) circles. One can of course take smoothings of tangle
diagrams, though in this case the smoothings may contain components other than circles.
Equation 2.2.2 over the page illustrates the four possible smoothings of the tangle diagram
of [−1] ∗ [1].

Let D be the set of link diagrams up to planar isotopy. Then define a function
〈·〉g : D → Z[A,B, d] by the relations

1. 〈∅〉g = 1,
2. 〈O t L〉g = d〈L〉g, and
3.
〈 〉

g
= A

〈 〉
g

+B
〈 〉

g
.

The diagrams in the last line represent a crossing of link diagram, and its 0- and 1-smoothing
respectively.

Proposition 2.2.1 The function 〈·〉g : D → Z[A,B, d] exists and is unique.

Proof: We first show uniqueness. Given a link diagram L, by repeatedly applying the third
relation to each crossing we expand 〈L〉g as a sum of 2n terms. Each of these terms is the
result of 〈·〉g evaluated on a smoothing of L, multiplied by AiBj where i, j are the number
of 0- and 1- smoothings in the state which produced the smoothing.

2In particular we set the Kauffman bracket of the unknot to be (q + q−1) instead of 1.
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Let γ be the number of disjoint loops in a smoothing. By applying the first and second
relations to each term in the expansion of 〈L〉g, we have

〈L〉g =
∑
S

AiSBjSdγS , (2.2.1)

where the sum is over all the possible states of L. This shows the defining relations of the
function determine the polynomial of any link diagram, proving uniqueness.

To prove existence of the function, we can use Equation 2.2.1 to define 〈·〉g, then simply
need to verify the equation satisfies the three defining relations. This is not difficult. 2

We have constructed a function that assigns a polynomial to every link diagram in a
straightforward combinatorial way, but as it stands 〈·〉g is hardly useful. It is not a link
invariant since it is not invariant under any of the Reidemeister moves, but it may be
possible to force it to be a link invariant by imposing conditions on A, B and d.

Consider the result of the following calculation.

= A2
〈 〉

+ AB

〈 〉
+ BA

〈 〉
+ B2

〈 〉〈 〉
(2.2.2)

Since 〈 〉 and 〈 〉 are linearly independent, in order for 〈·〉g to be invariant under R2, we
need A2 +ABd+B2 = 0, and AB = 1. These choices define the Kauffman bracket.

Definition 2.2.2 Let the Kauffman bracket 〈·〉 : D → Z[q, q−1] be the function 〈·〉g above
with A = q, B = q−1 and d = −(q2 + q−2).

Lemma 2.2.3 The bracket polynomial is a regular isotopic invariant of links.

Proof: By construction, the bracket polynomial is invariant under R2; that the bracket
polynomial is invariant under R3 follows from R2 and is a standard and elementary exercise
in knot theory. 2

The Kauffman bracket is unfortunately not invariant under R1, but it is possible to
counter this deficiency by combining the bracket with another regular isotopy invariant.

Definition 2.2.4 To an oriented link diagram L, assign ±1 to each crossing according to
the convention in Figure 2.1.2. The sum over all the crossings is known as the writhe (or
twist number) of L, denoted ω(L). The writhe is regular isotopic.

The idea behind this invariant is similar to that of the linking number in Example 2.1.1
of the previous section. The argument used to show the linking number was a link invariant
can be used to show the writhe is regular isotopic.

Proposition 2.2.5 For an oriented link L, define a Laurent polynomial V (L) in q via the
formula

V (L) = (−q)−3w(L)〈L〉/(q + q−1), (2.2.3)

where the Kauffman bracket of an oriented link is defined to be the Kauffman bracket of the
link with orientations forgotten. Then V (·) is a link invariant.

Proof: The result follows from simple computations. Explicitly, one can show that the
Kauffman bracket satisfies the following relations.
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〈 〉
= −q−3

〈 〉
〈 〉

= −q3
〈 〉

The local writhe contributions of the first and second diagrams on the left are −1 and
1 respectively, from which it follows that V (·) is invariant under R1. Since the bracket
polynomial and the writhe are regular isotopy invariants, the result follows. 2

Recall that the Jones polynomial VL is defined by its value on the unknot VO = 1 and
the Skein relation

t−1VL+ − tVL− = (t1/2 − t−1/2)VL0 . (2.2.4)

Theorem 2.2.6 After changing variables by setting q = t−1/4, the polynomial link invariant
V (·) defined in (2.2.3) above satisfies the Skein relation (2.2.4) and takes the value of 1 on
the unknot. That is, V (·) is the Jones polynomial.

Proof: By definition, the bracket polynomial satisfies

〈 〉
g

= q
〈 〉

g
+ q−1〈 〉

g
,

〈 〉
g

= q
〈 〉

g
+ q−1〈 〉

g
.

These imply
q
〈 〉

g
− q−1〈 〉

g
= (q2 − q−2)

〈 〉
g

which in turn imply

−q4V (L+) + q−4V (L−) = (q2 − q−2)V (L0)

for any Conway triple (L+, L−, L0). This is exactly the Skein relation (2.2.4) after
substituting q = t−1/4 and multiplying through by −1. 2

The Kauffman bracket not only simplifies computations, but is useful theoretically
too. As Kauffman wrote after proving this theorem, “Some formal results about the Jones
polynomial follow immediately and trivially from [Theorem 2.2.6] and the definition of
the bracket polynomial.” Indeed, in the same paper, Kauffman shows that any two simple
alternating projections of a given link have the same number of crossings, a conjecture held
for more than a century.

We will not pause to look into such deep results, but will look at some basic properties
of the Jones polynomial which are easily explained with the bracket polynomial.

Proposition 2.2.7 Let L! denote the mirror image of a link L. Then VL!(t) = VL(t−1).

Proof: The result follows from a number of observations. First, note that evaluating
the Kauffman bracket on a crossing is the same as evaluating the Kauffman bracket
on the mirror image of the crossing then changing variables via q 7→ q−1. Secondly,
−(q2 + q−2) = −

(
(q−1)2 + (q−1)−2). Finally, the writhe of L! is the negative of the writhe

of L. 2
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This implies that if the Jones polynomial of a given link is not invariant under the
change of variables t 7→ t−1, then it is chiral. For instance, the trefoil has Jones polynomial
−t4 + t3 + t, so is chiral. (Although as we saw in Example 1.3.5, this fact is proved more
easily by noting that the trefoil is given by N([3]).)

The Kauffman bracket also gives a quick proof of results regarding connected sums
and disjoint unions: for two oriented links L1, L2, V (L1#L2) = V (L1) · V (L2), and
V (L1 t L2) = −(q−1/2 + q1/2)V (L1) · V (L2).

Before moving on to the next section, let us reflect on what we have seen in the chapter
so far. We saw in the previous section that the Jones polynomial is an example of a
polynomial link invariant, and can be defined in terms of a skein relation. In this section
we saw how the Kauffman bracket gives an alternating description of the Jones polynomial
using the idea of smoothings.

Khovanov homology categorifies the Jones polynomial. We explain what this means
in the next chapter, but crucial to the construction is the idea of smoothings. The Jones
polynomial of a link is computed by evaluating the Kauffman bracket on all the smoothings
of a link diagram, then summing these up (and then normalizing the result). Similarly in
Khovanov’s original categorification of the Jones polynomial, the Khovanov complex of
link is constructed by assigning a vector space to each smoothing of a link diagram, then
assembling the vector spaces together into a complex. We briefly discuss this construction,
and categorification more generally, in the following section.

2.3 Categorifying the Jones polynomial

In this section we briefly discuss Khovanov original categorification of the Jones polynomial
[Kho99]. We’ll first motivate categorification by looking at the Euler characteristic of a
surface, and why simplicial homology categorifies this. We’ll then describe categorifications
of Z and Z[q, q−1] before sketching Khovanov’s categorification of the Jones polynomial.
Much of the content of this section is based on an expository paper by Khovanov, [Kho16].

One of the most elementary connections between low-dimensional topology and algebra
is Euler’s polyhedron formula. This states that V −E+F = 2 for all convex polyhedra. The
formula does not hold for polyhedra in general, so we can give the quantity χ = V −E+F a
name: the Euler characteristic. We can easily extend the definition to simplical complexes
and finite CW-complexes. (For an n-complex, χ = ∑

i = (−1)nki, where ki is the number
of i-simplices; for a CW-complex, χ = ∑

i(−1)iki where ki is the number of i-cells in the
complex.)In either case we can regard the Euler characteristic as a map

χ : nice topological spaces −→ Z.

From this viewpoint one can say something more interesting about the Euler characteristic
of a space. In particular, it is an invariant of the homotopy type of the space. (Euler’s
polyhedron formula just expresses the fact that all convex polyhedra are homotopic to a
sphere.) In this way, the Euler characteristic can distinguish many objects, such as all
closed orientable surfaces. But the fact that the Euler characteristic is an integer limits its
usefulness as an homotopy type invariant. There are other alternatives, and as Bar-Natan
puts it [Bar04] “ homology is way better.”

The simplical homology groups of a space provide far more information about the space
than the Euler characteristic, and exist for any topological space, not just the nice ones.
We can use this property to generalize the Euler characteristic to all topological spaces via
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the formula
χ(M) =

∑
n≥0

(−1)n dimHn(M).

It is a result of simplicial homology theory that this definition agrees with the previous
definitions of the Euler characteristic defined for nice spaces.

It is nice that that the Euler characteristic admits a generalization with homology
groups, but the real reason why simplicial homology is important is that it provides another
level of connection between topology and algebra that the Euler characteristic couldn’t.
Homology is a functor

Top H−→ GrAb,

so (continuous) maps between topological spaces induce maps between the homology groups.
Simplicial homology a functor at the heart of algebraic topology, and underpins many deep
results of the field.

The Euler characteristic is a useful, though admittedly quaint, map, but categorifies to
homology. The set of nice spaces is lifted to the category of toplogical spaces, the set of
integers is lifted to graded abelian groups, and the Euler characteristic is lifted to homology.

Categorification in general follows the same idea: a set-theoretic structure is replaced
with a category-theoretic structure. Elements, sets, and functions become objects, categories
and functors respectively. Usually categorified structures provide additional structures
and information that their decategorified counterparts do not, making them a subject of
interest in contemporary mathematics.

Khovanov homology is a categorification of the Jones polynomial. Just as the Euler
characteristic sent surfaces to integers, which simplicial homology lifted to graded abelian
groups, the Jones polynomial sends oriented links to Laurent polynomials, which Khovanov
homology lifts to bigraded complexes.

Since we use a generalization of the Khovanov homology of links to tangles in this
thesis3 (described in the next sections), we will not examine the original construction in
depth. We will briefly sketch the idea behind it, and explain how the complexes of the
construction decategorify to give the (unoriented) Jones polynomial.

Before we do this though, we categorify the ring of Laurent polynomials Z[q, q−1] in
one variable. Since the Jones polynomial takes values in this ring, a sensible place to start
thinking about how the link invariant categorifies is to consider what objects the values of
the Jones polynomial can lift to. We wish to find a category whose objects decategorify to
give Laurent polynomials, and which is ideally is equipped with structures that descend to
addition and multiplication of Laurent polynomials.

Let us first consider the analogous question for the ring of integers. What structure(s)
categorify Z? The category Vectk of finite-dimensional vector spaces over a field k almost
works. To each vector space, one can take its dimension, an integer. Moreover, Vectk is
equipped with two operations, direct sum and tensor product, that respect dimension and
descend to additon and multiplication of integers:

dim(V ⊕W ) = dim(V )⊕ dim(W ), dim(V ⊗W ) = dim(V )⊗ dim(W ).

This said, there is a serious problem. The dimension of a vector space is, by definition non-
negative. One can also negate, and hence subtract integers, but there are no corresponding

3More precisely, we use a weaker version of a generalization of Khovanov homology to tangles which is
equivalent on links to the original theory.



24 Khovanov homology

operations in Vectk that descend to these. The category Vectk categorifies the semiring Z+
of positive integers, but not Z itself.

A solution is to expand Vectk to Kom(Vectk), the category of complexes of vector spaces.
In Vectk we decategorified structures by taking dimension, but in Kom(Vectk), the Euler
characteristic of a complex decategorifies structures. (That is, we take the alternating sum
of the dimensions of the homology groups of the complex. To make sure this is well-defined
we can require the complexes to be finite, that is to only have a finite number of non-zero
terms.)

Like vector spaces, complexes can be summed and tensored and in either case the Euler
characteristic respects both. Importantly, the category Kom(Vectk) comes with a tool
that descends to subtraction when we take the Euler characteristic: the cone of a map of
complexes.

Let f : V → W be a map of complexes. Then Cone(f) is the complex with objects
V n−1⊕Wn, with the differential defined by −dV +dW +f . A property of this construction
is that

χ(Cone(f)) = χ(W )− χ(V ).

In this way the category of finite complexes of finite vector spaces categorifies the integers,
though we can state the relationship more precisely.

By considering each Hom set in Kom(Vectk) up to chain homotopies, the category
becomes a triangulated category K. This is a strong property we need not define nor go
into, suffice to say that we can take the Grothendieck group of it, and it acquires the
structure of a ring. The Euler characteristic then induces a ring isomorphism

K(K) ∼= Z.

As a side, there is still much work to be done in categorification; it is still unknown how
to categorify the rational numbers for instance. (That is, to find a triangulated monoidal
category with Grothendieck ring isomorphic to Q. [Kho16])

Having categorified Z, we return to the problem of finding a category with Grothendieck
ring isomorphic to Z[q, q−1]. It turns out most of the work is done. The solution is to
consider graded vector spaces.

Explicitly, let GVectk be the category of graded vector spaces over some k. Here every
object is written as a direct sum of finite vector spaces V = ⊕

n∈Z Vn (where only finitely
many Vn are non-zero), and morphisms respect the grading. The objects of GVectk are
assigned a graded dimension via

qdim(V ) =
∑
n∈Z

dim(Vn) · qn.

The objects of GVectk hence descend to Laurent polynomials, but as with Vect, none of the
coefficents of the polynomials will be negative. Just as when we categorified Z, we consider
Kom(GVectk), requiring that differentials respect the gradings. (That is, ∂ : V m

n → V m+1
n

for all n,m.)
The homology of a complex V is then a bigraded vector space

H(V ) =
⊕
n,m∈Z

Hm
n (V ),
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where each Hm
n (V ) is defined as the mth homology of the subcomplex

· · · → V m−1
n → V m

n → V m+1
n → · · · .

When we take the Euler characteristic of a complex we obtain a Laurent polynomial,

χ(V ) =
∑
n

χ(Vn) · qn =
∑
n,m

(−1)m dim(Hm
n (V )) · qn.

Since V is finite dimensional this is equal to

χ(V ) =
∑
n,m

(−1)m dim(V m
n ) · qn

(by the Rank-nullity theorem). As before, direct sums, tensor products and cones of
morphisms descend to additon, multiplication and subtraction in Z[q, q−1].

The category of finite complexes of finite-dimensional graded vectors spaces appears to
be an appropriate candidate in which to lift the Jones polynomial. A categorification of the
Jones polynomial via this route would associate to each link diagram some complex in this
category, which when we take the Euler characteristic gives us the Jones polynomial. Just
as the Jones polynomial respects respects the Reidemeister moves, the homology groups of
the complexes would need to respect the Reidemeister moves too.

Khovanov’s construction [Kho99] that satisfies these conditions utilizes the Kauffman
bracket. Once the Kauffman bracket of a link diagram has been expanded into a sum of
smoothings, Khovanov lifts the smoothings to graded vector spaces, and assembles them
to form a complex.

As mentioned earlier, since we will be using a variant of Khovanov homology of tangles
later on, we won’t recreate the original construction here. The interested reader is referred
to Bar-Natan’s excellent exposition of it in [Bar02]. We will instead briefly sketch the
construction and motivate how, if given the idea and the time, one might conceivably
create it.

We wish to associate to each link diagram a complex in such a way that the Euler
characteristic of the complex gives us the Jones polynomial, and the homology groups of
the complex are invariant under the Reidemeister moves. Let us not worry about latter
issue for the time being, and just focus on the construction of the complex.

In many respects it is unnatural to normalize the Jones polynomial to take the value
of 1 on the unknot. It will be of great benefit to instead consider the unnormalized
Jones polynomial defined by V̂ (L) = V (L) · (q + q−1). Furthermore, we will replace the
third relation of the Kauffman bracket

〈 〉
= q−1〈 〉

+ q−1〈 〉
with

〈 〉
=
〈 〉
− q

〈 〉
.

Replacing the relation means that the unnormalized Jones polynomial is now defined
from the Kauffman bracket via V̂ (L) = (−1)n−qn+−2n−〈L〉 where n+, n− are the number
of positive and negative crossings in L respectively. The Kauffman bracket is no longer
regular isotopic with this definition, but this presents no obstacle.

Instead of requiring that the complex C(L) we will associate to a link diagram L satisfy
χ(C(L)) = J(L), we will instead require that χ(C(L)) = Ĵ(L).

Let us now try to directly categorify the (unoriented) Jones polynomial. We will assume
that in our method for associating a link diagram to a complex, each possible smoothing of
the diagram corresponds to some vector space that forms part of the complex. The complex
associated to a link diagram is then created by assembling the vector spaces from all the
smoothings into a series of vector spaces, then endowing the series with a differential.
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Such assumptions about the construction may at first seem too broad to help shape
the construction, but this is not true. Consider for instance the crossingless diagram of the
unknot. This trivially has one smoothing, namely itself, and as such the chain complex we
associate to the diagram will have the form

0→ V → 0.

We’ll assume V is in homological degree 0. If we want the Euler characteristic to descend
to the unoriented Jones polynomial we need χ(C(O)) = qdim(V ) = V̂ (O) = q + q−1. This
forces V to have two basis vectors, denoted 1 and X, in degrees −1 and 1 respectively.

The complex associated to a crossingless diagram O⊗n of n circles will also consist of one
non-trivial vector space. In this case however, we need χ(C(O⊗n)) = V̂ (O⊗n) = (q + q−1)n.
The sensible complex to assign to O⊗n is then

0→ V ⊗n → 0.

Since any smoothing of a link diagram is a disjoint union of circles, we’ve determined the
vector spaces the construction will assign to each smoothing. It is not obvious how to
assemble the vector spaces corresponding to the smoothings of link diagram into a complex
though.

The solution is hinted at by the following illustration computing the unoriented Jones
polynomial of the trefoil by Bar-Natan. [Bar02]
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Recall that the Kauffman bracket [Ka] of L is defined by the formulas1 〈∅〉 = 1,
〈©L〉 = (q + q−1)〈L〉 and 〈0〉 = 〈1〉 − q〈H〉, that the unnormalized Jones
polynomial is defined by Ĵ(L) = (−1)n−qn+−2n−〈L〉, and that the Jones poly-
nomial of L is simply J(L) := Ĵ(L)/(q + q−1). We name 1 and H the 0-
and 1-smoothing of 0, respectively. With this naming convention each vertex
α ∈ {0, 1}X of the n-dimensional cube {0, 1}X corresponds in a natural way
to a “complete smoothing” Sα of L where all the crossings are smoothed and
the result is just a union of planar cycles. To compute the unnormalized Jones
polynomial, we replace each such union Sα of (say) k cycles with a term of the
form (−1)rqr(q + q−1)k , where r is the “height” of a smoothing, the number
of 1-smoothings used in it. We then sum all these terms over all α ∈ {0, 1}X
and multiply by the final normalization term, (−1)n−qn+−2n− . Thus the whole
procedure (in the case of the trefoil knot) can be depicted as in the diagram
below. Notice that in this diagram we have split the summation over the ver-
tices of {0, 1}X to a summation over vertices of a given height followed by a
summation over the possible heights. This allows us to factor out the (−1)r

factor and turn the final summation into an alternating summation:

1

3

2 q(q+q−1)

100

CC
CC

CC
C

CC
CC

CC
C+

q2(q+q−1)2

110

DD
DD

DD
DD

DD
DD

DD
D

+

(q+q−1)2

000

||||||||||||||

DD
DD

DD
DD

DD
DD

D

��

q(q+q−1)

010

{{{{{{{{{{{{{{{

EEEE
EEEEE

EEEE

+

q2(q+q−1)2

101

+

q3(q+q−1)3

111

��

q(q+q−1)

001

yyyyyy

yyyyyy

��

q2(q+q−1)2

011

xxxxxxxxxxxxxx

��
(q + q−1)2 − 3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

(1)

= q−2 + 1 + q2 − q6
·(−1)n− qn+−2n−

−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

q + q3 + q5 − q9
·(q+q−1)−1

−−−−−−−→ J(&) = q2 + q6 − q8.

1Our slightly unorthodox conventions follow [Kh1]. At some minor regrading and
renaming cost, we could have used more standard conventions just as well.
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Each of the smoothings contributes (−q)a(q + q−1)b to the overall unoriented Jones
polynomial where b is the number of disjoint circles in the smoothing, and a is the number
of 1-smoothings in the state associated to the smoothing of a diagram.

We have already assigned to every smoothing with b disjoint circles a vector space V ⊗b
with graded dimension (q + q−1)b. By shifting the internal gradings of the vector spaces,
we can modify their graded dimension to (−q)a(q + q−1)b.
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More precisely, for an arbitrary graded vector space V = ⊕
n Vn, define a graded vector

space V {l} by V {l} := Vn−l. Then qdimV {l} = ql qdimV .
One can also shift the spaces comprising a chain complex. If · · · → Cn → Cn+1 → · · ·

is a chain complex, then define a chain complex C[m] by C[m]n := Cn−m.
With these notions, if we forget for the moment the issue of differentials, we can

associate to each link diagram a complex whose Euler characteristic is the unnormalized
Jones polynomial.

We consider all the smoothings of a link diagram L, and assign to each the vector space
V ⊗b{a}, where b is the number of disjoint circles in the smoothing and a is the number of
1-smoothings in the state associated to the smoothing of a diagram. We take the direct
sum of all the vector spaces whose gradings have been shifted by the same amount i, and
place the vector space in homological degree i. Assuming it is possible to add differentials
between these spaces, we obtain a complex C. This process is illustrated below for the
trefoil. The figure is also due to Bar-Natan. [Bar02]
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V {1}
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V ⊗2{2}

011
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��(
J&K0 ; J&K1 ; J&K2 ; J&K3

)

= J&K ·[−n−]{n+−2n−}−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

C(&). (2)

The graded Euler characteristic χq(C) of a chain complex C is defined to be the
alternating sum of the graded dimensions of its homology groups, and, if the
degree of the differential d is 0 and all chain groups are finite dimensional, it is
also equal to the alternating sum of the graded dimensions of the chain groups.
A few paragraphs down we will endow C(L) with a degree 0 differential. This
granted and given that the chains of C(L) are already defined, we can state and
prove the following theorem:

Theorem 1 The graded Euler characteristic of C(L) is the unnormalized
Jones polynomial of L:

χq(C(L)) = Ĵ(L).

Proof The theorem is trivial by design; just compare diagrams (1) and (2)
and all the relevant definitions. Thus rather than a proof we comment on the
statement and the construction preceding it: If one wishes our theorem to hold,

Algebraic & Geometric Topology, Volume 2 (2002)

By construction, we have that χ(C[−n−]{n+ − 2n−}) = V̂ (L). (One can see this by
comparing Bar-Natan’s illustrations above.)

We will not discuss the construction any further, but note that it isn’t actually to
difficult to determine what differential of the complex should be. (That is, to determine the
maps (edges) between the vectors spaces (vertices) in the above diagram.) The interested
reader is referred to [Kho16] for further details.

Of course, there is much work in setting setting up this construction rigourously, and
proving that the homology of the complexes associated to a link diagram is invariant under
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the Reidemeister moves.
In this thesis we examine the Khovanov homology of rational tangles, but the construc-

tion above doesn’t immediately extend to tangles: in the construction, the vector spaces
we assigned to the smoothings depended on the number of disjoint loops they contained.
It is not obvious how to assign a vector space to a smoothing with boundary.

Khovanov solution’s was to instead consider a complex of bimodules ([Kho01]). He
constructed a family of rings, then associated to each smoothing a bimodule over these
rings. The bimodules were then assembled to form a complex in a way similar to the
original construction.

Soon after Khovanov formulated his extension, Bar-Natan created an alternative
extension to tangles. Whereas Khovanov’s extension was very algebraic, Bar-Natan’s
version was very topological. Bar-Natan’s theory also provided an easier proof of several
properties of Khovanov homology, such as its functorality (though we don’t discuss this),
as well as satisfying a very nice composition property.

In the next section, we construct Bar-Natan’s ’topological’ version of Khovanov ho-
mology. By the chapter’s end, we will have specialized this to the theory we will use in
Chapter 3, as well as proving that the Khovanov complex the theory constructs in invariant
under the Reidemeister moves.

2.4 Bar-Natan’s approach

In an effort to try and keep this thesis as self-contained as possible, we present Bar-Natan’s
extension to Khovanov homology to tangles. His exposition is so clear and self contained
that we think it would be a mistake from it. As such, we embarrassingly present a
‘compressed’ version of the exposition from [Bar04] we need. If at any stage the reader is
lost by what we write below, we refer her directly to the source.

Definition 2.4.1 The category Cob3(∅) is defined as follows. Its objects are smoothings
(simple curves in the plane) with morphisms that are cobordisms between such smoothings.
By a cobordism we mean an oriented two-dimensional surface embedded into R2 × [0, 1]
whose boundary lies in R2 × {0, 1}. More generally, for a finite set of points B in S1,
define a category Cob3(B) as follows. Its objects are smoothings now with boundary
boundary B. The Hom-sets Cob3(B)(O → O′) between two smoothings in Cob3(B)
consist of all oriented two-dimensional surfaces embedded into a cylinder with boundary
(O × {0}) ∪ (B × [0, 1]) ∪ (O′ × {1}). In both categories we consider cobordisms up to
boundary preserving isotopies. Composition is defined by placing one cobordism on top of
the other and vertically renormalizing the result.

The term Cob3 will sometimes be used as a generic reference to Cob3(∅) or Cob3(B).

◦ =
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We now create a category consisting of vectors and matrices in Cob3. Recall that a
category is preadditive if its Hom-sets are Abelian groups and composition of morphisms
is bilinear. Note that every category C, if not already preadditive, can be modified to a
preadditive category C′ by defining the Hom-sets C′(O → O′) to be the free Abelian group
generated by C(O → O′).

Definition 2.4.2 Given a preadditive category C, define a preadditive category Mat(C) as
follows. The objects of Mat(C) are formal direct sums (possibly empty) of objects of C.
The Hom-sets Mat(C)(⊕mi=1Oi → ⊕nj=1O′j) consist of m× n matrices (Fij) of morphisms
Fij : Oi → O′j in C. Addition in Mat(C)(⊕mi=1Oi → ⊕nj=1O′j) is just matrix addition while
composition of morphisms in Mat(C) is defined in the obvious way:

((Fij) ◦ (Gjk))ik :=
∑
j

Fij ◦Gjk.

We will sometimes represent the objects of Mat(C) by column vectors and the morphisms
of Mat(C) as (marked) arrows taking one column to another. (Such as in the proof of the
invariance of the Khovanov bracket under R2 and R3 in Section 2.6.)

Definition 2.4.3 Given a preadditive category C, define the category of complexes Kom(C)
to be the category with objects chains of finite length

· · · ∂n−1−→ Cn
∂n−→ Cn+1

∂n+1−→ Cn+2
∂n+2−→ · · ·

(only finitely many terms are not the zero object) such that ∂n ◦ ∂n−1 = 0 for all n.
Define the Hom-sets Kom(C)(C → D) to be the set of all chain maps from C to D.

Chain maps F : C → D are, as usual, collections of morphisms (Fi)i∈Z taking Fi : Ci → Di

and satisfying ∂nFn = Fn−1∂n. Composition in Kom(C) via (F ◦G)r = Fr ◦Gr.

We now have the appropriate definitions to define the Khovanov complex [T ] of an
oriented tangle diagram T .

Definition 2.4.4 Let n+ and n− be the number of positive and negative crossings in T ,
and the total number of crossings be n. Number the crossings from 1 to n. Let S be the set
of states for T , expressed as a word in {0, 1} where the n-th letter denotes the smoothing
assigned to the n-th crossing. (That is, S is the set of all words of length n in {0, 1}.)

Construct a n-dimensional ‘combinatorial’ cube from S as follows. The vertices are
the elements of S, and two vertices are connected by an edge iff the vertices differ from
each other by one letter. Furthermore orient these edges, representing them as arrows, so
that the head of the arrow points towards the larger word (when the words are viewed as
integers).

We also attach a word of length n in {0, 1, ?} to each arrow. The word is identical in
each letter to the words on the head and tail of the arrow, except in the place where they
differ, for which the word has letter ?.

To finish constructing the combinatorial cube, assign a positive or negative sign to each
arrow depending on the word attached to it: if an arrow is labeled by the word ξ = ξ1ξ2 · ξn,
then the arrow has sign (−1)

∑
i<j

ξi where ξj = ?.
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The combinatorial cube corresponding to a diagram with 2 crossings is pictured below.

00

01

10

11

0?

?0

?1

−1?

Now turn the combinatorial cube into a ‘topological’ cube. Replace each vertex V with
the smoothing of T associated to the state V . Leave the arrows, but replace the word ξ

on each arrow by a cobordism M in Cob3(∂T )(ξ(0)→ ξ(1)) as follows. (Here ξ(i) is the
smoothing of T associated to the state obtained from ξ by replacing ? with i.)

Aside from a small disk D containing the smoothings of the crossing corresponding
to ?, the smoothings ξ(0) and ξ(1) are identical. Define M to be equal to the identity
morphism outside of D× [0, 1] — that is, equal to (Dc ∩ T )× [0, 1]. To complete M , fill in
the missing cylindrical slot with a saddle cobordism, illustrated above.

To complete the construction of the topological cube, view the cobordism as an element
in the preadditive category Cob3(∂T ), making it positive or negative depending on the sign
associated to the arrow ξ is on.

We have constructed a topological cube whose vertices are objects of Cob3(∂T ) and
whose edges are morphisms in Cob3(∂T ).

We now view the cube as an element of Kom(Mat(Cob3(∂T ))). To achieve this, first
consider the set of states S, viewed as words in {0, 1}. Partition S into n+ 1 sets by the
number of 0s in a word. Now turn each set into a vector, arranging the words from smallest
to largest (when viewed as integers). Refer to the vector consisting of words with i 0s as
the i-th vector.

This series of vectors of words in {0, 1} encode a way to arrange the vertices of the
topological cube into a series of vectors of smoothings in the obvious way. Once the vertices
of the topological cube have been arranged into these vectors, each vector of smoothings
can be regarded as an object of Mat(Cob3(∂T )). The set of arrows between the vectors can
be regarded as a matrix in Mat(Cob3(∂T )). (If there is no arrow between entries in the
vectors, the map is a zero morphism.)

Finally, in order to view the toplogical cube as a complex in Mat(Cob3), we must assign
homological degrees to each vector. Assign to the n-th vector the homological degree
n − n−. This complex is the Khovanov complex of T , denoted [T ]. We call [ · ] the
Khovanov bracket.

We need to check that the Khovanov bracket is well-defined. That is, that [T ] is
actually a complex for all T .

Proposition 2.4.5 For any oriented tangle diagram T , [T ] ∈ Kom.

Proof: The claim will follow if we can show that every face of the topological cube
anticommutes. To see why, note that the entry (∂n+1 ◦ ∂n)ij is equal to the sum of all
paths in the cube from [T ]ni to [T ]n+2

j . (Where [T ]ni is the ith entry in the vector [T ]n.)
These paths are precisely the paths on the face of the topological cube containing [T ]ni and
[T ]n+2

j . It follows that if every face anticommutes, every entry of ∂n−1 ◦ ∂n will be zero.
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If we ignore signs on the cobordisms, each face in the topological cube commutes. This
is because we are considering cobordisms up to isotopy, and spatially separated saddles in
a cobordism can be time-reordered by isotopy.

The anticommutivity of the faces then follows if we can show each face has an odd
number of negative cobordisms. Consider a face (without signs) of the combinatorial cube,
illustrated below. Here words w and w′′′ differ in the j-th and k-th letters. Letters that
have changed are indicated with a dash.

w

w′

w′′

w′′′

w1 · · · ? · · ·wk · · ·wn

w1 · · ·wj · · · ? · · ·wn

w1 · · ·w′j · · · ? · · ·wn

w1 · · · ? · · ·w′k · · ·wn

Recalling the definition of the combinatorial cube, one can see that arrows from w −→ w′

and w′′ −→ w′′′ will have the same sign, while the sign of w′ −→ w′′′ and w −→ w′′′ will
differ. It follows that each face in the topological cube has an odd number of cobordisms. 2

We now have a way of associating a complex to a diagram of a tangle, but it’s currently
not a tangle invariant. When considered up to homotopy equivalence in a certain quotient
category Kom(Mat(Cob3/l)), however, it is.

Definition 2.4.6 Two morphisms F,G : C → D in Kom(C) are said to be homotopic,
denoted F ∼ G, if there exist morphisms (hi)i∈Z with hi : Ci → Di−1 for which Fi −Gi =
∂i+1hi + hi−1∂i.

We note that this notion of homotopy is no different to that in usual homological algebra,
except that we are now in a more complicated category than vector spaces or modules. It
is not difficult to verify that homotopy is an equivalence relation, and is invariant under
left and right composition. We write Kom/h(C) to denote Kom(C) modulo homotopies. In
order to simplify notation, we will denote Kom(Mat(Cob3/l(∂T ))) and Kom(Mat(Cob3/l(∅)))
by Kob(∂T ) and Kob(∅). We will sometimes refer to both categories collectively as Kob.

Definition 2.4.7 Two complexes C,D are said to be homotopy equivalent, denoted C ∼ D,
if they are isomorphic in Kom/h(C). That is, if there are chain maps F : C → D and
G : D → C in Kom(C) for which G ◦ F and F ◦G are homotopic to the identity.

It is easy to check that homotopy equivalence is an equivalence relation on complexes.
We now define the quotient category for which the Khovanov bracket is a tangle invariant.

Definition 2.4.8 Let Cob3/l be the quotient category obtained from Cob3 by reducing Cob3
by the local relations S, T and 4Tu described below.

S: Whenever a cobordism contains a component isotopic to a sphere, the cobordism is
equal to 0.

T : Whenever a cobordism contains a component isotopic to a torus, the component may
be removed and the remaining cobordism multiplied by a factor of 2.

4Tu: Assume the intersection of a cobordism C with a ball is the union of four disks
D1 through to D4. Let Cij denote the result of removing Di and Dj from C

and replacing them by a tube with the same boundary. The 4Tu relation states
C12 + C34 = C13 + C24.
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We can summarize the above relations with the following pictures.

S

= 0

T

= 2

4Tu

+ = +

We are now in a position to state exactly how the Khovanov bracket is a tangle invariant.

Theorem 2.4.9 The isomorphism class of [T ] regarded in Kobh/(∂T ) is an invariant of
the tangle T . The complex does not depend on the ordering of the crossings chosen in its
construction, and is invariant under the Reidemeister moves.

We will not prove this form of the Khovanov bracket is invariant under the Reidemeister
moves. (But will prove the ‘dotted’ version of Bar-Natan’s theory we use is in Section 2.6.)
The proof in [Bar04] involves the construction of explicit chain homotopies, and is in many
respects the most difficult section of the paper. We now discuss the excellent composition
properties the Khovanov bracket enjoys.

Definition 2.4.10 A d-input planar arc diagram D is an ‘output’ disk with:

• d smaller ‘input’ disks removed. The input disks are numbered 1 to d, each with a
basepoint (∗) on its boundary.

• a collection of disjoint embedded arcs that are closed or begin and end on the
boundary of an output or input disk transversely.

The output disk contains a basepoint on its boundary too. We consider planar arc diagrams
up to isotopy, and they may be oriented or unoriented.

An example of a planar arc diagram can be found in Example 2.4.17. In the sequel, we
will often drop the basepoints from planar arc diagrams.

Definition 2.4.11 A collection of sets P(k) along with operations defined for each (ori-
ented) unoriented planar arc diagram is an (oriented) planar algebra if the radial planar
arc diagrams act as identities and the following associativity condition holds: if Di is the
result of placing D′ into the i-th hole of D (providing the diagrams are compatible), then
as operations Di = D ◦ (I × · · · ×D′ × · · · I).

The lack of restrictions on the operations defined for each planar arc diagram makes the
definition quite general, though we usually consider sets comprised of topological objects.

Example 2.4.12 Let T 0(k) denote the collection of all unoriented tangle diagrams in
a based disk (a disk with a basepoint on its boundary) with k ends on the boundary,
considered up to planar isotopies as usual. Let T (k) denote the quotient of T 0(k) by the
three Reidemeister moves.

Then
(
T 0(k)

)
k and (T (k))k are planar algebras. Let D be a d-input planar arc diagram

D with ki arcs ending on the i-th input disk and k arcs on output disk. Then define an
operator

D : T 0(k1)× · · · × T 0(kd) −→ T 0(k)
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by placing the d input tangles into the holes of D. The operators are similarly defined for
(T (k))k . It is clear that the radial planar arc diagrams act as the identity operators. The
associativity condition is easily seen to hold too.

Example 2.4.13 The collection Obj(Cob3/l) and the Hom-sets Mor(Cob3/l) are both planar
algebras. The first is just a sub planar algebra of T (k). For the second, we need to specify
how a planar arc diagram can act as an operator on cobordisms. The solution is not
difficult – D × [0, 1] is a vertical cylinder with d vertical cylindrical holes connected by
vertical curtains. One simply places cobordisms in the holes, which defines an operation
from D : (Mor(Cob3/l))d → Mor(Cob3/l).

Both the previous examples may seem, for lack of a better word, obvious: clearly one
can fill up the holes of a planar arc diagram with tangles to obtain more tangles.

There are situations where the operator a planar arc diagram should correspond to is
not obvious. For instance, say we decided to put tangle complexes in the holes of a planar
arc diagram. That is, put elements of Kob into planar arc diagrams. Can the planar arc
diagrams act as operators on these complexes?

The answer is yes, and the operation is essentially the notion of a tensor product of
complexes, with planar arc diagram gluing together the pieces. Let us formalize this.
Consider Kob(Bk) and Kob/h(Bk) where where Bk is some placement of k points on a
based circle.

Given a d-input planar arc digram D with ki arcs ending on the i-th input disk and k

arcs ending on the outer boundary, D acts as an operator as follows.
Given complexes (Ωi, di) ∈ Kob(ki), define D(Ω1 . . . ,Ωd) = (Ω, d) by

Ωr :=
⊕

r=r1+...rd

D(Ωr1
1 , . . . ,Ω

rd
d ), (2.4.1)

d|D(Ωr1
1 ,...,Ωrd

d
) :=

d∑
i=1

(−1)
∑

j<1 rjD(IΩr1
1
, . . . , di, . . . , IΩrd

d
). (2.4.2)

The basic properties of tensor products transfer over to tensor products in this con-
text; in particular a morphism Ψi : Ωia → Ωib induces a morphism D(I, . . . ,Ψi, . . . , I) :
D(Ω1, . . . ,Ωia, . . . ,Ωd)→ D(Ω1, . . . ,Ωib, . . . ,Ωd). Homotopies at the level of tensor factors
induce homotopies at the levels of tensor products.

These facts essentially constitute the proof of the following proposition.

Proposition 2.4.14 The collection (Kob(Bk)) is a planar algebra. Furthermore, the
operations D on (Kob(Bk)) send homotopy equivalent complexes to homotopy equivalent
complexes, meaning Kob/h(Bk)) also has a natural structure of a planar algebra.

The upshot of all this is that the Khovanov bracket respects the tensoring operations
associated to a planar arc diagram. We need another definition to state this precisely.

Definition 2.4.15 A morphism Φ of planar algebras from (P(k))→ (Q(k)) is a collection
of maps Φ : P(k)→ Q(k) satisfying Φ ◦D = D ◦ (Φ× · · · × Φ) for every D.

Theorem 2.4.16 The Khovanov bracket [ · ] is an oriented planar algebra morphism
[ · ] : (T (s))→ (Kob/h(Bs)).

One proves this by showing that the theorem holds when all inputs to a planar arc
diagram are restricted to single crossings; the result in general follows from this and the
associativity of the planar algebras involved.
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We will use Theorem 2.4.16 extensively in the sequel. Before we develop the theory
further we pause to go through an example utilizing these concepts.

Example 2.4.17 Let us calculate the the Khovanov complex of the Hopf link below. We
can view the link as the result of inserting the tangle diagrams below into the planar arc
diagram illustrated.

D(X1, X2)

T1

T2

D X1 = X2

We can then use the property that [ · ] is a morphism of planar algebras:

[ Hopf ] = [D(X1, X2)] = D([X1], [X2]).

From the definition of [ · ] we have

[X1] = [X2] =
(1) (2)

.

Here, and in the sequel, we’ve underlined the object of the complex that is in homological
degree zero. The symbol is a shorthand to denote the saddle map; in depictions of
saddle cobordisms in the sequel we will use the same notation.

Using equations (2.4.1) and (2.4.2), we construct [ Hopf ].

D( , )

D( , )

D( , )

D( , )⊕

D(1, )

D( , 1)

D( , 1)

−D(1, )

[ Hopf ]0 [ Hopf ]1 [ Hopf ]2

When we calculate the objects and morphisms of this complex by placing the appropriate
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smoothings and cobordisms into D, we obtain

.

The original Khovanov homology theory was bigraded. We now equip the theory so far
with a bigrading too.

Definition 2.4.18 A graded category is a preadditive category C with the following two
properties:

1. The Hom-sets of C form a graded abelian group, composition respects the gradings
(deg f ◦ g = deg f + deg g), and all identity maps have degree 0.

2. There is a Z-action (m,O) 7→ O{m}, called “grading shift by m” on the ob-
jects of C. As plain abelian groups, morphisms are unchanged by the action,
Mor(O1{m1},O2{m2}) = Mor(O1,O2), but gradings do: if f ∈ Mor(O1,O2) and
deg f = d, then as an element of Mor(O1{m1},O2{m2}) we have deg f = d+m2−m1.

If a preadditive category C satisfies only the first property above, it can be extended
to a category C′ that has the second property too: let the objects of C′ be copies of the
original objects but with integers attached. (That is, O{m} for all O ∈ C and m ∈ Z.) It
is clear how to define a Z-action on C′, how to define the Hom-sets Mor C′, and how to
grade Mor C′.

If we extend a preadditive category C to a graded category we will still refer to the
graded version as C. When writing a complex in a graded category, we will often denote the
gradings of its objects in brackets. (Such as in the proof of the invariance of the Khovanov
bracket under R1 in Section 2.6.)

We note that if C is graded category then Mat(C) can be considered as a graded
category: a matrix is homogeneous in degree d iff all its entries are of degree d. Similarly
complexes in Kom(C) (or Kom(Mat(C))) are graded categories.

We now define a grading on the Hom-sets of Cob3, and as a result Kob becomes a
graded category.

Proposition 2.4.19 For a cobordism C ∈ Mor(Cob3(B)) with |B| vertical boundary com-
ponents, define degC := χ(C)− 1

2 |B|, where χ is the Euler characteristic. Then Cob3(B),
and Cob3/l(B) are graded categories.

Proof: It is not hard to verify that the degree is additive under composition in Cob3(B),
and under horizontal composition using the planar algebra structure of Cob3(B). It is easy
to verify that the S, T and 4Tu relations are degree-homogeneous, from which it follows
that Cob3/l(C) is a graded category. 2

We now refine the definition of the Khovanov bracket, and the invariance theorem, to
accommodate gradings.
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Definition 2.4.20 In the definition of the Khovanov bracket, if T has n+ positive crossings
and n− negative crossings, [T ] has the form

• → [T ]−n− −→ · · · −→ [T ]n+ → •

where • is the zero object. Now add gradings to the objects of [T ] by endowing [T ]r with
grading [T ]r{r + n+ − n−}, so that the complex is now

• → [T ]−n− {n+ − 2n−} −→ · · · −→ [T ]n+ {2n+ − n−} → •.

In the sequel the Khovanov bracket, unless otherwise stated, will be assumed to have
graded objects as just described.

This allows us to recast the results as follows.

Theorem 2.4.21 With the Khovanov bracket graded as per Definition 2.4.20, the following
properties hold.

1. All differentials in [T ] are of degree zero.
2. Up to degree-0 homotopy equivalence, [T ] is an invariant of the tangle T . That is,

if T1 and T2 differ by some Reidemeister moves, then there is a degree-0 homotopy
equivalence F : [T1]→ [T2].

3. The Khovanov bracket descends to a planar algebra morphism (T (s)) → (Kob(s))
and all the planar algebra operations are of degree 0.

Proof: We omit the proof, though it is not difficult. It essentially amount to checking that
the constructions created up to this point (in particular the homotopy equivalences use to
prove the invariance of the bracket). 2

We have seen how to extend Khovanov’s categorification of the Jones polynomial to
the case of tangles, and do in such a way that allows us to work with a topological complex
instead of an algebraic one. One of the benefits of working in this setting is the excellent
composition properties of the Khovanov bracket. But we haven’t addressed the issue of
whether the bracket is a useful invariant. That is, how good is it at distinguishing tangles?

If we wished to answer this question we would need to be able to determine when two
complexes in Kob are not homotopy equivalent. Showing this directly is very difficult, so
we instead construct a functor to take the topological complex into an algebraic one. In the
process much information about the complex is lost, but at least in the algebraic world it
is easier to determine if two complexes are not homotopy equivalent – one takes homology,
and if the homology groups differ, the complexes are not homotopy equivalent.

Formally, consider a functor F : Cob3/l → A where A is some abelian category. It extends
easily to a functor F : Mat(Cob3/l)→ A, and hence to a functor F : Kob→ Kom(A). Just
as [T ] is an invariant of T up to homotopy equivalence in Kob, so too is F[T ] an invariant
up to homotopy equivalence in A. Hence the isomorphism class of the homology groups
H?(F[T ]) is an invariant of T . Of course, if A is graded and F is degree respecting, then
H?(F[T ]) is a graded invariant of T .

We will now construct such a functor for Cob3•/l(∅). The objects of the category Cob3/l(∅)
are just disjoint unions of circles ( ), while the morphisms are generated by the the
cap, cup, pair of pants and upside-down pair of pants. (This is a well-know result about
(1 + 1)-dimensional TQFTs, refer to any standard text for a proof of the claim.) For brevity
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we will denote the pair of pants and upside-down pair of pants cobordisms by and
respectively. As such a functor F : Cob3/l(∅)→ A doesn’t need much data.

Definition 2.4.22 Let V be the free abelian group generated by 1 and X. We make V
into a graded abelian group by assigning deg 1 = −1 and degX = 1.

Now define a TQFT F : Cob3 → ZMod by F( ) = V , F(cup) = ε : Z → V ,
F(cap) = η : V → Z, F( )→ m : V ⊗ V → V , and F( ) = ∆ : V → V ⊗ V . These
maps are defined by

F(cap) = ε : 1 7→ 1,
F(cup) = η : 1 7→ 0, X 7→ 1

F( ) = m :

1⊗X 7→ X, 1⊗ 1 7→ 1,
X ⊗ 1 7→ X, X ⊗X 7→ 0,

F( ) = ∆ :

1 7→ 1⊗X +X ⊗ 1,
X 7→ X ⊗X.

Proposition 2.4.23 The functor F defined above is well-defined and degree respecting. It
descends to a functor F : Cob3/l(∅)→ ZMod.

In Khovanov’s original construction for links [Kho99], he essentially constructed the
topological cube, though didn’t view it as an element in Kob. Instead he immediately
turned the vertices and cobordisms into modules and maps and obtained a complex.
The functor used to do this was precisely the one above; as such for links we have that
H?(F[L]) ∼= Kh(L), where Kh(L) is Khovanov’s original categorification of the Jones
polynomial.

This concludes the section. We have seen Bar-Natan’s extension of Khovanov’s original
homology theory to the case of tangles. We saw that one of the benefits of this topological
perspective is the composition properties of the Khovanov bracket – it is a morphism of
planar algebras. We also saw that in the case of links, one can recover the homology groups
of Khovanov’s original construction by applying a certain TQFT to the construction.

We did not sketch the proof of that the Khovanov bracket is actually a link invariant.
One of the reasons we avoided this is because Kob is a difficult category to work with, and
as such the proof is not elementary. As will we see in the next section, by tweaking Kob
to a different category Kob•, a tool for simplifying complexes is introduced that makes
life significantly easier. Almost all of the theory developed so far carries over, so moving
to Kob• presents no problem. As a bonus, in Kob• the proof of the invariance of the
Khovanov bracket is much nicer, as we will see in Section 2.6.

2.5 Bar-Natan’s dotted theory

We now construct a ‘dotted’ version of the theory presented in the previous section. We
change the category Kob in which the complexes lie to a ‘dotted’ version Kob•, but it is
otherwise business as usual. The reason we move to the dotted setting is that it allows us to
consider new homotopy equivalences. (Our main result, Theorem 3.3.1, is built on two such
isomorphisms.) In the case of links however, the theory is equivalent to standard Khovanov
homology. After first constructing Kob•, we show the equivalence of the restricted theory
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by constructing a TQFT (Proposition 2.5.2). We then introduce an isomorphism involving
cobordisms specific to Kob• (Lemma 2.5.3), then close the section with a more general tool
for simplifing complexes (Lemma 2.5.4).

We extend Cob3 to a category of dotted cobordisms Cob3•. This has the same objects as
Cob3, but morphisms are now allowed to have dots (of degree −2) on their surface. Dotted
cobordisms are considered to be isotopic if their underlying cobordisms are isotopic and
contain the same number of dots on each connected component. As with Cob3, morphisms
in Cob3• are considered up to boundary-preserving isotopy.

We then quotient out Cob3• by the following local relations to form Cob3•/l.

= 0 = 1•

• • = 0

•

•
= +

We call the last relation neck cutting. Note that the S, T and 4Tu relations of Cob3/l hold
in Cob3•/l too: by definition S holds. When neck cutting is applied to a torus (viewed as a
cobordism), it splits into a sum of dotted spheres; the sum then simplifies into a sum of two
empty diagrams from which relation T follows. Similarly one applies neck cutting to either
side of the 4Tu relation; both sides simplify to the same four-term sum of dotted disks.

Just as we denoted Kom(Mat(Cob3/l)) by Kob, we will denote Kom(Mat(Cob3•/l)) by
Kob•.

Since the S, T and 4Tu relations hold in Cob3•/l, the proof that [T ] is an isotopy
invariant of T up to degree-0 homotopy equivalences in Kob(∂T ) extends to Kob•(∂T ).
But as we mentioned previously, verifying the invariance of [T ] under the Reidemeister
moves in Kob(∂T ) is hard. Not so in Kob•(∂T ), as we will see in the next section. The
reduction in complexity of the proof is due to an isomorphism that uses dotted cobordisms.
The isomorphism is also central to our work in the next chapter.

But we must first create a TQFT for this dotted setting. The presence of dots in the
theory mean TQFTs well-defined in Cob3/l don’t immediately extend to Cob3•/l. This said,
the functor in Definition 2.4.22 which gives ordinary Khovanov homology does extend to a
functor from Cob3•/l to the category ZMod of graded Z-modules. Instead of describing this
functor directly, we will create the functor as a specialization of the following functor.

Definition 2.5.1 Let B be a finite set of points in S1 and let O be an object of Cob3/l(B).
Define a tautological functor FO : Cob3/l(B)→ ZMod on objects by FO(O′) := Mor(O,O′)
and on morphisms by composition on the left. That is, send the morphism F : O′ → O′′
to the map FO(F ) : Mor(O,O′) → Mor(O,O′′) which takes G ∈ Mor(O,O′) to F ◦G ∈
Mor(O,O′′).

Various specializations of this tautological functor lead to different variants of Khovanov
homology. Lee’s variant [Lee02], for example, is obtained by setting

F(O′) := Z/2Z⊗Z Mor(∅,O′)/G

where G is the relation setting the genus three surface to a numerical factor of 8.

Proposition 2.5.2 Define tautological functors for objects in Cob3•/l(B) as above. Then
the functor F∅ : Cob3•/l(∅) → ZMod restricted to the subcategory Cob3/l(∅) is the functor
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exhibited before in Definition 2.4.22. That is, for a link L, H?(F∅[L]) ∼= Kh(L), the
original Khovanov homology of L.

Proof: First consider an arbitrary element of Mor(∅,O′) for some object O′ ∈ Cob3•/l(∅).
The element can be reduced, by neck cutting, to a sum of terms in which every connected
component touches at most one boundary curve. Further neck cutting can be applied
so that no connected component has positive genus. Simplifying each term of the sum
using the other local relations whenever possible produces a sum of cobordisms in which
every connected component has exactly one boundary curve. By our simplifications these
connected components are either disks or dotted disks. Hence if O′ contains k curves,
F∅(O′) = U⊗k where U is Z { , }, the free Z-module generated by a disk and a dotted
disk.

Now identify U and V of Definition 2.4.22 via = 1 and = X. To check F∅ is the
functor claimed, we must verify it takes the cup, cap, pair of pants and upside down pair
of pants to the appropriate maps.

We check the map agrees on both types of pants; the other verifications are trivial.
Since the pair of pants takes two circles to a circle, the map F∅( ) :

Mor(∅, )→ Mor(∅, ) is defined by where it sends the generators of U⊗2. As these are
just pairs of (possibly dotted) disks, the cobordism obtained after composition with is
isotopic to a (possibly dotted) disk. Explicitly,

7→ , 7→ , 7→ , 7→ 0.

With the above identifications it follows that F∅( ) = m.
For the upside down pair of pants, the map F∅( ) : Mor(∅, )→ Mor(∅, ) sends

the disks and to a tube and a dotted tube respectively. After neck cutting these
simplify so that the map sends

7→ + , 7→ .

This is precisely ∆. It follows that F∅ is the functor claimed.
Like F , the tautological functor extends to a functor F∅ : Kob•(∅) → Kom(ZMod).

Since the construction of [L] in Kob•(∅) is the same as that in Kob(∅) (and does not involve
the creation of dotted cobordisms), H?(F∅[L]) ∼= H?(F[L]). Since H?(F[L]) ∼= Kh(L),
the proposition follows. 2

The benefit of working in with this ‘dotted’ theory is that we can now consider homotopy
equivalences involving dotted cobordisms, allowing us to simplify [T ] in ways not previously
possible. In the case of links, with one such isomorphism it is possible to simplify [L] so
that all of the objects of the complex are direct sums of empty diagrams, the matrices
between them taking only integer entries. The isomorphism is described in Lemma 2.5.3
below.

Although this ‘delooping’ process actually increases the number of diagrams in the
complex, in practice many of the maps between the diagrams become isomorphisms. One
can then apply a categorical version of Gaussian elimination to discard pairs of subobjects
related via an isomorphism. Both tools together dramatically simplify complexes.

Perhaps unsurprisingly, these tools can be implemented on a computer. When combined
with the composition properties of the Khovanov bracket, a method for rapidly computing
the Khovanov complex associated to a tangle is achieved. Indeed, as Bar-Natan found in
[Bar06], an implementation of the tools, once optimized, was able to compute the Khovanov
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homology of the (8, 7) torus knot T8,7 in a matter of minutes. (Note that this knot has
48 crossings – if the complex was computed using the original definition of Khovanov
homology, the complex would contain 2.8 · 1014 objects and 3.8 · 1015 morphisms. Obviously
computing the homology of such a complex is not feasible.)

These tools are useful theoretically too – they are bread and butter for our results in
the last chapter. The proofs of many results in the dotted setting can be simplified with
these tools, such as the invariance of the Khovanov bracket under the Reidemeister moves.

In the undotted setting one proves this via the construction of explicit chain homotopies.
The proof still holds in the dotted setting, but one can now instead simplify the complexes
associated to either side of a Reidemeister move. As a result the proof is significantly easier.
We do this is the next section.

Without further ado, let us see these tools which are used constantly throughout the
remainder of the thesis.

Lemma 2.5.3 If an object S in Cob3•/l contains a closed loop l, it is isomorphic in
Mat(Cob3•/l) to the direct sum of two copies S′{−1} and S′{+1} of S in which l is removed,
one with a degree shift of −1 and the other with a degree shift of +1. Symbolically,
∼= ∅{−1} ⊕ ∅{+1}.

Proof: The isomorphisms are as follows.

∅ (−1)

∅ (+1)

⊕

•

•

The composition taking to follows from neck cutting. The other composition is a
matrix whose entries are spheres with various numbers of dots; the other local relations
show this matrix is the identity. 2

Lemma 2.5.4 If φ : b1 → b2 is an isomorphism in some additive category C, then the four
term complex in Mat(C)

· · ·
[
C
] b1

D

 b2
E

 [
F
]

· · ·

α
β

 φ δ

γ ε

 (
µ ν

)

is isomorphic to the complex

· · ·
[
C
] b1

D

 b2
E

 [
F
]

· · · .

0
β

 φ 0
0 ε− γφ−1δ

 (
0 ν

)
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Both are homotopy equivalent to the complex

· · ·
[
C
] [

D
] [

E
] [

F
]

· · · .

(
β
) (

ε− γφ−1δ
) (

ν
)

Here C,D, F and F are arbitrary columns of objects in C and all Greek letters (other than
φ) represent arbitrary matrices of morphisms in C (having the appropriate dimensions,
domains and ranges); all matrices appearing in these complexes are block-matrices with
blocks as specified. The claim still holds if b1 and b2 are direct sums of objects, provided
the matrix φ is invertible.

Proof: The 2× 2 (block) matrices in the first two complexes above differ by invertible row
and column operations – that is, by a change of basis. When the corresponding operations

are performed on
(
µ ν

)
and

α
β

 these change to
(
µ− νγφ−1 ν

)
and

α− φ−1δβ

β


respectively. Since the differentials square to 0 we have µφ − νγ = 0 = φα − δβ, from
which the isomorphism follows.

Note that the second complex segment is the direct sum of the third complex segment
and

· · · 0
[
b1
] [

b2
]

0 · · · .

(
φ
)

Since φ is an isomorphism this complex is contractible. (That is, homotopy equivalent
to the zero complex.) It follows that the second (and hence the first) complex segment is
homotopy equivalent to the third complex segment. 2

At first glance the tools may seem humble, but in reality they provide a way to radically
simplify complexes that are otherwise inaccessible. Examples of delooping and Gausssian
elimination in action may be found in the next section (and subsequent chapter).

2.6 Invariance of the Khovanov bracket under the Reide-
meister moves

We now prove the invariance of the Khovanov bracket in Kob• under the Reidemeister
moves. There are three separate arguments we need to make, but our approach in each
case is the same. We compute the Khovanov complexes associated to both sides of a
Reidemeister move, then simplify them using the tools exhibited in the previous section.
Since delooping and Gaussian elimination are both homotopy equivalences, if two complexes
simplify down to the same complex, the complexes themselves are homotopy equivalent.

This is in contrast to the corresponding proofs in Kob, available in [Bar04], where
explicit homotopy equivalences are constructed to prove R1 and R2, while R3 is proved
using the map in R2 and various cone constructions.

The length of the arguments presented increases with the number of crossings in the
diagrams; as such we work through the Reidemeister moves in order.

Proof of R1 invariance: The Khovanov complex of the ‘twisted’ side of R1 as as
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follows.

•

(−2) (−1)

•=

We deloop the last term to obtain the following isomorphic complex.

•

(−2)

⊕ •

(−2)

(0)

 1


Note that when we composed the saddle cobordism with the various cups of the delooping
isomorphism, the shape of the cobordism we obtain resembles an arm of a cactus. As
such we can isotope this arm back into the main ‘curtain’ of the cobordism, obtaining the
cobordisms shown.

The identity cobordism is an isomorphism, so we can further simply the complex with
Gaussian elimination. To eliminate any ambiguity about how Lemma 2.5.4 may be applied,
let us write the complex in the form given in the lemma.

• ⊕

•

⊕ •

(−2) (−2)

(0)

0
0

  1 0
0

 (
0 0

)

When the lemma is applied, we obtain

• •

(0)
.

This is precisely the Khovanov complex of the crossingless tangle corresponding to the
other side of R1. 2

Proof of R2 invariance: The Khovanov complex of the R2 diagram with crossings is as
follows.
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⊕

−

=

To avoid clutter we’ve dropped the internal gradings and haven’t included the zero objects
on the ends. Delooping the only term we can gives us the following complex.

⊕

⊕
1

1

−

One can instantly see from the isomorphisms here that all but one of the terms will cancel.
Applying Gaussian elimination to the isomorphism on the right of the diagram gives

⊕ •

1

By eliminating the remaining isomorphism we obtain

• •

,

the complex associated to the ‘uncrossed’ R2 diagram. 2

Proof of R3 invariance: Both sides of the R3 relation contain three crossings and
as such the Khovanov complexes are larger than those previously exhibited. The proof is
not too bad though.
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The unreduced Khovanov complexes of both sides of R3 are below.

−

−

−

=

−

−

−

=

For clarity we’ve dropped the cobordisms between the terms; each is a saddle. The minus
signs indicate saddles with a negative coefficient. We’ve also dropped the quantum gradings
and homological height information – this depends on the orientation of the components
but does not change the argument. We’ve taken the liberty to isotope several of the objects.

Notice the similarity in the arrangement and type of the subobjects in the complexes.

Let us first simplify the top complex. There is only one indecomposable object in the
complex with a loop. The maps going into and out of this object are

.

Upon delooping, three isomorphisms are introduced into the complex. The previous part
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of the complex becomes

1

1 1

.

Eliminating the right-most isomorphism reduces the complex to

−

1

−

1
.

(Here the 1 s indicate identity cobordsms; as before the other maps are saddles.) After
eliminating the bottom isomorphism the complex simplifies to

−

.

Note that the zero map between the middle diagrams in the second and third columns of
the complex has changed to a saddle.

We now examine the Khovanov complex associated to the other side of R3. In exactly
the same way as the previous case, this simplifies to

−

.



46 Khovanov homology

The only difference between this and the other simplified diagram is the location of the
negative sign. The following lemma shows the two are the same. 2

Lemma 2.6.1 Let (C•, d•) be a chain complex, and let (C•, d′•) denote a chain complex
obtained from (C•, d•) by negating one of the differential maps. Then (C•, d•) ∼= (C•, d′•).

Proof: This is trivial, consider the following chain map.

Cn+1 Cn Cn−1 Cn−2 Cn−3

C ′n+1 C ′n C ′n−1 C ′n−2 C ′n−3

· · ·

· · · · · ·

· · ·
dn+1 dn dn−1 dn−2

dn+1 −dn dn−1 dn−2

1 1 −1 −1 −1

2



Chapter 3

The Khovanov homology of
rational tangles

In this chapter we prove that the Khovanov complexes of rational tangles have the structure
of zig-zags. Theorem 3.3.1, together with Proposition 4.2.1, essentially provides a complete
description of the Khovanov homology of rational tangles. The theorem has practical and
theoretical applications. It provides a way to rapidly compute the Khovanov complex of
rational tangle (and hence rational knots). The theorem provides an alternative proof of a
result for alternating links by Lee [Lee02] in the case of rational knots.

Although in general the Khovanov complex itself is not an invariant, our main Theorem
describes how the Khovanov complex of a rational tangle has a particularly simple, and
canonical, representative. We describe this representative very explicitly, and suprisingly,
the underlying object can be described via the Burau representation of B3. The full
implications of this observation remain unclear. We will discuss this aspect in the next
Chapter.

In Section 3.1 we first use the tools developed in Section 2.5 to determine the Khovanov
complex of a integer tangle (Proposition 3.1.1). The proof is by induction, and we find
that the complexes [n] all share a similar structure. We then introduce a notation with
which one can easily describe and visualize the complexes. We illustrate the notation and
the result of the section by computing Kh(71) (Example 3.1.3).

In Section 3.2 we describe the ‘square isomorphism’ (Proposition 3.2.1). We describe
how it can simplify previously inscrutable complexes into the aforementioned canonical
form.

Finally, in Section 3.3 we use these results to obtain Theorem 3.3.1. We illustrate the
theorem by easily computing Kh(82) by hand in Example 3.3.3.

In Chapter 1 we saw that every rational positive (negative) tangle is isotopic to a stan-
dard form 〈a1, a2, . . . , an〉 where all ai are non-negative (non-positive) (Definition 1.1.12).
In such a form the rational tangle can be constructed from a finite sequence of additions
and products with [+1] (respectively[−1]). This means that the Khovanov complex of a
rational tangle can be constructed inductively from [± 1] by a sequence of intermediate
complexes, each one obtained from the next by adding a crossing then immediately simpli-
fying the resulting complex. Theorem 3.3.1 describes precisely how to obtain [T + [1]] or
[T ∗ [1]] from [T ] by breaking apart the ‘morphism string’ (Section 3.3) of [T ] into several
subwords, applying certain rules to the subwords, and concatenating the result.

For the rest of the thesis, we’ll work with positive tangles. The results for the case of
negative tangles are completely analogous. We will also use the notation [a1, a2, . . . , an]
throughout the chapter to denote the Khovanov complex of the rational tangle 〈a1, . . . , an〉.

47
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For those hard-pressed for time, the chapter can be summarized in a triptych of
diagrams: Figure 3.1.1, Figure 3.2.5 and Figure 3.3.1. If you understand these, you’ve
understood this chapter.

3.1 The Khovanov complex of integer tangles

In this section we compute the Khovanov complex [n] of the integer tangle [n]. We do this
inductively, using only the aforementioned tools of delooping and Gaussian elimination.
The process is summarized in the illustration over the page.

Integer tangles are the building blocks of rational tangles, and understanding their
Khovanov homology will allow us to understand the Khovanov homology of rational tangles
in general. In particular, the simplification of the Khovanov complexes of integer tangles,
described in Proposition 3.1.1 below, is one of the main ingredients in Theorem 3.3.1, the
main result of this chapter.

In this section, and in later parts, we will often use Lemma 2.6.1 to simplify results.

Proposition 3.1.1 Let n > 0 and [n] have orientation type II. Then [n] is homotopy
equivalent to

(−3n + 1)

· · ·

(−n − 5) (−n − 3) (−n − 1)
.

(−n)

− + −

Proof: The case n = 1 follows directly from the definition of Khovanov homology. The case
n = 2 is similar to the proof of the invariance of the Khovanov bracket under R2. Namely, we
write [2] = [1]+[1] and construct the planar arc diagram D corresponding to tangle addition.
Since the Khovanov bracket is a planar algebra morphism, [2] = [D([1], [1])] = D([1], [1]).
The complex D([1], [1]) is constructed in Figure 3.1.2 below. We can simplify the complex.
Delooping the object in the NW corner gives us

(−5)

(−3)

.
−1

−

1

After Gaussian elimination, this simplifies to

(−5) (−3)
,

(−2)

−
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n · · · a b s

n terms

n

· · ·

· · ·

'

· · ·

· · ·

n+ 1 · · · b a b s

n+ 1 terms

Figure 3.1.1: When an integer tangle is extended by another crossing, the complex picks up
another term. This small change in the size of the complex is due to the cancellation of nearly an
entire row.
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T1 T2

T1
T2

(−2) (−1)

(−2)

(−1)

−

Figure 3.1.2: left The integer tangle [2] is the result of placing the [1] tangle in both holes of
the planar arc diagram illustrated. right Calculating [2] from [1] and the planar arc diagram to
the left.

which is isomorphic to

(−5) (−3)
.

(−2)

−

Now assume the claim is true for some n ≥ 2. By using the same ‘addition’ planar arc
diagram in Figure 3.1.2 above with T1 = [n] and T2 = [1], we have [n+ 1] = D([n], [1]).
This complex is as follows.

T1
T2

· · ·

· · ·

(−3n + 1) (−3n + 3) (−3n + 5)

· · ·

(−n)

(−2)

(−1)

± ∓

Figure 3.1.3: The complex [n+ 1] can be computed from [n] and [1] using the same method in
Figure 3.1.2. For readability the morphisms of the complex have been omitted.

We simplify the NW corner of the complex first by delooping, and then Gaussian
elimination. The complexe obtained after delooping is as follows. (To avoid clutter, in
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these complexes, and in the sequel, we often denote a saddle morphism by s.)

⊕

(−3n − 2)

(−3n) · · ·

· · ·

±

∓

∓1

±

±s

We then apply Gaussian elimination and obtain the following complex.

(−3n − 2)

· · ·

· · ·

− ∓

±s

Note that the grading on the subobject in the NW corner has decreased by 1 as a result
of the simplification. The morphism out of this subobject may appear complicated, but
simplifies when the next term is delooped.

(−3n − 2)

⊕ · · ·

· · ·

∓

−

±
±1

A further application of Gaussian elimination clearly removes two more subobjects
from this complex.

So far, the complex in Figure 3.1.3 has simplified as follows. Of the four west-most
subobjects, the two northern subobjects have been delooped, their quantum grading
decreasing by 1, and the two southern subobjects have been eliminated. After each
northern subobject was delooped, an isomorphism was introduced, which allowed us to
eliminate the subobject directly south of it.

We continue to move left to right through the complex using this method – delooping
each successive tangle in the north row and eliminating the object south of it. In general,
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when part of the complex has the form

· · · · · ·

· · · · · ·

±

±

∓ ±

it simplifies to

· · · · · ·

· · · · · · .

∓

±

∓ ±

That is, we eliminate the southern objects, deloop the northern objects, and ‘conjugate’
the maps between the northern objects. By this, we mean the maps D( ± , 1) between
the northern objects simplify to ∓ .

After working down the chain complex, eventually only two subobjects on the southern
row remain. These subobjects, together with those directly north of it, form a square
consisting only of saddle maps. This square is the complex associated to [2], consisting
only of saddle maps while the tail consists of the terms of the complex we have delooped.
The square is simplified in exactly the same way as we did previously for the [2] tangle,
from which the proposition follows. 2

By essentially the same proof, we have the corresponding result for negative integer
tangles.

Proposition 3.1.2 Let n < 0 and [n] have orientation type II. Then [n] is homotopy
equivalent to

(n) (n + 1) (n + 3)

· · ·
.

(3n − 1)

− +

As we have just seen, the Khovanov complex of an integer tangle can be dramatically
simplified: eventually all the objects of the complex are indecomposable, and there are at
most three types of non-zero morphisms between these.

Rational tangles in general do not have complexes as elementary as this. However, it is
true that any non-zero map between two indecomposable subobjects in the complex of a
rational tangle is (up to sign) one of the six morphisms below.
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a = + c = +
s = ,

b = − d = −

This fact is a consequence of Theorem 3.3.1, and we will often use these abbreviations
in the sequel to minimize clutter when depicting complexes.

We will also not worry about the signs of morphisms between indecomposable subobjects
in general; as one will see, for all of the applications of Theorem 3.3.1 in Chapter 4 such
information is irrelevant.

The fact that there are only a small number of map types mean the complexes themselves
can be represented in a more efficient way.

To each Khovanov complex of a rational tangle we can construct a dot diagram. These
contain all the information of the complex but in an easier-to-read form. This notation is
useful to visualize the Khovanov complex associated to a rational tangle, and simplifies
calculations. By using it we can illustrate how the complex associated to a rational tangle
changes when crossings are added to the tangle, as we do in Figure 3.3.1. The chain
complexes in this figure contain hundreds of subobjects – it would be impractical to write
these out as a sequence of objects and morphisms in the traditional way.

To construct a dot-diagram for a given complex, begin by drawing a number of vertical
lines; the spaces between them represent particular homological heights. Denote each
[∞] and [0] subobject in the complex by a circle or dot respectively in the appropriate
homological height. If there is a non-zero morphism between two indecomposable objects
in the complex, connect the corresponding objects by a line in the dot diagram.

Additional data can be added to the diagram to describe the homological heights,
gradings, and morphisms. A dot diagram of [5] with such information is illustrated below.

−5 −4 −3 −2 −1 0

a b a b s

(−14) (−12) (−10) (−8) (−6) (−5)

Here the integers at the top denote the various homological degrees, the integers in the
brackets represent the gradings of the subobjects, and the letters represent the morphisms
using the abbreviations above.

All we’ve done so far is repeat the information contained in the complex corresponding
to [5], but much of this is redundant. By removing all but the essential information we can
draw a simpler dot diagram.

• If we assume crossing a vertical line from left to right represents a positive change by
1 in homological degree, we only require one integer at the top of a dot-diagram to
calibrate the other homological degrees.

• The morphisms a, b, c, d take objects with grading n to n + 2, and saddles s take
objects with grading n to n + 1. As these are the only morphisms present in the
complex of a rational tangle (proved later), provided the dot diagram is connected
(in the graph-theoretical sense), the grading of one subobject determines the others.
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• Not all morphisms need to be described. Since d2 = 0, the identity of many morphisms
can be determined from others.

The last point is best illustrated with an example. Let us redraw the dot diagram of
[5] above.

−5 0

(−14) (−5)

We included more than one homological height and grading for readability, but the
point here is that the morphisms don’t need to be labeled, since their identity can be
determined.

Explicitly, the morphism between homological heights −1 and 0 can only be a saddle,
for of the six possible non-zero morphisms between subobjects previously exhibited, no
other type of morphism between a [∞] tangle and a [0] tangle exists. The morphism
between homological heights −2 and −1 must then be b: a map between [0] tangles is
either a or b but cannot be the former since we require d2 = 0. There are two choices
for the morphism between heights −3 and −2. As b ◦ a = 0 6= b ◦ b, it follows that the
morphism must be a. The other morphisms can be determined from similar logic.

We now conclude the section with a calculation.

Example 3.1.3 Let’s compute Kh(71), the Khovanov homology of the 71 knot pictured
below.

The knot 71 is the numerator closure of the tangle [7]. An orientation of 71 induces an
orientation on the tangle, making it of type II.

As per Proposition 3.1.1, the Khovanov complex of this tangle is the following.

−7 0

(−20) (−7)

We can recover [71] by placing [7] in the ‘figure-8’ planar arc diagram illustrated below
in Figure 3.1.4. When we do this [∞] subobjects become circles while [0] subobjects become
pairs of circles. Similarly morphisms change, as illustrated below.

Note that b morphisms become zero morphisms: recall that b consists of the formal
difference of two morphisms, each of which consists of two sheets, one sheet of which
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contains a dot. When either of these is placed in the figure-8 tangle, the ends of the
sheets are joined, resulting in a cylinder with a dot. Although the location of the dots on
the cylinders are different, in Cob3•/l the two morphisms are considered identical, so their
difference is zero.

Since placing a tangle in the figure-8 planar arc diagram is the same as taking its
numerator closure, we’ll abuse notation and denote by N(C) the result of putting a complex
C in this planar arc diagram.

− − +

− 0 2
⇐ N(·)

We can represent complexes N([T ]) by a dot diagram too; in an abuse of notation we’ll
use the same symbols as before, except now circles represent circles and dots represent two
circles. The resulting dot diagram for [71] is in Figure 3.1.4 below. (We obtained this by
simply removing any edge from the dot diagram of [7] that was a b map.)

T

−7 −3 0

(−20) (−16) (−12) (−7)

Figure 3.1.4: When numerator closure N([T ]) of the Khovanov complex [T ] of a rational tangle
T is taken, (placed in the figure-8 planar arc diagram illustrated) the complex splits into a direct
sum of several types of components.

The complex [71] thus simplifies into a direct sum of four components, three of which
are the same (ignoring homological and grading shifts).

Let us calculate the homology of the complex corresponding to the component
of the dot-diagram. That is, the homology of the following complex.

•

(a) (a + 2)

•2

(As before, the numbers in the brackets are the quantum gradings; the dots at the
beginning and end represent the zero object in Mat(Cob3•/l(4)). We can deloop both ends
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to simplify it even further. The complex obtained is

• −→

 ∅ (a− 1)
∅ (a+ 1)


 0 2

0 0


−−−−−−−−→

 ∅ (a+ 1)
∅ (a+ 3)

 −→ •.

Before we take homology, we need to apply a TQFT. Under the tautological functor
defined in Proposition 2.5.2, the complex becomes

0→ Z⊕ Z

 0 2
0 0


−−−−−−−−→ Z⊕ Z→ 0.

The homology groups of this complex are trivial to compute. We obtain

Khn( ) = Z(a−1), Khn+1( ) = Z(a+3) ⊕ Z/2Z(a+1).

(The subscripts here indicate the quantum grading of the group.) To complete the
calculation of Kh(71), we only need to calculate the homology of the last component in
the dot diagram. But there is no need to deloop this and do further matrix calculations.
Rather, note that the complex corresponding to this is just the Khovanov complex of a
diagram of the unknot with one crossing.

• • = [ ]

By keeping track of grading and homological shifts, we obtain the following homotopy
equivalence.

n n + 1

(a)
'

n n + 1

(a+ 2)

This trick greatly simplified the calculation of the Khovanov homology of this component
of the dot diagram, since the Khovanov homology of the unknot is trivial to calculate.

Assembling this information together and substituting the relevant grading and homo-
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logical height information, we obtain

Khn(71) =



Z(−21) if n = −7
Z/2(−19) ⊕ Z(−17) if n = −6
Z(−17) if n = −5
Z/2(−15) ⊕ Z(−13) if n = −4
Z(−13) if n = −3
Z/2(−11) ⊕ Z(−9) if n = −2
Z(−7) ⊕ Z(−5) if n = 0
{0} otherwise.

(This agrees with the values published in the literature, such at those available at The
Knot Atlas.1.)

3.2 A new isomorphism

We now come to an important isomorphism. If there is any idea to take from this chapter,
this is it, since the entire chapter is based on it.

These words do not do the isomorphism justice, so let us say something stronger. If
there is any piece of machinery to take away from this thesis, this is it, since the entire
thesis is based on it.

· · · · · ·

· · · · · ·

− + −

2

∓s ±s ∓s ±s⊕ ⊕ ⊕

· · · · · ·

· · · · · ·

− −

−

∓s ±s ∓s ±s

∼=

⊕ ⊕ ⊕

We’ve presented these complexes using the same format that we used in the previous
section for readability. Namely, the objects of the complexes consist of the diagonal direct

1Available at http://katlas.math.toronto.edu/wiki/Main_Page

http://katlas.math.toronto.edu/wiki/Main_Page
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sums of subobjects in the diagram, and the non-zero maps between these are indicated.
As with the previous section we will drop the direct sum symbols that indicate which
subobjects are in the same homological height; this information can be inferred from the
arrows in the diagram.

Proposition 3.2.1 The above complexes are isomorphic in Kom(Mat(Cob3•/l(4))).

We will see the proof of this shortly, but let us first motivate why this ‘square isomor-
phism’ is glorious for our purposes.

From the previous section we know that the complexes of integer tangles [n] are
essentially all the same: a chain of a and b maps followed by a saddle at the end or beginning.
The complex [5] for instance, modulo homological shifts and grading information, is

.
a b a b s

If we add additional crossings to [5], how do the corresponding Khovanov complexes change?
If we add [5] and [1] we obtain [6], which we know the Khovanov complex of. But what if
we were to add a crossing to the bottom of the [5] tangle?

Example 3.2.2 Let us calculate [5, 1] without worrying about the quantum gradings or
the precise homological degrees (but we will keep track of the relative homological degrees).
With [5] as T1 and [1] as T2 in the planar arc diagram corresponding to the product of two
tangles (illustrated in Figure 3.2.2 below), we obtain the following complex.

a b a b s

−s s −s s −s s

2 2 s

Note the zero maps in the complex. These are the maps D(b, I) : D([∞], [0]) →
D([∞], [0]). Although the cobordism b consists of the difference of two pairs of vertical
sheets with dots on different sheets, in the cobordism D(b, I) the sheets are glued together.
So D(b, I) consists of the difference of two pairs of vertical sheets, both of which contain a
dot on the same component, hence is zero.

The right-most anti-commutating square of the complex, consisting only of saddles,
simplifies in exactly the same way as in the calculation of [2] in the proof of Proposition 3.1.1.
But the rest of the complex has now become complicated – at least to the extent that if
we were to try adding another crossing, further calculations by hand would be messy and
unreasonable. For instance, assume we added another crossing to the bottom of 〈5, 1〉 to
obtain 〈5, 2〉. By treating 〈5, 1〉 as T1 and [1] as T2, if we were to construct [5, 2] using the
same ‘product’ planar arc diagram as before, the nodes and maps of the complex we would
draw out would now consist of vectors and matrices.

Using the square isomorphism illustrated before bypasses this problem. With it, the
structure of [T ] for a rational tangle T admits a far nicer description.
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If we allow ourselves to use the square isomorphism, the complex [5, 1] simplifies as
follows.

s

d

s

b

s

d

s

b s

d

(We also went a step further and removed the minus signs on the saddle morphisms.)
We have essentially made the complex 1-dimensional, a string of indecomposable

subobjects connected via arrows. We can write it as

· · · .s d s b s

If we assume a complex has a presentation in this form – a string of objects and morphisms
but with arrows going forwards and backwards – can we determine which objects lie in the
same homological height? The answer is trivially yes, since the arrows in the unreduced,
Khovanov complex cube take objects in homological height n to objects in homological
height n+1. Delooping and Gaussian elimination rearrange and eliminate objects, but don’t
shift homological heights. Neither does our square isomorphism, so after simplification,
every arrow still spans one homological height.

In practice, recovering the complex by hand from such a ‘string presentation’ is easy –
simply construct the corresponding dot diagram, as illustrated below. (However in this
situation, and in the sequel, we slope the lines to make sure the diagram doesn’t become
cluttered. So when we construct a dot diagram, while reading left to right along the string
we construct circles and dots while gradually moving north up the diagram. A left arrow
encounted in the string presentation corresponds to moving left in the dot diagram; a
right arrows encountered indicates going right.) Such a dot diagram for [5, 1] is illustrated
below.

Figure 3.2.1: A dot diagram of [5, 1]. As with all rational tangles, it can easily be constructed
from the string presentation of [5, 1].

Notice that in the final dot diagram, we didn’t label the morphisms. There was no need
to, since all could be determined: each of the five ‘straight’ segments in the dot diagram
contain a saddle, which determine the rest of the morphisms along the segment. (As we
will soon see, there is no need to label the morphisms in the case of a general rational
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tangle too.) This concludes the calculation.

The reason why these string presentations of a complex are useful is that, for computa-
tions, we can treat them as we would a normal complex. An example will clarify what we
mean.

Example 3.2.3 We can compute [0, 2, 2, 1] from [0, 2, 2] and [1] by placing the complexes
in the planar arc diagram corresponding to the product of two tangles, illustrated below.
The tangles 〈0, 2, 2〉 and 〈0, 2, 2, 1〉 are depicted in Figure 3.2.4.

T1

T2

⊕ ⊕a

(
0
b

) (
b 0
0 s

) (
s d

)

Figure 3.2.2: left The ‘product’ planar arc diagram. right The complex [0, 2, 2] presented in
the usual way. The dot diagram for the complex is in Figure 3.2.4 below.

Computing D([0, 2, 2], [1]) is annoying if we write [0, 2, 2] in the traditional way (as in
Figure 3.2.2 above), since this introduces vectors and matrices into the complex. Obviously
this poses no theoretical barrier, but it will be easier for illustrative purposes if we can
depict the complexes in the simplest way possible. By treating the string presentation of
[0, 2, 2] as we would a normal complex, we construct D([0, 2, 2], [1]) below.

a b s d s b

2 s
−

s

s −s s −s s −s s

One might at first be concerned by the presence of the backwards arrows and question
whether we can still treat this as we would a normal complex. We can, since the diagram
is simply an unwound form of the bulky complex that we would have otherwise obtained
by using the traditional presentation of the complex.

As such, we can deloop and apply Gaussian elimination to our complex as we did in
the previous section. (Though we need to be slightly more careful since subobjects may
now have more than one arrow entering or leaving them.)

Both of the highlighted areas of the complex simplify. The left area simplifies after
applying the square isomorphism, while the right area simplies in the same way as when
we worked with integer tangles in the last section. The result is Figure 3.2.3 below.

We began with a complex corresponding to a rational tangle in string form, and after
adding a crossing to the tangle, the complex simplified down until it had a string form too.
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b b

d d c d

s s s s s

Figure 3.2.3: The simplied [0, 2, 2, 1] complex, after an application of the square isomorphism
and two delooping / Gaussian elimination steps.

The overall change in the complex is illustrated in Figure 3.2.4. We refer to complexes
with a such a string form as zig-zag complexes.

Figure 3.2.4: The tangles 〈0, 2, 2〉, 〈0, 2, 2, 1〉, and their Khovanov complexes. Notice that when a
twist was added to the bottom of 〈0, 2, 2〉, the nmuber of [0] tangles in the complex increased by
the number of [∞] tangles.

We will see in the next section that the previous example is representative for rational
tangles as a whole: that is, the Khovanov complex associated to a rational tangle is a
zig-zag complex. Before we do this though, let us prove the square isomorphism is actually
an isomorphism.

Proof of Proposition 3.2.1: The isomorphism and its inverse are in Figure 3.2.5
below. (The other terms in the complex are taken to each other via identity maps.) We
need to check three things.

1. The bottom layer is actually a chain complex.
2. The collection of maps constitutes a chain map.
3. The chain maps are inverses of one another.

The first is easy – we just need to check that all the squares in the bottom layer
anticommute. Only one of the squares is different from the top layer, so we need only check
that d ◦ (±s) = −(∓s) ◦ 0 = 0. This is true since the saddle in d ◦ ±s connects both sheets
in each of the cobordisms constituting d; the components then cancel.

The second point amounts to showing that the diagram in Figure 3.2.6 commutes.
(The other direction is similar.) This is easy and left as an exercise to the reader. (Hint:

apply neck-cutting.)
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· · ·

· · ·

· · ·

b

±s

∓s

d

b

· · ·

· · ·

· · ·

b

±s

a
∓s

2

b

∓s

±s

Figure 3.2.5: The square isomorphism, in all its glory. Unmarked vertical maps are identity maps.
The identity of the other unmarked maps is irrelevant.

⊕ ⊕ ⊕

⊕ ⊕ ⊕

(
a 0
±s 0

) (
b 0
∓s 2

)

(
0 0
±s 0

) (
b 0
∓s d

)
1

(
1 ∓s
0 1

)
1

Figure 3.2.6: One direction of the square isomorphism, in a more traditional form.
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The third point is easy as we merely need to check that 1 ∓s
0 1

−1

=

 1 ±s
0 1

 .

3.3 The Khovanov complex of rational tangles

We claimed in the last section that [T ] has the structure of a zig-zag complex for every
rational tangle T . We now present a constructive proof. To avoid repeating ourselves, we
will work with positive rational tangles (F (T ) > 0) in this section; though all of what we
say in this section can be analogously stated for negative rational tangles.

Recall from Chapter I one that positive tangle F (T ) > 0 can be constructed from [1]
by a finite sequence of tangle additions and products with [1]. When a rational tangle is
positive, and positive crossings are added to T , the resulting Khovanov complex changes
in a predictable way. This is essentially the content of Theorem 3.3.1. The proof follows
by breaking up the complexes into several components, and applying the results earlier in
the chapter to these.

The description of how the complexes change that the theorem provides can almost
be summarized by the pictures in Figure 3.3.1 over the page. If you can understand how
the differences in the underlying tangles manifest in the pictures, then you’ve essentially
understood the Khovanov homology of rational tangles.

For the purposes of this section we’ll write a complex as a word in the letters
{a, a′, b, b′, c, c′, d, d′, s, r}. This is just the sequence of maps of a complex in string form,
reading left to right. A dash denotes a backwards arrow, and we have adopted the
convention r = s′. We will call this the morphism string of the complex.

For example, the complex given by

has morphism string

absdrb′a′babsdrb′.

Morphism strings are not particularly readable, in that the structure of the complex is not
as apparent as when it is represented as a dot diagram. As such we’ll replace any instance
of s with a negative-sloping diagonal line, and an r with a positive sloping diagonal line.
With these conventions the morphism string above becomes

ab

d

b′a′bab

d

b′.
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Figure 3.3.1: Top to bottom Dot-diagrams for the complexes [2, 1, 3, 5, 1], [2, 1, 3, 10, 1],
[2, 1, 3, 10, 5]. Observe how the similarities and differences in the structure of the rational tangles
manifest in the complexes. For readability we have removed the circles, displayed the diagrams so
that the homological height is on the y-axis, and set the complexes to begin in homological height
0. The x-axis denotes the position of the subobjects in the string form of the complex.
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Writing the morphisms strings in this way is useful to illustrate how the complexes change
when crossings are added to the underlying tangle, as well as a way to rapidly compute
the Khovanov complex of a rational tangle by hand.

Theorem 3.3.1 Let T be a positive rational tangle, that is F (T ) > 0. (The case F (T ) < 0
is similar to what we present below.) Then the morphism string associated to the Khovanov
bracket [T ] of T is a word w in {a, b, c, d, r, s}, possibly with dashes on the letters {a, b, c, d}
satisfying the following condition. After removing the dashes from w, if w̃ = l1l2l3 is any
subword of w consisting of three adjacent letters:

• if l2 = a, then w̃ = bab,
• if l2 = b, then l1 ∈ {a, r}, l3 ∈ {a, s},
• if l2 = c, then w̃ = dcd,
• if l2 = d, then l0 ∈ {c, s}, l3 ∈ {c, r},
• if l2 = r, then w̃ = drb,
• if l2 = s, then w̃ = bsd.

Furthermore, the morphism string of [T + [1]] or [T ∗ [1]], can be obtained from the
morphism string of [T ] by the following rules.

To obtain [T + [1]] from [T ], split [T ] into a list of subwords w1, . . . , wn (so that
their concatenation w1 · · ·wn is the morphism string) such that wi ∈ {c, c′, d, d′, r2, r2s,
2s} where 2 is a string in {a, a′, b, b′}. The morphism string of [T + [1]] is given by the
concatenation f(w1) · · · f(wn) where f is the following collection of rules.

• If � is the string obtained from 2 by replacing each letter a/a′/b/b′ with b/b′/a/a′

respectively, then
– f(r2) = rb′�,
– f(r2s) = rb′ � bs,
– f(2s) = �bs.

• If wi = d, d′,
– f(wi) = swi (i = 1),
– f(wi) = wi (1 < i < n),
– f(wi) = wir (i = n).

• If wi = c, c′, f(c) = rbs, f(c′) = rb′s.

To obtain [T ∗ [1]] from [T ], split [T ] into a list of subwords w1, . . . , wn (so that their
concatenation w1 · · ·wn is the morphism string) such that wi ∈ {a, a′, b, b′, s2, s2r,
2r} where 2 is a string in {c, c′, d, d′}. The morphism string of [T ∗ [1]] is given by the
concatenation g(w1) · · · g(wn) where g is the following collection of rules.

• If � is the string obtained from 2 by replacing each letter c/c′/d/d′ with d/d′/c/c′

respectively, then
– g(s2) = sd�,
– g(s2r) = sd� d′r,
– g(2r) = �d′r.

• If wi = b, b′,
– g(wi) = rwi (i = 1),
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– g(wi) = wi (1 < i < n),
– g(wi) = wis (i = n).

• If wi = a, a′, g(a) = sdr, g(a′) = sd′r.

Before embarking on the proof, we look at a few examples.

Example 3.3.2 Let us check that these rules agree with the calculation in Example 3.2.3.
Examining Figure 3.2.4, we see that the morphism strings of [0, 2, 2] and [0, 2, 2, 1] are
absdrb′ and sdrbsdcd′rb′s respectively.

Since 〈0, 2, 2, 1〉 is equal to 〈0, 2, 2〉 ∗ [1], we can compute the morphism string of
[0, 2, 2, 1] from the morphism string of [0, 2, 2]. Following the description in Theorem 3.3.1,
we break up [0, 2, 2] into subwords:

absdrb′ = a+ b+ sdr + b′.

Applying the rules we have g(a) = sdr, g(b) = b, g(sdr) = sdcd′r and g(b′) = b′s.
Concatenating these, we have

g(a)g(b)g(sdr)g(b′) = sdrbsdcd′rb′s.

Example 3.3.3 Let us compute Kh(82) by hand. This will further illustrate how the
Khovanov bracket of a rational tangle changes when additional crossings are added to the
underlying tangle.

The knot 82 is rational, obtained via numerator closure from 〈5, 1, 2〉. Let us compute
the structure of the chain complex first; gradings and homological heights will be calculated
at the end.

The morphism string corresponding to [1] is just s. By applying the rules above and
using the notation mentioned earlier, we build the morphism string of [5, 1, 2] from s as
follows.

[1]

b

[2]

ab

[3]

bab

[4]

abab

[5]
+[1] +[1] +[1] +[1]

d

b

d

b

d
[5, 1]

∗[1]

b

d

b′ab

d

b′ab

d
[5, 1, 1]

+[1]

ab

d

b′a′bab

d

b′a′bab

d

b′
[5, 1, 2]

+[1]

All that’s left to do is to take the numerator closure of this complex and determine the



§3.3 The Khovanov complex of rational tangles 67

homological and grading information. The former is easier to do if we construct the
dot-diagram of the complex. This and its closure are drawn below in Figure 3.3.2.

Figure 3.3.2: The dot diagram of the [5, 1, 2] and N([5, 1, 2]). This example is illustrative of the
Khovanov homology of rational knots in general.

By a similar argument as that in Example 3.1.3, the wedge-shaped complexes in the
dot diagram with four subobjects are homotopy equivalent to the components.

Therefore [82] splits into a direct sum of nine complexes which span the homological
heights as illustrated below. We have already computed the homology of these complexes
in Example 3.1.3, so are nearly finished. We simply need to calibrate the homological
heights and gradings.

It is a simple exercise to verify that the internal grading and homological height of
one of the subobjects of the complex determines the same information for the rest of the
subobjects. As such we only need to compute this grading information for one subobject
to have determined the grading information of [5, 1, 2].

Further on we will see that this grading information about the subobjects can simply be
determined by multiplying certain 2 × 2 matrices together, but for now we will use the
calculation so far.

An orientation of 82 orients the underlying tangle. To calibrate both the homological and
quantum grading information of [5, 1, 2], we keep track of the grading information associated
to the subobject at the beginning of each intermediate complex in the construction of
[5, 1, 2]. Determining how the grading information of these subobjects change when
crossings are added to the underlying tangle can be done by examining: the morphism
leaving the subobject; the orientation of the crossing being added; whether the crossing is
being added to the to the right or bottom of the tangle. The relative change for positively
oriented crossings is listed in the table below.

The corresponding values for negatively-oriented crossings differ from their positively-
oriented counterparts by −3/− 1. After applying this process to our construction of the
morphism string of [5, 1, 2] above, we find that the first subobject in string of [5, 1, 2] has
grading/homological height −16/− 6.

For all intents and purposes we’re done, though it’s common to write the result as the
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Map +[1] ∗[1]
a, a′ 0/0 1/0
b, b′ 0/0 2/1
c, c′ 2/1 −1/0
d, d′ 1/0 −2 / 1
s 0/0 −3/−1
r 2/1 −1/0

Table 3.1: The relative shifts in internal grading (i) and homological height (h) of the subobject
is presented as i/h. These values are for positively oriented crossings.

Khovanov polynomial instead of the actual Khovanov homology. One is more succinct
than the other and they essentially contain the same information.

The Khovanov polynomial of a link as a two-variable Laurent polynomial in Z[q±1, t±1]
defined by ∑

j

qdim(Khj(L)) · tj . (3.3.1)

It is common to denote the Khovanov polynomial in the form of a table. The positive
integer in i-th j-th square of the table corresponds to the coefficent of tjqi in the polynomial.

Filling the table in using the information obtained above is a trivial matter;
components in the dot diagram correspond to knights moves while the corresponds to
the exceptional pair.

i \ j −6 −5 −4 −3 −2 −1 0 1 2
1 1
−1
−3 2 1
−5 1 1
−7 2 1
−9 1 1
−11 1 2
−13 1 1
−15 1
−17 1

Table 3.2: The Khovanov homology of Kh(82).

We now return to the main result of this section.

Proof of Theorem 3.3.1: The first claim of the theorem regarding the structure of
[T ] for rational T follows from induction from the rules of the theorem. Namely, since
every rational tangle is given by a finite sequence of additions and products of [1], one
simply shows that the rules preserve the property of the first claim.

The proof of the rules essentially follows from thinking about the complexes associated
to the morphism strings of the subwords in the rules, and how these change when the
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underlying tangle changes. Proposition 3.1.1 and the isomorphism in Proposition 3.2.1 are
sufficient to describe these changes.

As a sanity-check we wrote a computer program in Python that calculates [T ] for
positive rational tangles T based on our rules. We then extended the program to calculate
Kh(R) for rational R. We checked the results for the first 25 rational knots; they are all
correct.2

The proof of the rules describing how the morphism string of [T + [1]] is obtain from
[T ] is analogous to the proof of the rules for the [T ∗ [1]] case; as such we prove the latter.
If the reader is not already familiar with Example 3.2.3 we suggest she look at it now; it is
easy to use this as a visual guide to explain the rules.

Let us first explain the general structure of [T ∗ [1]]. If the morphism string of [T ]
contains n letters, can view [T ∗ [1]] as a ‘2× (n+1)’ complex just as we did in the previous
section. That is, as a complex consisting of two rows, each with n+ 1 tangles, and various
left, right, and down arrows between adjacent tangle in the complex. The arrows create
squares, and each of these anticommute. We now simplify the complex.

By dropping arrows that are zero morphisms, one can view the complex [T ∗ [1]] as
a series of chains of anticommuting squares ‘connected’ by b maps. (For instance, in the
aforementioned example, the complex consists of two such chains of squares; one chain
consists of one square, the other consists of three squares.) Each of these chains of squares
will simplify so that each subobject they contain will have precisely two non-zero maps
coming in or out of it.

By virtue of the morphism string structure of [T ], there are two types of these chains
of squares: single-square chains containing an a or a′ map and chains which contain
tangles with loops. The first type of square chains simplify by the square isomorphism of
Proposition 3.2.1, the other type simplify via the proof of Proposition 3.1.1.

One then sees that the square chains containing an a or a′ simplify to have morphism
string sdr or sd′r respectively, the third rule regarding [T ∗ [1]]. The other type of square
chains simplify to give the first rules of [T ∗ [1]]. (Note that the first and last rule of this
group of three rules describe the cancellation if the square forms the beginning or end of of
the 2× (n+ 1) complex resectively.)

The only rule left to describe is that regarding the b maps; since these ‘connect’ the
square of chains that simplfy, they do not chain, save if they are at the end or beginning of
the complex. 2

In the next section we briefly look at some consequences of the Theorem, it particular
the unexpected result that the quantum grading and homological degree information about
the subobjects in the tangle can be described by matrix actions.

2The code is available at https://tqft.net/research/BenjaminThompson
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Chapter 4

Theoretical implications of
Theorem 3.3.1

In this chapter we discuss some of the implications of Theorem 3.3.1.

4.1 Rational knots

Since rational knots are obtained from rational tangles by numerator closure, by describing
the Khovanov homology of rational tangle we have apriori described the Khovanov homology
of rational tangles.

The Khovonov homology of rational tangles is not very interesting. Within a few years
of its definition, Bar-Natan wrote a computer program able to calculate the Khovanov
homology groups of links. (He later extended the program to calculate the Khovanov com-
plexes of tangles using his dotted theory ([Bar06]). Based on the calculations, Bar-Natan,
Khovanov and S. Garoufalidis formulated two several conjectures; the ones formulated in
[Bar02] are repeated here for convenience.

Conjecture 4.1.1 For any prime knot L there exists an even integer s = s(L) and a
polynomial Kh′(L) ∈ Z[q±1, t±t] with non-negative coefficients so that

KhQ(L) = qs−1
(
1 + q2 + (1 + tq4)Kh′(L)

)
.

Conjecture 4.1.2 For prime alternating L the integer s(L) is equal to the signature of L
and the polynomial Kh′(L) is a polynomial in tq2.

The second conjecture essentially states that the Khovanov polynomial of a prime alter-
nating knot is supported on two diagonals (when presented as a table as in Example 3.3.3)
and consists only of knight moves and one exceptional pair.

Lee later proved the second conjecture for any non-split alternating link ([Lee02]). (An
alterning link is non-split iff an alternating diagram of the link is connected.) Rational
knots hence satisfy this property too, since they are alternating as per Chapter 1.

Theorem 3.3.1 provides an alternative proof of the second conjecture restricted to
rational knots. The proof is not difficult, and is essentially just formalizing the idea
illustrated in Figure 3.3.2. (Though one does need to prove that ends of the Khovanov
complexes produce precisely one exceptional pair. This claim can be proved by induction via
Theorem 3.3.1 as it describes how the ends of the complexes are modified when additional
crossings are added to the tangle.)

One can generalize this to say something slightly stronger for a certain class of tangles.

71
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Definition 4.1.3 A (1,1)-rational tangle is a tangle that can be created by inserting a
rational tangle into the planar arc diagram below.

T

Corollary 4.1.4 The Khovanov complex [T ] of a (1,1)-rational tangle T splits into a
direct sum consisting of one copy of the complex

• •

and several copies of

• •
2

.

Proof: The proof follows from an easy extension of Theorem 3.3.1. 2

4.2 The Burau representation from the Khovanov com-
plexes of rational tangles

In this section we consider rational tangles as partial closures of the three-strand braid
group B3, as illustrated in Figure 1.3.1. For a positive rational tangle 〈a1, a2, . . . , an〉 with
n odd, we view this as the partial closure of σa1

1 σ−a2
2 σa3

1 · · ·σ
an
1 . Adding (positive) crossings

to the right of a rational tangle corresponds to multiplying the braid by σ1, multiplying a
tangle with [1] on the bottom corresponds to multiplying the braid by σ−1

2 .
From Chapter 1, every positive rational tangle has a unique canonical form, from which

it follows that every rational tangle has a unique presentation σa1
1 σ−a2

2 σa3
1 · · ·σ

an
1 where

ai > 0 for i < n and an ≥ 0.
Let θ : Q → T be the function taking a rational number to its rational tangle via

the correspondence in Theorem 1.2.6. Let φ : Q→ B3 be the function taking a rational
number r to θ(r), presented as an element of B3 as just described.

Let BN(4) be the subcategory of Mat(Cob3•/l) generated by the [0] and [∞] tangles. (So
in particular, [T ] ∈ Kom(BN(4)) for all rational tangles T .)

Let Ψ : Obj(Kom(BN(4))) → Z[q±1, t±1]〈 , 〉 be the function that forgets all the
maps of a complex but remembers the bigradings of its subobjects. We present an element
p0 + p∞ ∈ Z[q±1, t±1]〈 , 〉 as (p0, p∞).

For example,

Ψ(• → q −→ q2 −→ q4 → •) = (q2t+ q4t2, q).

Note that this map is not a homotopy invariant. (For example, Ψ(• → φ−→ →
•) = (0, 1 + t), even though this complex is contractible when φ is an isomorphism.)

Proposition 4.2.1 Let r ∈ Q+, and fix an orientation of φ(r). Then φ(r) determines the
orientations of additional crossings added to it in what follows.
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Let [φ(r)] be completely reduced. Then Ψ([φ(r)σ1]) is given by Ψ([φ(r)])R±1 and
Ψ([φ(r)σ−1

2 ]) is given by Ψ([φ(r)])B±1 where

R+ = q

 qt 1
0 q−1

 , R− = q−2t−1

 qt 1
0 q−1

 ,

B+ = q2

 qt 0
t q−1

 , B− = q−1t−1

 qt 0
t q−1

 ,
and the signs correspond to the orientation of the crossing being added.

Proof: We sketch the proof. It follows from the proof of Theorem 3.3.1. Essentially one
breaks the complex [φ(r)] into several segments, (as suggested by the theorem) and showing
the Proposition holds on each locally; when these are combined the relation holds for the
entire complex too. 2

Proposition 4.2.2 The pairs of matrices R+ and B−1
− , and R− and B−1

+ satisfy the braid
relation. After a change of basis these give the (reduced) Burau representation of B3.

Proof: The first claim follows from easy computations. Explictly, one finds that

R+B
−1
− R+ = B−1

− R+B− =

 0 q3t

−q3t2 0


and similarly for the other pair. With

p =

q 0
0 1

 ,
when we change basis we obtain

σ′1 = p−1R+p =

q2t 1
0 1

 , σ′2 = p−1B−1
− p =

 1 0
−q2t q2t

 .
This is exactly the (reduced) Burau representation of B3 after the change of variables
t 7→ −q2t. 2

We are still very much trying to understand the implications of this observation. This
concludes the thesis.
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