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Preface

Morse theory is a powerful tool that uses generic functions on a manifold to provide informa-
tion about the manifold. Morse theory has been used to prove important results in the study
of smooth manifolds such as the h-cobordism theorem and generalised Poincaré conjecture
for dimensions greater than four [22, 26]. Recently, the ideas of Morse theory have been
adapted for use with CW complexes [12]. This provides a tool for analysing these complexes,
and in particular, a secondary way to study smooth manifolds, by first giving them a cell
structure.

Chapter I reviews the basics of smooth Morse theory that will be needed for later chapters.
We predominantly follow the approach of Milnor [22] and Nicolaescu [23], but with a few
arguments and motivations shown more explicitly. The argument showing the weak Morse
inequalities at the end of the chapter is original, though we suspect a similar argument must
have existed previously.

Chapter II highlights the utility that being able to find Morse functions with specific
properties can have, through a relatively simple classification of surfaces. We follow the
approach of Champanerkar, Kumar, and Kumaresan [11] but fix an error in their proof; this
is given by Lemma II.1.3. We also discuss the effect that modifying a Morse function on a
surface has on the structure of sublevel sets; this discussion is inspired by the ideas in [11]
but addresses issues not covered there.

The latter chapters are predominately focused on discussing discrete Morse theory and
its relationship with smooth Morse theory. Chapter III introduces the theory discrete Morse
functions developed by Robin Forman [12] in the 1990s. This theory extends many ideas from
smooth Morse theory to the context of CW complexes. Theorem III.2.4 and the following
corollary provide an original description of a process using a discrete Morse gradient to
collapse a CW complex. This is used implicitly in the literature, though we could not find a
similar explanation of this technique.

Section 4 of Chapter III discusses some similarities and differences in the collections of
Morse or discrete Morse functions that an object supports. In particular we present an
original argument that all discrete Morse functions on a CW complex are homotopic to one
another, through a paths of discrete Morse functions; the analogous statement is not true in
the smooth case.

Particularly interesting is the ability to take any smooth Morse function and induce a
discrete Morse function with similar properties by triangulating the manifold; this is the
content of Chapter IV. We discuss two methods for doing this, one due to Benedetti [5]
and the other by Gallais [13]. While presenting Benedetti’s approach we discuss shellable
simplicial complexes and include a few original arguments concerning them. In particular
we present original arguments that show the boundary of a simplex is shellable and that a
shellable complex is endocollapsible; these results are mentioned in the literature, but we
could not find proofs as accessible as the ones we provide.

Finally, Chapter V discusses the homology theory of discrete Morse theory introduced by



Forman [12], highlighting the striking similarity to the homology of smooth Morse theory.
We present an original proof that the boundary map in fact gives us a chain complex; this
extends the proof of Gallais [13] from the case of simplicial complexes to CW complexes. We
also show that the discrete Morse homology (for CW complexes) is isomorphic to singular
homology; this is a minor extension of the proof given by Gallais for simplicial complexes.
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Chapter I

Smooth Morse theory

This chapter reviews the basics of Morse theory. We assume familiarity with the basics of
differential geometry, particularly smooth manifolds, smooth maps, local coordinates, tangent
bundles and vector fields. In addition we make use of some basic algebraic topology.

For a smooth manifold M , we will write Mm to denote that M has dimension m. In
this section all maps are smooth functions. Given a smooth map f : M → N we will
denote its differential by df : TM → TN and the differential at a point will be denoted by
dpf : TpM → Tf(p)N . Similarly, given a vector field X (a smooth section of the tangent
bundle TM) on M we will write Xp to be the vector of X at p; that is Xp = X(p) ∈ TpM .

Recall that a tangent vector v ∈ TpM is a derivation C∞(M)→ R1. By XY (f) we mean
the composition of X and Y : (XY )p(f) = Xp(Y (f)), note that given f ∈ C∞(M), then
Y (f) ∈ C∞(M).

The Lie bracket of two vector fields X,Y will be denoted [X,Y ]. This is the vector field
given by [X,Y ](f) = XY (f)− Y X(f).

1 Basic definitions

Definition I.1.1. Given a smooth function f : Mm → Nn, a point x ∈ M is critical if its
differential dxf does not have full rank, i.e. dim im dxf < min(m,n).

We will concern ourselves with real-valued functions in which case the condition that the
differential has full rank is the same as saying the differential is non-zero.

We will want the critical points of our function to be ‘not too flat’. Intuitively this
will mean that second derivatives are non-zero. Recall that tangent vectors are directional
derivative operators, then:

Definition I.1.2. The Hessian of f : M → R at a critical point x is the bilinear map

Hf,x : TxM × TxM → Tf(x)N × Tf(x)N

(u, v) 7→ ũp(ṽ(f))

where ṽ is a vector field so that ṽx = v.

The Hessian then gives us an iterated second derivative where we first take the derivative
with respect to ṽ, giving us a new smooth function for which we take the derivative in the
direction u at x. It is not immediate from this definition that the Hessian is well defined as

1C∞(M) is the algebra of smooth functions M → R

1



it may depend on the chosen vector fields ũ, ṽ. We will now see that it is well defined and
that in addition it is symmetric.

First recall that the directional derivative W (f) of f along a vector field W is given by
Wp(f) = dpf(Wp). From this we can easily derive the following.

Lemma I.1.3. Given a smooth function f : M → R, vector fields V,W on M and a critical
point p of f we have (VW )p(f)− (WV )p(f) = 0.

Proof. We have (VW )p(f)− (WV )p(f) = [V,W ]p(f) = dp([V,W ]p) = 0 as p is critical.

Lemma I.1.4. The Hessian is independent of the chosen extension vector fields.

Proof. Suppose p is a critical point of a smooth map f on M and ũ, ũ′ and ṽ, ṽ′ are vector
fields on M so that ũp = ũ′p = u and ṽp = ṽ′p = v. Then (ũ − ũ′)pg = 0 for all smooth
functions g on M . In particular we have

ũp(ṽ(f))− ũ′p(ṽ(f)) = (ũ− ũ′)p(ṽ(f)) = 0.

Similarly we have
ũp(ṽ(f))− ũp(ṽ′(f)) = ũp((ṽ − ṽ′)(f)) = 0

and hence the Hessian is independent of vector fields used.

So we have that the Hessian is well defined; Lemma I.1.3 then tells us that the Hessian
is symmetric.

Any symmetric bilinear map of vector spaces H : V × V → W has an associated index
and null space. The null space is the maximal subspace U ⊂ V so that H|U×V = 0. The
index of H is just the number of negative eigenvalues of H, equivalently this is the maximal
dimension of a subspace on which H is negative definite.

Definition I.1.5. A critical point p of a smooth function f : M → R is non-degenerate if the
null space of Hf,p is 0. If the null space of Hf,p has positive dimension then p is degenerate.

Non-degenerate critical points are precisely the ones that are ‘not too flat’. For a non-
degenerate critical point p of f , we say that the index of p, denoted λ(p), is the index of Hf,p.
This tells us the number of linearly independent directions along which f decreases from p.

Definition I.1.6. A Morse function is a smooth function M → R so that each critical point
p ∈M is non-degenerate.

The set of critical points of a Morse function f will be denoted by Cr f , and the set of
index i critical points will be denoted Cri f .

2 Morse functions and local coordinates

Morse functions can also be defined using local coordinates. Choosing local coordinates
(x1, . . . , xm) on U ⊂ Mm, a point p ∈ M is critical for f : M → R if ∂f

∂xi = 0 for all
i ∈ {1, . . . ,m}. The Hessian is then the familiar matrix of second derivatives

(Hf,p)ij =
∂2f

∂xi∂xj
.



To see this, take coordinate expressions u =
∑
i u

i ∂
∂xi |p and v =

∑
i v
i ∂
∂xi |p for u, v ∈ TpM .

Then in U we have ṽ =
∑
i ṽ
i ∂
∂xi where the ṽi are smooth functions with ṽi(p) = vi. Then

we have

u(ṽ(f)) = u

∑
j

ṽj
∂f

∂xj

 =
∑
i

∑
j

uiṽj
∂2f

∂xi∂xj
.

Recall that any symmetric bilinear map has an eigenbasis. This means that we can choose
coordinates where the bilinear map is represented by a diagonal matrix, and moreover its
index will be the number of negative entries. We have a similar situation for Morse functions
and their Hessians given to us by the Morse Lemma. Before proving the Morse Lemma we
need a small tool that allows us to rewrite smooth functions.

Lemma I.2.1. Let f be a smooth function on a convex neighbourhood of the origin in Rn
with f(0) = 0, then we can write f(x1, . . . , xn) =

∑n
i=1 xigi(x1, . . . , xn) for some smooth

functions gi.

Proof. As we have a convex subset of Rn we can write

f(x1, . . . , xn) = f(x)− f(0) =

∫ 1

0

df(tx1, . . . , txn)

dt
dt.

The chain rule then gives us

f(x1, . . . , xn) =

∫ 1

0

n∑
i=1

xi
∂f

∂xi
(x1, . . . , xn)dt =

n∑
i=1

xi

∫ 1

0

∂f

∂xi
(x1, . . . , xn)dt,

so we take gi =
∫ 1

0
∂f
∂xi

dt

Lemma I.2.2 (the Morse Lemma). For any non-degenerate critical point p of a smooth
function Mm → R there exists a neighbourhood U of p with local coordinates (x1, . . . , xm)
centred2 at p so that in these coordinates f is given by

f(x) = f(p)−
λ(p)∑
i=1

(xi)2 +

m∑
i=λ(p)+1

(xi)2.

Proof. We follow the proof in [22], but show the diagonalisation process more explicitly.
Choose a chart centred at p with coordinates (x1, . . . , xn), and define in these coordi-

nates f̃ = f − f(p). Then f̃(0) = 0. By Lemma I.2.1 we know that f̃(x1, . . . , xn) =∑n
i=1 x

igi(x
1, . . . , xn). As 0 is a critical point of f̃ we have gi(0) = ∂f

∂xi (0) = 0 and so we can

apply Lemma I.2.1 to each gi: gi(x
1, . . . , xn) =

∑n
j=1 x

jhij(x
1, . . . , xn) with hij(0) = ∂2f

∂xi∂xj .

By replacing hij with 1
2 (hij + hji) we can assume that hij(x

1, . . . , xn) is symmetric in i and
j.

We can ‘diagonalise’ f̃ in a similar way to a quadratic form. Assume for induction that
f̃ = ±(x1)2 ± . . .± (xr−1)2 +

∑
i,j≥r x

ixjhij(x
1, . . . , xn). If hrr(0) = 0 then we can perform

a linear change of coordinates to make hrr(0) 6= 0. To do this note that there must be a
non-zero term in hij(0) for i, j ≥ r as otherwise the Hessian of f would be degenerate. Say

hkk′(0) 6= 0, with k, k′ ≥ r, then by setting yk = xk + xk
′

and yk
′

= xk − xk′ we define
coordinates ui by ui = xi for i 6= k, k′ and uk = yk and uk

′
= yk

′
. Let h̃ij be hij in these

new coordinates; we have (yk)2 − (yk
′
)2 = 4xkxk

′
, so h̃kk(0) and h̃k′k′(0) are both non-zero;

2coordinates are said to be centred at a point x if x is the point 0 in these coordinates



by permuting coordinates we can assume that k = r. Let g(u) =
√
|h̃rr(u)|, this is smooth

in some neighbourhood of 0.

Define new coordinates vi by vi = ui for i 6= r and vr(u) = g(u)
(
ur +

∑
i>r u

i h̃ir(u)

h̃rr(u)

)
.

We have

(vr)2 = |h̃rr|(ur)2 +
|h̃rr|
h̃2
rr

(∑
i>r

uih̃ir

)2

+ 2
|h̃rr|
h̃rr

∑
i>r

uruih̃ir

where all h̃ij are evaluated at 0. One can check that this coordinate transformation has
non-degenerate Jacobian, and thus gives us a coordinate system in some neighbourhood on

0. Note that the first (|h̃rr|(ur)2) and final (2 |h̃rr|
h̃rr

∑
i>r u

ruih̃ir) terms or their negative

appears in f̃ depending on whether h̃rr is positive or negative. We now have

f̃(v) =

(∑
i<r

±(vi)2

)
± (vr)2 +

∑
i,j>r

vivj h̃ij −
1

hrr

(∑
i>r

uih̃ir

)2

with the sign of the (vr)2 term corresponding to whether h̃rr is positive or negative. Notice
that we have ‘diagonalised’ the contribution of the rth coordinate. By induction we can do
this for all coordinates, and get a chart with coordinates vi so that

f̃(v) =
∑
±(vi)2

and so
f(v) = f(p) +

∑
±(vi)2.

We can see that the number of negative terms (other than f(p)) must indeed be the index,
as by computing the (diagonal) Hessian in these coordinates we get that many negative
eigenvalues and the subspace of TpM on which the Hessian is negative definite is independent
of the coordinates. Thus by rearranging the order of the coordinates we get the desired
form.

This is the key lemma that gives us information about the local structure of Morse
functions. For example we immediately see that all critical points must be isolated, as
locally (in the neighbourhood U of Morse’s lemma) there are no critical points besides p.
In turn this tells us that on compact manifolds a Morse function has finitely many critical
points. We will call a neighbourhood of a critical point p with the properties given by the
Morse Lemma a Morse neighbourhood.

3 Existence of Morse functions

Before presenting the basic results of Morse theory we pause briefly to discuss an important
point: that Morse functions actually exists, and moreover they are generic in that every
smooth function is ‘almost’ Morse. One simple way to think of Morse functions is as a
type of ‘height’ function. Explicitly, if we are given a Morse function f : Mm → R we can
construct an embedding of M into some Rk so that f is given by projection to a coordinate.

To see this, we start by using the Whitney embedding theorem [29] to embed Mm into
Rk for some k ≥ 2m. Let i0 : Mm → Rk be such an embedding. We now construct an
embedding i : M → Rk+1, p 7→ (i0(p), f(p)). We now see that f is given by the ‘height’
function x 7→ 〈ek+1, x〉 where 〈·, ·〉 denotes the standard inner product on Rk+1.



We also have that almost any projection function on a submanifold of Rk is a Morse
function. Let 〈·, ·〉 denote the standard inner product on Rk. Given a submanifold of Rk the
function 〈v, ·〉 is Morse for almost all vectors v ∈ Rk [23]. These two results give us a very
geometric way to think about Morse functions.

Definition I.3.1. A function f : M → R is exhaustive if for all a ∈ R f−1(−∞, a] is compact.

Exhaustive Morse functions have a useful property: for all a < b we have f−1[a, b] is
compact. This is a necessary hypothesis for the key structural theorems Theorems I.4.9
and I.4.10 that we will see shortly. The existence of exhaustive Morse functions is also
guaranteed.

Lemma I.3.2. Any smooth manifold admits exhaustive Morse functions.

Proof. In addition to almost any height function of a submanifold Mm ⊂ Rk being Morse,
Nicolaescu shows that almost any distance function is Morse. By a distance function we
mean a function fx(p) = 1

2 |p− x|
2

for some x ∈ Rk; these functions are Morse for almost all
x ∈ Rk [23]. In fact, if M is a closed subset of Rk and fx is Morse, then it clear that fx is
exhaustive as the sets f−1(−∞, b] = f−1[0, b] are bounded (they are contained in the closed
ball of radius b around x). By another version of the Whitney embedding theorem we can
embed M as a closed subset of R2m+1 [20]; consider Morse distance functions on M under
this embedding then proves that there are exhaustive Morse functions on M .

4 Structure from Morse functions

In this section we will present several key results of Morse theory that relate the structure
of a manifold to Morse functions. Often we will require the use of the ‘gradient’ of a Morse
function — in fact this vector field will be the key object used, rather than the Morse function
itself. Without fixing a metric, we have no concept of a true gradient for a function. We
have two solutions, for any smooth manifold we can always fix a metric and use the gradient
given by the metric or we can make use of so-called ‘gradient-like’ vector fields.

4.1 Vector fields and flow lines

Vector fields on smooth manifolds can be thought of as describing some type of dynamics,
carrying a point or submanifold to another, by realising that a vector field describes a family
of differential equations. Given a vector field X on M , for any point p ∈M we have a curve

γ(t) given by the differential equation dγ(t)
dt = Xγ(t) with initial solution γ(0) = p where dγ(t)

dt
is the tangent to γ. Such an initial value problem has a unique solution for |t| < ε for some
ε and in fact this solution depends smoothly on the initial point within some neighbourhood
U 3 p. We will use vector fields to produce families of diffeomorphisms of a manifold which
‘push’ the manifold along these curves.

Definition I.4.1. A flow is a smooth group action of (R,+) on M .

Such a group action can be thought of as a family of diffeomorphisms φt : M → M so
that φt+s = φt ◦ φs and the induced map R ×M → M is smooth. Given such a family of
diffeomorphisms we can define a vector field by

Xp(f) = lim
h→0

f(φh(p))− f(p)

h
.

Such a vector field is said to generate the flow. The curves that are solutions to γ′(t) = Xp(f)
where X generates the flow are called flow lines.



Proposition I.4.2. Given a vector field X on M vanishing outside a compact set U ⊂ M ,
there is a unique flow generated by X.

Proof. The proof follows from the remarks at the beginning of this section, which give us
local flows (i.e. smooth action of (−ε, ε) ⊂ R on M). These can then be patched together

using a finite cover of K =
⋃n
i=1 Ui where we have a unique solution to Xφt(p) = dφt(p)

dt on
each (−εi, εi)×Ui. Setting φt(p) = p for all p 6∈ K (that is the derivative outside K is 0) and
ε = mini εi we then have a unique solution on (−ε, ε)×M .

We can see that the homomorphism rule φt+s = φt◦φs is respected as long as |t|, |s|, |t+s|
are all less than ε. This follows by considering the curves t 7→ φt+s(p) and t 7→ φt ◦φs(p) and

noting that both of these must be (local) solutions to dφt(q)
dt = Xφt(q) with initial condition

φ0(q) = φs(p). For larger t, we define φt by noting that for any t, we can write t = k ε2 + r
where |r| < ε

2 , k ∈ N. We define

φt =

k times︷ ︸︸ ︷
φ ε

2
◦ . . . ◦ φ ε

2
◦ φr

if k ≥ 0, and if k < 0 we use φ− ε2 instead. We can see that the homomorphism property is
still satisfied; consider φt ◦ φs, if both t, s > ε, then we have

φt ◦ φs = φ ε
2
◦ · · · ◦ φ ε

2
◦ φrt ◦ φ ε2 ◦ · · ·φ ε2 ◦ φrs

= φ ε
2
◦ · · · ◦ φ ε

2
◦ φrt ◦ φrs

= φ ε
2
◦ · · · ◦ φ ε

2
◦ φrt+rs

= φt+s

where we get to the last line directly if |rt + rs| < ε
2 , or by pulling a φ ε

2
out of φrt+rs if

rt + rs >
ε
2 or absorbing the preceding ε

2 if rt + rs < − ε
2 . This last step also shows the case

of only one of t, s being greater than ε. The cases of one or both of t, s being less than −ε
are similar computations.

In particular if we have a compact manifold M then any vector field on M produces a
flow.

Definition I.4.3. A gradient-like vector field for a Morse function f : Mm → R is a vector
field X so that X(f) > 0 and near a critical point p there are coordinates (xi) so that in

these coordinates X(f) = −2
∑λ(p)
i=1 x

i ∂
∂xi + 2

∑m
i=λ(p)+1 x

i ∂
∂xi .

Gradient-like vector fields can be obtained by choosing a Riemannian metric g that is
given by

∑m
i=1(dxi)2 in a Morse neighbourhood of each critical point [27]. Then the gradient

with respect to this metric, ∇gf , is a gradient-like vector field.

Definition I.4.4. Given a Morse function f : Mm → R and a gradient-like vector field ξ,
let φt be the flow of −ξ. The stable manifold and unstable manifold of a critical point p are
the subsets

Ms(p) = {q ∈M | lim
t→∞

φt(q) = p}

and
Mu(p) = {q ∈M | lim

t→−∞
φt(q) = p}

respectively.



The stable and unstable manifolds are submanifolds of M [23] consisting of the points
that flow to p and away from p under the negative of the gradient-like vector field (note that
p = Ms(p) ∩Mu(p)). This is the way we will normally think — in terms of flowing down in
the direction (determined by ξ) of decrease in f . Intuitively, if one thinks of a Morse function
as a height function, then the stable manifold is the set of points where water poured on the
manifold would flow to p, and the unstable manifold tells us where water poured on p would
flow. This explains an alternate terminology where the stable and unstable manifolds are
called the ascending and descending manifolds respectively.

There is one property we will often want to require of a Morse function and a chosen
gradient-like vector field: that the stable and unstable manifolds of different critical points
intersect transversally.

Definition I.4.5. Two submanifolds U, V ⊂ M have transverse intersection if for all x ∈
U ∩ V , TxM is spanned by TxU and TxV .

We note that the dimension of a transverse intersection has the expected dimension [8]
(compare with the dimension of the transverse intersection of two vector subspaces).

Proposition I.4.6. Suppose Ur, V s are submanifolds of Mm with transverse intersection.
Then U ∩ V is a submanifold of M with dimension r+ s−m (if r+ s−m < 0 then we take
this to mean U ∩ V = ∅); equivalently codimU + codimV = codimU ∩ V .

Definition I.4.7. The pair (f, ξ) where f is a Morse function and ξ is a gradient-like vector
field for f is Morse-Smale if for any pair of critical points p 6= q, Ms(p) and Mu(q) intersect
transversely.

It turns out that for any Morse function, we can find a gradient-like vector field that
is Morse-Smale and moreover the Morse-Smale property is generic (see [16, 23, 27]). Fig-
ure I.1(a) shows a torus with a Morse function given by height and gradient vector field
induced from the metric on R3. The stable and unstable manifolds of the index one critical
points are shown; note that these are not transverse as they intersect each other. Figure I.1(b)
shows the situation if the torus is tilted slightly; note that this is Morse-Smale.

4.2 Handle decompositions

Morse theory is closely linked with the idea of decomposing manifolds into a sequence of balls
(called handles) that are glued together. As discussed in Remark I.4.11 a Morse function
provides a decomposition of a manifold into a sequence of handle attachments.

Definition I.4.8. Let Mm be a manifold with (non-empty) boundary and H a manifold
diffeomorphic to Dm. Let A ⊂ ∂H and B ⊂ ∂Mm be (m−1)-submanifolds of the boundaries,
both diffeomorphic to Si−1 × Dm−i ⊂ Rm via diffeomorphisms that can be extended into
collars of A and B. Let M ′ = (M tH)/(A ≡ B) be the space obtained by gluing H to M
using the identification provided by the diffeomorphisms. Then M ′ is the result of attaching
a smooth i-handle to M .

A handle decomposition of a manifold M is given by a sequence of handles Hi so that
M = H0∪H1∪· · ·∪Hn with the handles attached in order. If there are hi handles of index i
in a given handle decomposition of Mm, we call the sequence (h0, . . . , hm) the handle vector
of this decomposition.



(a) Height function is not Morse-Smale for
‘upright’ torus; this is not Morse-Smale.

(b) Tilting the torus back a little gives Morse-
Smale height function.

Figure I.1: Morse functions on a torus embedded in R3 given by height using gradient given
by the standard inner product. Red dots are index 1 critical points and green lines are their
stable and unstable manifolds.

4.3 Structural theorems

The two main structural theorems are Theorems I.4.9 and I.4.10. These are expressed in
terms of sublevel sets: sets of the form f−1(∞, a] which we denote aM . Similarly we denote
f−1[a, b] by b

aM and f−1[a,∞) by aM . Occasionally it will not be clear which function we
are using to define a sublevel set (for example when we are relating the sublevel sets of two
functions); when this is the case we will use superscripts to denote the function used, e.g.
b
aM

f . We can think of Theorems I.4.9 and I.4.10 as telling us when two sublevel sets are the
same or different, with the presence of a critical point being the distinguishing feature.

These statements are often stated in forms of varying strength, specifically they can be
stated in terms of diffeomorphism or homotopy type, the latter case usually given by the
existence of a deformation retraction. Recall that a deformation retraction is a homotopy
relative to a subspace between the identity map and a retraction to that subspace.

Theorem I.4.9. Suppose f : Mm → R is a Morse function and a < b ∈ R two distinct
values so that b

aM is compact and contains no critical points of f . Then bM is diffeomorphic
to aM and moreover aM is a deformation retract of bM .

Proof. We pick a Riemannian metric 〈·, ·〉. Recall that the gradient with respect to this
metric ∇f is characterised by 〈∇f,X〉 = X(f) for all vector fields X. We define a function

ρ =
1

〈∇f,∇f〉



on b
aM and so that ρ vanishes outside a compact neighbourhood of baM . Define a vector field

X by Xp = ρ(p)(∇f)p; this vanishes outside a compact set of M and hence we have a flow

φt : M → M with dφt(p)
dt = Xφt(p). Differentiating f along a curve t 7→ φt(p) (that is the

derivative of t 7→ f(φt(p))) we have if φt(p) ∈ b
aM then

df(φt(p))

dt
= X(f) = 〈∇f,X〉 =

〈∇f,∇f〉
〈∇f,∇f〉

= 1.

It follows that φb−a is a diffeomorphism aM → bM . To see that there is a deformation
retraction, we define a homotopy rt : bM → aM , by

rt(p) =

{
p if f(p) ≤ a
φt(a−f(p))(p) if a < f(p) ≤ b

It is clear that r0 is the identity, r1 is a retraction, and rt is a homotopy relative to aM so
aM is a deformation retract of bM .

Theorem I.4.10. Let f : Mm → R be a Morse function and p a critical point with f(p) = c
and index λ so that for some ε > 0, the set c+εc−εM is compact and contains no critical points
other than p. Then c+εM has the same homotopy type as c−εM with a λ-cell eλ attached;
moreover c−εM ∪ eλ is a deformation retract of c+εM .

Proof. We will follow the proof in [22]. First choose a Morse neighbourhood U of p with
coordinates (xi) and some ε > 0 so that c+ε

c−εM is compact and the closed ball of radius 2ε
is contained in U (using the coordinates of U). For convenience we will use x− to mean
the coordinates (x1, . . . , xλ) and x+ for the coordinates (xλ+1, . . . , xm). We can then write

f |U = −|x−|2 + |x+|2.
We will now define a new Morse function F that takes lower values near p and agrees

with f far enough away from p in such a way that the handle we attach to c−εM is given by
c−ε

MF ∩ c−εMf .
Let µ : R→ R be a smooth function so that µ(0) > ε, µ(t) = 0 for t ≥ 2ε and−1 < dµ

dt ≤ 0;
this function will control the difference between F and f . Define F as

F (q) =

{
f(q) q 6∈ U
f(q)− µ(|x−|2 + 2|x+|2) q ∈ U

.

We now show some properties of F .

Claim.
c+ε

MF =
c+ε

Mf

Proof. First note that F |M\U = f |M\U . We divide U into two regions: A = {|x−|2+2|x+|2 ≥
2ε} and B = {|x−|+ 2|x+|2 < 2ε}. We have that F |A = f |A as µ(|x−|2 + 2|x+|2) ≥ 2ε inside
A, so F |A = f − 0 = f as µ is 0 on arguments ≥ 2ε. All that is left to show is that on B we
have F ≤ c+ ε. We have

F |B ≤ f = c− |x−|2 + |x+|2 ≤ c−
1

2
|x−|2 + |x+|2 < c+ ε.

Claim.
c−ε

MF is diffeomorphic to
c+ε

Mf



Proof. We only need to show that CrF = Cr f and that p 6∈ c+ε
c−εM

F . Then Theorem I.4.9

along with the first claim tells us that
c−ε

MF ∼= c+ε
MF =

c+ε
Mf .

Consider
∂F

∂|x−|2
= −1− µ′(|x−|2 + 2|x+|2) < 0

and
∂F

∂|x+|2
= 1− 2µ′(|x−|2 + 2|x+|2) ≥ 1;

this tells us that F has no critical points in U as in the region B we have dF = ∂F
∂|x−|2

d|x−|2 +

∂F
∂|x+|2

d|x+|2. This is only 0 when both d|x−|2 and d|x+|2 are 0 (this only happens at the

origin). So the critical points of F are the critical points of f . We now see that p 6∈ c+ε
c−εM

F

as F (p) = c− µ(0) < c− ε.

Let H =
c−ε

MF \ c−εMf and let eλ = {q ∈ U | |x−|2 < ε, |x+|2 = 0}; eλ is clearly a λ-
dimensional closed disk. We have that eλ ⊂ H as f(eλ) = [c−ε, c] and F (eλ) < c−ε. To finish

the proof we need to show that
c−ε

Mf ∪ eλ is a deformation retract of
c−ε

Mf ∪H =
c−ε

MF ;
we will explicitly produce a deformation retraction rt. We do this in pieces: begin by setting
rt equal to the identity outside U , we then define rt on three other regions given by the
inequalities |x−|2 ≤ ε, ε ≤ |x−|2 ≤ |x+|2 + ε and |x+|2 + ε ≤ |x−|2.

• Consider the region given by |x−|2 ≤ ε. This region is in H and we see that projection
onto the x− coordinates sends any point to a point in eλ, so we will define rt to push
along the x+ coordinates. Define rt(x

1, . . . , xm) = (x1, . . . , xλ, txλ+1, . . . , txm); then r0

maps this region of H onto eλ and r1 is the identity.

• Consider the region given by ε ≤ |x−|2 ≤ |x+|2 + ε. This region is the part of H
where projection onto the x− coordinates does not give a point in eλ, so we need to do
something a little more complicated than the previous case. Define rt(x

1, . . . , xm) =
(x1, . . . , xλ, stx

λ+1, . . . , stx
m) where

st = t+ (1− t)

√
|x−|2 − ε
|x+|2

.

We see that st ∈ [0, 1] with s1 = 1 and s0 =
√
|x−|2−ε
|x+|2

. We then have that

f(r0(x1, . . . , xm)) = c− |x−|2 +
|x−|2 − ε
|x+|2

|x+|2

= c− ε.

When |x−|2 = ε we have that st = t and so this coincides with the definition on rt in
the previous region along their common interface (|x−| = ε). In addition we have that

when |x−|2 = |x+|2 + ε that st = 1 (hence rt is the identity here).

• Consider the region |x+|2 + ε ≤ |x−|2. This region is in
c−ε

Mf so we simply define
rt to be the identity here; this agrees with the previous region along their interface
(|x+|2 + ε = |x−|2). The intersection of the first region with this region is the points

with |x−|2 = ε and |x+|2 = 0 which is the boundary of eλ and so this definition coincides
with that of the first region.



We now have that rt is a deformation retraction from
c−ε

Mf ∪H to
c−ε

Mf ∪eλ. Notice that

eλ is attached to
c−ε

Mf along its boundary; this completes the proof.

Theorem I.4.10 uses a Morse function so that f−1(c) contains a single critical point. As
the proof takes place locally, we can drop this hypothesis and have k critical points in f−1(c).
We are then attaching a λi-cell for each critical point of index λi with value in [c− ε, c+ ε].

Remark I.4.11. There is a stronger form of this theorem that tells us the change in diffeo-
morphism type when passing a critical point. Passing a critical point of index λ actually
corresponds to attaching a smooth λ-handle [1, 24]. Kosinski proves this stronger version
by showing that the subset H considered above is actually a handle attached appropriately

along
e−ε

Mf [1]. The upgraded theorem states that given the same hypothesis as in Theo-
rem I.4.10, bM is diffeomorphic to aM with a smooth λ-handle attached.

As a consequence of Theorems I.4.9 and I.4.10 we have

Theorem I.4.12. Suppose f : M → R is an exhaustive Morse function, then M is homotopy
equivalent to a CW complex with one λ-cell for each index λ critical point.

This follows quite simply if there are finitely many critical points, but is also true for
functions with infinitely many critical points (recall that if there are infinitely many critical
points the manifold must be non-compact) [22].

The Morse inequalities

Recall that the Euler characteristic of a CW complex X is given by the alternating sum of
the number of i-cells: χ(X) =

∑n
i=0(−1)ini where ni denotes the number of i-cells of X.

This is the same as the alternating sum of Betti numbers bi (see [14]), which are given by the
ranks of the homology groups: bi(X) = rankHi(X). By considering the cellular homology,
we can then see that Theorem I.4.12 implies that χ(Mm) =

∑m
i=0(−1)i|Cri f |.

Considering the cellular homology also shows that bi(X) is not greater than the number
of i-cells in a CW complex X as the rank cellular homology groups must be less that the
number of i in any given CW structure for the manifold. Hence we have a set of inequalities

bl(M) ≤ |Crl f | ∀l ∈ N

for a compact manifold M and any Morse function f : M → R; these are known as the
weak Morse inequalities. This places a lower bound on the number of critical points that a
Morse function can have, or equivalently, given a Morse function on a manifold we obtain an
upper bound for the Betti numbers. The weak Morse inequalities can also be obtained from
a stronger result, the (strong) Morse inequalities (see [22, 23]), which are

l∑
i=0

(−1)ibl−i(M) ≤
l∑
i=0

(−1)i|Crl f |

for any l ∈ N.
In later chapters we will be interested in the number of critical points of each index that

a Morse function has. To simplify terminology we define the following.

Definition I.4.13. Suppose f : Mm → R is a Morse function. The sequence of numbers
(|Cr0 f |, |Cr1 f |, . . . , |Crm f |) is called the Morse vector of f .

Definition I.4.14. A Morse function f : Mm → R with Morse vector (c0, . . . , cm) is perfect
if ci = bi(M).



A perfect Morse function is the simplest we can hope to have, given the constraint of the
weak Morse inequality. Note that there are manifolds that do not admit a perfect Morse
function [23]. Given a smooth Morse function f , there is a simple criterion that detects when
we can perturb f in order to ‘cancel’ two critical points; this is a useful way to simplify Morse
functions. We will not do much with this process but include it here to allow comparison
with the analogous statement in discrete Morse theory.

Theorem I.4.15. Suppose p, q are critical points with consecutive indices (λ(p) = λ(q)− 1)
of a Morse function f : M → R and ξ is a gradient-like vector field so that Ms(p) and Mu(q)
intersect transversely. Furthermore, suppose that for any level set between f(p) and f(q) this
intersection consists of a single point. Then there is a Morse function g equal to f outside a
neighbourhood U of Ms(p) ∩Mu(q) so that g has no critical points in U .

For a proof see [21, 19]. Note that the condition that any level set between p and q
contains a single point of Ms(p) ∩Mu(q) is satisfied if it is true for a single level set.

This process can also be reversed, to create two critical points of corresponding index.
The cancellation of two critical points is sometimes referred to as death, with the operation
that creates two critical points being referred to as birth.



Chapter II

Classifying surfaces by ordering
functions

In this chapter we will examine a neat application of Morse theory. We will classify the smooth
closed compact orientable 2-manifolds up to diffeomorphism by reordering the critical points
of a given Morse function. This demonstrates the utility that local modifications of Morse
functions bring to understanding the structure of manifolds. In this section we will refer to
smooth closed compact orientable 2-manifolds as surfaces.

We will follow the approach of [11] but fix an error concerning the movement of index 1
critical points. The general strategy is to choose a Morse function that will give us a simple
handle decomposition of a surface. We then show that we can understand a particular set of
handle attachments and build our manifold by gluing these together.

Theorem I.4.10 tells us that a Morse function on M gives us a handle decomposition of
M . We will see that we can change this decomposition so that handles are attached in a
specific order.

Definition II.0.1. A Morse function is said to be ordered if λ(p) < λ(q) implies f(p) < f(q)
and no critical points of the same index take the same value.

1 Surfaces admit ordered Morse functions

In this section we will prove that any surface admits an ordered Morse function. In fact a
stronger statement is true; given a Morse function on any manifold, by performing certain
local modifications we can produce an ordered Morse function with the same number of
critical points of each index [21, 23].

We start by showing that any index 0 critical point can be lowered an arbitrary amount.

Lemma II.1.1. Given a Morse function f : Mm → R with an index 0 critical point p, there
exists a neighbourhood U of p and a Morse function g : Mm → R with the same critical
points as f so that g|M\U = f |M\U and g(p) = f(p)− a for any a ≥ 0.

Proof. Let U be a Morse neighbourhood of p with local coordinates (x1, . . . , xm). Let ε > 0
be such that U contains the closed ball of radius ε, Bε(0), and assume we have a smooth

function h : U → R so that h(p) = a, the mixed partial derivatives ∂2h
∂x1∂x2 (p) are zero,
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h(x) = 0 for |x| > ε and for all |x| < ε we have ∂h
∂xi |x ≤ 0 and ∂2h

∂xi2
(p) < 2. Then

g(q) =

{
f(q)− h(q) if q ∈ U
f(q) if x 6∈ U

will be the desired function. To see this, first note that p is the only critical point of f in U
and g|M\U = f |M\U . We have that dg = df −dh in U , in particular dg|p = df |p−dh|p = 0 so
the critical points of g are the critical points of f as for any other x ∈ U dg 6= 0 (all partial
derivatives of g are positive in U \ {p}). The Hessian of g is given by

(Hg,p)ij =
∂2g

∂xi∂xj

=
∂2f

∂xi∂xj
− ∂2h

∂xi∂xj

= 2δij − aiδij

where ai < 2, then we have that Hg,p is diagonal in these coordinates and all its eigenvalues
are positive; hence p is an index 0 critical point of g. So we have that g is a Morse function
with the desired properties.

Recalling the bump functions with specific properties that are known to exist, we see that
such a h exists. For an explicit example consider (in coordinates)

h(x1, . . . , xm) = a

m∏
i=1

φ(xi)

where

φ(x) =

e
− 1

1−( x
i
ε

)2
+1

|x| < ε

0 otherwise

By considering the function −f on M we have the following corollary.

Corollary II.1.2. Given a Morse function f : Mm → R with an index m critical point p
there exists a neighbourhood U of p and a Morse function g : Mm → R with the same critical
points as f so that g|M\U = f |M\U and g(p) = f(p) + a for any a ≥ 0.

We now turn to the case of index 1 critical points on surfaces, which we will see can be
moved up or down. There is a subtle difference when moving an intermediate index critical
point p on Mm (not index 0 or m) that prevents us from naively pushing a neighbourhood of
p up or down. The issue with just using any Morse neighbourhood of p is that extra critical
points can be introduced, as is shown in Figure II.1.

Figure II.1 shows how naively lifting a critical point using a strategy like that in Lemma II.1.1
can produce new critical points: the flow lines and level sets can be perturbed when raising
the index one critical point in such a way the new critical points are created. Note that
flow lines must be transverse to level sets and can only intersect at critical points1. If we
raise the critical point in only a small neighbourhood, then we can see that the part of the
stable manifold that is not perturbed must meet the new unstable manifold, resulting in new
critical points as we now have intersecting flow lines.

1This follows from the uniqueness of the solution to the associated differential equations



To remedy this we must modify f in a neighbourhood of the ascending (resp. descending)
manifold of p if we are increasing (resp. decreasing) the value of p (see Figure II.2), and we
must keep the value of the critical point below (resp. above) the value of the part of the
ascending (resp. descending) manifold in the boundary of the neighbourhood. Otherwise we
will encounter the situation depicted in Figure II.1.

Figure II.1: Naively moving a critical point can produce extra critical points. Black lines
represent level sets with dotted green (oriented) lines representing the flow and red dots the
critical points. The sole index 1 critical point (left) is raised in a small neighbourhood; this
alters the flow lines and produces new critical points (right).

Figure II.2: To move an index 1 critical point up we must modify the Morse function in a
neighbourhood of the ascending manifold; the red point is the critical point and the shaded
region is the modified neighbourhood. Note the boundary of the shaded regions agree.

This is the error in [11]. The statement given there claims that the value of an index
1 critical point can be moved up or down an arbitrary amount but the proof provided has
allowable values of the critical point dependent the size of Morse neighbourhoods that exist
around the point. We potentially need to move the index 1 critical points further than just
some ε > 0 and it was not shown that there is a sufficiently large neighbourhood exists to
accomplish this. Lemma II.1.3 is crucially used in Lemma II.2.3 to simplify an ordered Morse
function to a desired form, but this may involve large movements of particular index 1 critical
points so we correct the statement and proof in [11] to allow for this.



Lemma II.1.3. Suppose f is an ordered Morse function on a surface M with some gradient-
like vector field ξ and p is a critical point of index 1. Let a, b be two regular values with
a < f(p) = c < b so that Ms(p)∩ b

aM does not intersect the unstable manifold of any critical
point in Cr f ∩ b

aM . Then for any c′ ∈ (c, b) there is a Morse function g, equal to f outside
an open neighbourhood of Ms(p) so that g(p) = c′ and p is a critical point of index 1 for g;
moreover no new critical points are introduced.

Proof. We will construct a smooth function on some neighbourhood U of Ms(p) so that p is
an index 1 critical point and the function and its derivatives match up along the boundary
of U . Consider a compact neighbourhood N of Ms(p) ∩ b−ε

aM (contained in b
aM) so that

N is disjoint from the unstable manifold of any critical point in b
cM . We can then define a

smooth function h on N with p an index 1 critical point of h, so that ξ is gradient-like for
h along Ms(p), f(p) = c′, and h is equal to f near the boundary of N . Then defining g by
g|N = h and g|M\N = f proves the theorem.

Define smooth path α : [−1, 1] → Ms(p) so that α(±1) gives the two points in Ms(p) ∩
f−1(b−ε) and f ◦α = h̄ is a Morse function on [−1, 1]. We can pick a tubular neighbourhood
of N with coordinates (x, y) so that in these coordinates f = h̄(x)− y2 with p the origin and
the line in y = 0 is N ∩Ms(p) (this follows similarly to a statement in [19]).

Let h̃ be a smooth function h̃ : [−1, 1]→ R so that h̄ < h̃, h̃(0) = c′, 0 is the only critical
point of h̃ and h̃ = h̄ near {−1, 1}; it is clear that such a function exists. Let φ : R→ R be a
smooth function with non-negative derivative so that φ(0) = 0 and φ(r) = 1 for |r| > ε′ where
ε′ > 0 is such that f(ε′, 0) = b− ε. Then setting h(x, y) = h̃(x) + (h̄(x)− h̃(x))φ(y2)− y2 we
have a suitable function h: we can see that h has a non-degenerate critical point at (0, 0) of
index 1 and this is the only critical point of h.

Combining Lemmas II.1.1 and II.1.3 and corollary II.1.2 we have that surfaces admit
ordered Morse functions.

Theorem II.1.4. Any Morse function f on a surface can be perturbed in neighbourhoods of
stable and unstable manifolds so that the resulting function is ordered.

We also see that we can lower an index 1 critical point p in a similar way (consider the
negative of the function and apply Lemma II.1.3). By choosing a Morse-Smale gradient, we
can then move an index 1 critical point p as far up or down as we like so long as we do not
meet the level of an index 0 (resp. 2) critical points whose stable (resp. unstable) manifolds
intersect the unstable (resp. stable) manifold of p.

Remark II.1.5. Note that Lemma II.1.1 and corollary II.1.2 work in any dimension. There is
also a generalisation of Lemma II.1.3 to any dimension, commonly known as the ‘rearrange-
ment lemma’ [21, 23]. This allow for a Morse function, with a gradient-like vector field ξ, to
be modified (locally) so as to change the value of any critical point p in b

aM to any c ∈ [a, b]
provided that W (p) = Ms(p) ∪Mu(p) does not intersect W (q) for any other critical point q
in b

aM . Moreover ξ is gradient-like for the new function.

1.1 Examining the movement of index 1 critical points

Using the flow given by a gradient like vector field we can follow any non-critical points
through level sets of a manifold in either direction (up or down). Assuming that we have
a non-critical point x ∈ f−1(t), then as long as the flow does not take x to a critical point
there is a unique critical point in any level set f−1(t ± ε) that corresponds to x, and these
points do not correspond to any other y 6= x in f−1(t). In this section we will make use of
these ideas to talk about how relationships between points changes in different level sets —
what we really mean is the corresponding points under the flow.



f(p)− ε

f(p) + ε

f(p)

p

Figure II.3: Connectivity of level sets near a critical point p; level sets f(p− ε) (blue), f(p)
(brown), and f(p+ε) (pink) are shown with flow lines (dotted green). Notice how an interval
in f(p+ ε) than contains a point on a flow line heading to p is not mapped to an interval in
f(p− ε) by the flow.

Let us restrict our focus to a surface M . The Morse lemma gives us an exact picture how
boundary components of sublevel sets change as we pass over a critical point of index one.
The key here is that if f−1(c) is a critical point p, then the connectivity of the components
of f−1(c+ ε) and f−1(c− ε) changes, see figure II.3.

Consider the points in Figure II.3 at the intersection of the level set f(p) − ε and the
indicated flow lines that do not meet p; there are two pairs, one near the top of the diagram
and one near the bottom. Suppose p is type 1, then both pairs are connected in f−1(f(p)−ε)
outside the shown neighbourhood. The points in f−1(f(p) + ε) that are the image of the
points in a pair under the flow are then not in the same component of f−1(f(p)− ε).

Let p be a type 1 critical point, then Mu(p) has both its intersections with f−1(c− ε) in
the same component. For clarity we assume p has type 1, though the same idea holds for
type 2. We will consider what happens when p is moved just above another index 1 critical
point q so that c = f(p) < b < f(q) = d and p, q are the only critical points in d+ε

c−εM for
small enough ε; we will call the modified function g and let g(p) ∈ (d, d + ε) (we only move
p past a single critical point). As we have seen, the handle attachment that corresponds to
p for f takes place along a neighbourhood of Mu(p) ∩ f−1(c− ε). As p is type 1, f−1(b) has
at least two components.

If Mu(q) intersects f−1(b) in the same components, then we know that q has type 2. As
we modify f in a neighbourhood of Ms(p) that is disjoint from Mu(q), the flow is unchanged
for points in Mu(q). This means that the handle corresponding to q is attached at the same
points of the manifold after moving p above q. Notice however that after moving p we know
that Mu(q) intersects a single component of g−1(b) (as the handle of p is not there to separate
it into two), and hence q has type 1 after moving p. This is shown schematically in Figure II.4;
notice that the level set g = b is a single component whereas f = b is two components.

On the other hand, if the intersection of Mu(q) and f−1(b) does not occur in exactly the
same components as the intersection of Ms(p) and f−1(b) then we see that Ms(q) intersects



p

q

f−1(f(p)− ε)

f−1(b)

f−1(f(q) + ε)

q

p

g−1(b)

g−1(f(q) + ε)

g−1(g(p) + ε)

g−1(f(p)− ε)

Figure II.4: Change in level sets when moving index 1 critical point p above critical point
q (i.e., modifying f to g); as the unstable manifold of q intersects the same components of
f−1(b) as the stable manifold of p, the types of p and q switch when moving p above q.

g−1(b) in the same number of components as it intersects f−1(b) and hence its type does not
change.

To see that p must change type if q does, and similarly keep its type if q does, we count
boundary components of sublevel sets. Noting that each critical point changes the number of
boundary components by one, if q now adds one rather than subtracting one (i.e., q changes
to type 1) p must subtract one (have type 2) after the move as the other critical points are
unaffected due to the locality or the perturbation that produces g from f . Similarly, if q
retains its type then similarly p must retain its type.

2 Classification

We now complete the classification of surfaces. The advantage of using ordered Morse func-
tions is that we know that order in which different index handle attachments happen and
so we know the index of handles in certain ‘height’ ranges. In particular Lemmas II.2.1
and II.2.3 will mean that we only need to worry about the interplay between a subset of the
index 1 handles.

The following lemma reduces the number of critical points we will need to worry about



under certain conditions; this lemma can be thought of as taking the place of cancellation
(Theorem I.4.15), but is much simpler.

Lemma II.2.1. Suppose a < b are two regular values of an ordered Morse function f so
that there are an equal number of index 0 critical points and index 1 critical points of type 2
in b

aM and these are the only critical points in b
aM . Then bM is diffeomorphic to aM .

Proof. This follows immediately from considering the number of boundary components; say
there are m index 0 critical points (and index 1 critical points of type 2) in b

aM . As f is
ordered, we know that aM is diffeomorphic to a disjoint union n of disks where n is the
number of index 0 critical points in aM . There is some regular value a′ ∈ (a, b) so that

separates all index 0 and index 1 critical points. We then have that a′M is diffeomorphic
to a disjoint union of m+ n disks. Attaching an index 1 handle between two different disks
clearly gives us back a disk, so we have bM is a disjoint union of m+ n−m = n disks.

Proposition II.2.2. Suppose M admits an ordered Morse function with a single index 0
critical point, two index 1 critical points and a single index 2 critical point. Then M is a
torus.

Proof. First note that the two index 1 critical points must be of differing type — the first
must have type 1 as there is only one boundary component it can attach to, and the second
must have type 2 as it must join the two boundary components produced by the type 1
handle in order for the index 2 handle attachment to result is a closed manifold. Attaching
the first 1-handle gives us a cylinder. Then attaching a handle along sections of two different
boundary components of the cylinder clearly gives us a torus minus a disk; this disk is the
2-handle that is attached last.

The following lemma, in conjunction with Lemma II.2.1, will reduce the number of index
1 critical points we need to worry about by showing that we can improve a given ordered
Morse function to have a particularly nice form.

Lemma II.2.3. Given an ordered Morse function f : M → R there is an order Morse func-
tion g with the same critical points of f with regular values a < b so that aM is diffeomorphic
to a disk and bM is diffeomorphic to a disk. Moreover b

aM has an even number of index 1
critical points, half each of type 1 and type 2.

Proof. We only need to show the claim for aM as the corresponding statement for bM follows
by considering the function −f . Let α be a regular value that separates the index 0 and index
1 critical points and β a regular value that separates the index 1 and index 2 critical points.

Then
α
Mf is a disjoint union of m0 disks, having m0 boundary components and

β
Mf is

connected, having m2 boundary components. As
β
Mf is connected we know that there is at

least m0 − 1 index 1 critical points of type 2 whose flow lines travel down to distinct index
0 critical points.

We construct g by movingm0−1 such critical points down one by one (using Lemma II.1.3)
to lie between α and the lowest value of an index 1 critical point that has not been moved
previously. Let a be a regular value for g separating the moved index 1 critical points from
the rest of the index 1 critical points. Then we have that aMg is diffeomorphic to a disk
by Lemma II.2.1. Similarly we can do the same to get some b so that bMg is a disk. We
now have that there must be an equal number of type 1 and type 2 1-handles in between
a and b as g−1(a) has the same number of components as g−1(b) (they each have a single
component).



We will call a Morse function satisfying the properties of sublevel sets described in
Lemma II.2.3 a nice ordered Morse function and we call the values a, b lower and upper
disk values respectively. Note that upper and lower disk values are not unique; the set of
disk values forms an open bounded set in R with two components, one for upper and one for
lower disk values. We have the following immediate corollary.

Corollary II.2.4. A surface admits a nice ordered Morse function.

We are now set to prove our classification. We sate this in terms of connected sum of
manifolds, recalling that smooth connected sums that respect orientation are well defined.

Theorem II.2.5. Suppose f : M → R is a nice ordered Morse function with lower and
upper disk values a < b and n index 1 critical points in b

aM . Then M is the connected sum
of n

2 tori.

Proof. We being by modifying f on b
aM so that the critical points alternate in type as we

move up the manifold (with respect to the new function). We can do this by altering f ,
moving type 2 critical points down as far as possible without changing their types. We now
assume that the critical points of f in b

aM alternate.
We need to show that for a regular value δ, with p pairs of critical points (a type 1

followed by a type 2) in δ
aM , that δM is a connected sum of p tori with a disk removed.

Assume for induction that this is true for the first p − 1 pairs (the base case is given by
Proposition II.2.2); then there is some γ < δ with γM a connected sum of p − 1 tori minus
a disk. By Proposition II.2.2 we have that δ

γM is a torus minus two disks and gluing this to
γM together we have that δM is a connected sum of p tori, minus a disk. By induction, bM
is a connected sum of n

2 tori minus a disk. This missing disk is given by bM , and hence M
is the connected sum of n

2 tori.



Chapter III

Discrete Morse theory

We will now review the basics of Forman’s discrete Morse theory [12]. This was developed in
the 1990s and allows us to generalise results and techniques of smooth Morse theory to CW
complexes. This may be useful, for example, when trying to analyse discrete data sets [18].
Most of Forman’s theory was initially developed with finite CW complexes in mind though
parts of it have been subsequently generalised to infinite complexes [2]. We assume familiarity
with CW complexes, particularly their construction via attaching maps, the degrees of these
maps and the simplicial, cellular and singular homology theories of CW complexes.

1 Basic definitions and results

Definition III.1.1. A cell σ of a CW complex is a regular face of τ if the characteristic map
of τ restricted to the inverse image of σ̊ is a homeomorphism and the closure of this inverse
image is a closed p-ball. A CW complex is called regular if every face is regular.

Some common examples of CW complexes are not regular. For example consider the
standard CW structure of the projective plane RP 2 given by one 0-, 1- and 2-cell where the
attaching map for the 2-cell has degree two. This is not regular as the attaching map for the
2-cell is a two-to-one map.

On the other hand, a simplicial complex is a regular CW complex. Though we will
often deal with simplicial complexes (particularly when talking of PL manifolds), the basic
definitions and theorems of discrete Morse theory hold for general CW complexes. Unless
otherwise specified, all CW complexes are assumed to be finite.

To condense notation when first introducing a cell we will write σ(p) to mean a cell σ has
dimσ = p. We will write σ < τ for two cells σ, τ so that σ ⊂ τ , σ 6= τ and σ ≤ τ if σ < τ or
σ = τ . For σ < τ , we call σ a face of τ .

Lemma III.1.2. Given cells ν < σ < τ with ν a regular cell of σ and σ a regular cell of τ .
Then there is a cell σ̃(p) 6= σ so that ν < σ̃ < τ .

Proof. This is checked easily by computing ∂τ , ∂σ and comparing with ∂2τ = 0 where ∂ is
the cellular boundary map.

Definition III.1.3. A discrete Morse function on a CW complex M is a function f : M → R
so that any irregular face σ of τ has f(σ) < f(τ). In addition, for any cell σ(p) we require

• |{τ (p+1) > σ | f(τ) ≤ f(σ)}| ≤ 1
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• |{ν(p−1) < σ | f(ν) ≥ f(σ)}| ≤ 1

We will denote the sets above as Mf
+
σ and Mf

−
σ respectively, omitting the f where the chosen

function is clear.

The definition says that given a discrete Morse function, the ‘general’ case is that the
value of two cells σ(p) < τ (p+1) will decrease with the dimension of the cells, with possibly
one exception.

Figure III.1 gives some examples of discrete Morse functions in dimensions 1–3. Note
that at most one of the sets M±σ is non-empty for every cell σ, this is in fact be the general
case as is shown by Lemma III.1.5.
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(c) 3-simplex (right) and identification space for its boundary (left); the 5 in the right figure is the
value of the 3-cell.

Figure III.1: Examples of discrete Morse functions on CW complexes; blue cells are critical.

When there are no exceptions we call a cell critical:

Definition III.1.4. A critical cell for a discrete Morse function is a cell σ(p) so that

• |M+
σ | = 0



• |M−σ | = 0

The index of σ is defined to be its dimension.

Looking again at Figure III.1, we can see that the critical cells are given by the blue cells
as for each blue cell the adjacent cells with dimension one higher or lower have higher and
lower value respectively. In the same way that we defined the Morse vector of a smooth Morse
function we define the discrete Morse vector of a discrete Morse function f on a d-complex
to be the sequence (c0, . . . , cd) where ci is the number of critical i cells.

Lemma III.1.5. Suppose f is a discrete Morse function on M . For a non-critical cell σ(p)

exactly one of M+
σ and M−σ contains a cell, the other is empty.

Proof. If dimM = 0 then we have M−σ is automatically empty, so we assume dimM > 0.
Suppose there is a τ (p+1) > σ so that f(τ) ≤ f(σ). By definition σ is a regular cell of τ
and then any other σ̃(p) < τ must have f(σ̃) < f(τ) ≤ f(σ). If in addition there is some
ν(p−1) < σ with f(ν) ≥ f(σ) then by Lemma III.1.2 there is a cell σ̃(p) 6= σ with ν < σ̃ < τ .
But then we must have f(σ) < f(ν) < f(σ̃) giving us a contradiction (we already showed
that f(σ̃) < f(σ)).

Consider a pair of cells σ(p) < τ (p+1) in a regular CW complex with f(σ) ≥ f(τ). By
the above lemma we have that f(σ′) < f(τ) for all other σ′(p) < τ . We then have that all
ν(p−1) < τ have f(ν) < f(τ) unless ν < σ and f(ν) < f(σ). This follows as Lemma III.1.2
tells us there must at least two p-faces of τ of which ν is a face. If ν has a higher value than
τ , then by Lemma III.1.5 one of the p-faces of τ containing ν has a higher value than τ , and
so must be σ. Note that ν must have lower value than σ by Lemma III.1.5. By inducting
on dimension we see that for any α < β to have f(α) > f(β), M−β must contain a cell and α
must be a face of this cell.

We now define the analogue of the descending gradient of a Morse function. Gradients (or
gradient like vector fields) of Morse functions are often much easier to use than the functions
themselves and generally contain all the information one needs when working with Morse
theory. Given a discrete Morse function f we have seen by Lemma III.1.5 that non-critical
cells come in (disjoint) pairs σ(p) < τ (p+1) where f(σ) ≥ f(τ). Intuitively we can think of a
decreasing gradient as given by arrows σ → τ between these non-critical pairs. Then every
non-critical cell will be either the initial or terminal point of an arrow (but not both) and
critical cells will be neither. We will now make this definition rigorous. For a complex M we
denote the set of p-cells by Mp.

Definition III.1.6. Given a discrete Morse function f on M , the discrete Morse gradient
of f is a set of maps of cells Vf : Mp →Mp+1 ∪ {0} (one for each p) so that if τ (p+1) > σ(p)

has f(σ) ≥ f(τ) then V (σ) = τ and V (σ) = 0 otherwise.

Considering that MdimM+1 is the empty set we see that top-dimensional cells must map
to 0. We write σ ≺ τ to say that σ and τ are two cells with Vf (σ) = τ , we can think of σ ≺ τ
as meaning there is a ‘vector’ from σ to τ . This gives us a more compact way of writing the
equivalent statement σ(p) < τ (p+1), f(σ) ≥ f(τ).

Figure III.2 shows the discrete gradients of the functions in Figure III.1: each ‘vector’
(pair σ ≺ V (σ)) is represented as an arrow from σ to Vf (σ). Cells that are not the origin of
an arrow are the cells with for which Vf is 0; note that these are either critical cells or in the
image of V (i.e. the have an arrow pointing to them).

We say f, g are equivalent discrete Morse functions on M if they have the same discrete
Morse gradient: Vf = Vg. This defines an equivalence relation on the collection of discrete
Morse functions on M and clearly also respects restriction to subcomplexes of M .



(a) S1 (b) The torus

(c) 3-simplex (right) and identification space for its boundary (left); the green dot (in the identification
space) represent the arrow into the 3-cell (in the right figure).

Figure III.2: Examples of discrete Morse gradients on various cell complexes.

If we consider a cell σ(p) with V (σ) = τ (p+1) 6= 0 then we have by definition that f(τ) ≤
f(σ), and moreover f(σ′) < f(τ) ≤ f(σ) for any σ′ < τ ; in particular the other p-cells of
τ have lower value than σ. This indicates how we can define a gradient path, but first we
will introduce a slightly more general analogue of a vector field; gradient paths will then be
special cases of paths for these vector fields.

The properties of discrete Morse functions can be reinterpreted in terms of their discrete
gradients. The unique pairing property given by Lemma III.1.5 says that if Vf (σ) = τ , then
Vf (τ) = 0 and moreover, V −1

f (τ) = {σ}. By definition we also have that σ is a regular face of
τ if Vf (σ) = τ . We enforce these properties to define the more general concept of a discrete
vector field.

Definition III.1.7. A discrete vector field is a linear map V : M →M ∪ {0} so that

• V (Mp) ⊂Mp+1 ∪ {0}

• V (σ) = 0 if σ is an irregular face of V (σ)

• V (σ) = 0 if σ ∈ imV

• Given σ(p), |{ν(p−1) | V (ν) = σ}| ≤ 1.

A discrete vector fields captures the local properties of a discrete gradient. We see that
a discrete vector field has the unique pairing property of a discrete Morse gradient and a



cell can only map to a cell of 1 dimension higher of which it is a regular face. In fact it
is clear that any discrete Morse gradient is a discrete vector field. We would like to know
when the converse holds: for which discrete vector fields do we actually have the gradient
of some discrete Morse function? Knowing this will allow us to use vector fields without
reference to a specific discrete Morse function. As we will see, it is really only the equivalence
classes of discrete Morse functions (i.e. the discrete gradient) we care about, so knowing that
some vector field is a gradient without explicitly writing down a discrete Morse function is
advantageous.

Definition III.1.8. A V -path is a sequence of cells σ
(p)
0 , σ

(p)
1 , . . . , σ

(p)
n so that if V (σi) =

τ 6= 0, then σi 6= σi+1 and σi+1 < τ . If V (σi) = 0 then i = n. A path is called closed if
σn = σ0 and n 6= 0.

We say that the length of a V -path σ0, . . . , σn is n. The key observation to make is that
for a discrete gradient Vf the value of f must decrease along any Vf -path.

Lemma III.1.9. Suppose f is a discrete Morse function and γ : σ0, . . . , σn is a Vf -path.
The f(σi+1) < f(σi) for all i ∈ {0, . . . , n}.

Proof. We have f(σi) ≥ f(Vf (σi)) > f(σ′) for any σ′ < Vf (σi), σ
′ 6= σi. In particular

σi+1 < Vf (σi) and hence f(σi+1) < f(σi).

This immediately implies the following.

Corollary III.1.10. Given a discrete Morse function f there are no closed Vf -paths.

This is in fact the only additional property required to ensure that a discrete vector field
is a discrete Morse gradient.

Theorem III.1.11 (Forman). Given a discrete vector field V , V = Vf for some discrete
Morse function f if and only if V has no closed V -paths. Moreover f can be chosen to be
self-indexing.

Proof. Only one direction needs to be shown; that a discrete vector field is a discrete gradi-
ent for some function if there are no closed paths — the other direction is given by Corol-
lary III.1.10. This is done by inductively constructing an explicit self-indexing discrete Morse
function on the cells with dimension up to k, whose discrete Morse gradient is given V ;
see [12].

When V is a discrete gradient, we call a V -path a gradient path of V (or of any function
that induces V ). Gradient paths will in many ways play the role of the flow lines of Morse
theory. From now on we will refer to discrete vector fields with no closed path as discrete
Morse gradients even without reference to a discrete Morse function, highlighting the fact
that we will not depend on a specific function.

The definition of V -paths is a little too restrictive for our purposes. We extend these
definitions to allow us to talk of a V -path from τ (p+1) to σ(p). This is in reality a V -path

as defined previously starting at some σ
(p)
0 < τ so that V (σ0) 6= τ . Notice that the value of

a discrete Morse function that induces V will be higher on τ than on any cell of the path.
This extension is predominately to simplify terminology: for example we can now talk of the
set of all gradient paths from some critical τ (p+1) to some σ(p), which is the set of all paths
from faces of τ to σ.



Notation for gradient paths

We will pause briefly to introduce some notation that will make it easier to talk about gradient
paths in later sections.

We will denote a gradient path from a cell α(p) to a cell β(p) by α  β. We will write

α
(γ)
 β to mean we have a gradient path α β and moreover the path is the length one path

(α, β) with W (α) = γ, where W is the gradient we are considering. Recall that we defined
a gradient path from a critical cell γ(p+1) to a cell β(p) to be a gradient path of p-cells from

some α(p) < γ (α 6≺ γ) to β; we will notate this as γ
(α)
⇁ β and when we do not care about

the specific α that begins the path (for example when talking about all paths from γ to β)
we will write γ ⇁ β.

By concatenating these notations we indicate a concatenation of gradient paths. For

example γ(p+1) (α)
⇁ β

(µ)
⇁ ν indicates a gradient path of p-cells from the face α(p) < γ to β

followed by a gradient path of (p − 1)-cells from µ(p−1) < β to ν and moreover γ and β
are critical. When the second path in a concatenation is a path of the form α  β then
the concatenated paths form a new path where we simply append the sequence for α  β
(without the initial α) to the end of the sequence for the preceding path. For example,
γ(p+1) ⇁ α  β is a path of the form γ ⇁ β which will be given by a sequence of p-
cells α0, . . . , αn−1, α, β1, . . . , βn−1, β where α0, . . . , αn−1, α is the sequence for γ ⇁ α and

α, β1, . . . , βn−1, β is the sequence for α  β. In particular the expressions γ
(α)
⇁ β and

γ
(α)
⇁ α β mean exactly the same thing as a gradient path of the form γ

(α)
⇁ α is necessarily

given by the length 0 path α.
The main aim of these notations is to make it easier to recall the relative dimensions that

cells of interest have, and describe the set of gradient paths with particular forms in a more
compact way. This will be of particular use in Chapter V.

2 Cellular collapse

In this section we will introduce a tool that is used widely in discrete Morse theory, cellular
collapse, and discuss the links between cellular collapse and discrete Morse gradients. In
particular cellular collapse defines a discrete Morse gradient, which makes it a useful tool for
discussing the existence of discrete Morse gradients on a complex.

Given a simplicial cell complex C, a free face of C is a cell σ such that σ is a face of only
cell τ . Given a free face, an elementary collapse is the removal of a free face (which in turn
requires the removal of τ) resulting in a subcomplex C ′; we write C ↘σ C

′ and say that C ′

is the result of collapsing the free face σ in C. Note in particular that |C ′| = |C| \ (̊σ ∪ τ̊)
and C ′ = C \ {σ, τ}. We can also collapse free faces that are regular cells in CW complexes
using the same approach.

More generally, we write C ↘ C ′ and say C collapses to C ′ if there is a sequence of
elementary collapses C ↘σ1 C1 ↘σ2 · · · ↘σn Cn = C ′. Figure III.3 shows a sequence of
collapses taking the 2-simplex to a vertex; notice that there is more than one way to do this.
Cell collapse provides us with a way to detect when a subcomplex C ′ ⊂ C is a deformation
retract of C as if C ↘ C ′ then C ′ is a deformation retract of C.

Definition III.2.1. A cell complex is collapsible if it collapses to a single vertex.

Collapsible complexes are contractible spaces. Note that the converse is not true: there
are non-collapsible cell complexes homeomorphic to contractible spaces. A simple example
of a non-collapsible cell complex that is contractible is the dunce hat [30]. This is obtained



Figure III.3: A collapse sequence reducing a 2-simplex to a vertex; the arrows begin at the
free face used for an elementary collapse.

from a 2-simplex given by vertices a, b, c by identifying the edges ab ∼ ac ∼ bc. This results
in a space that is clearly not collapsible as there is no free face (the only 1-cell is not a regular
face of the 2-cell). The dunce hat is contractible: as a CW complex it is a disk glued to a
1-cell e along eee−1, which is homotopy equivalent to attaching along e, hence the dunce hat
has trivial fundamental group.

A sequence of collapses C ↘σ1
C1 . . . ↘σn Cn induces a discrete vector field V on C.

First note that at each collapse step the unique cell for which σi is a face (denote it τi) must
have dimension dimσi + 1, so we set V (σi) = τi and V (σ) = 0 for all σ ∈ C \ {σi, τi}ni=1.

Lemma III.2.2. The vector field V defined by a sequence of collapses C0 ↘σ1 C1 ↘σ2

· · · ↘σn Cn is a discrete Morse gradient.

Proof. By construction each cell σ satisfies exactly one of

1. σ is the image of one σi

2. σ = σi for one i

3. σ is critical (V (σ) = 0 and σ 6∈ imV ).

This means we have a well defined vector field, and by Theorem III.1.11 we need only show
that there are no non-stationary closed paths. This follows because we use free faces. Suppose
σ(p) is a free face of C that appears in the sequence of collapses (note that it does not have
to be C0) so that its collapse removes τ (p+1). This means that for any V -path in which σ
appears, σ can only be the first cell of the path. This follows as for σ to appear anywhere
else we would need some σ′(p+1) in the sequence to collapse τ as well (so that V (σ′) = τ),
but this is impossible.

The converse to this says that if a cell is a non-initial cell of a V -path, then it is not a free
face of C. For any closed path we can choose any cell to be the initial cell and hence no cell
of a closed path can be a free face of C. Consider a closed path γ in Ci, the same argument
says that no cell of this path can contain a free face of Ci. Consider the collapse Ci ↘σi Ci+1;
we must have that γ is contained in Ci+1. By induction on the collapse sequence no element
of the collapse sequence can be part of a closed path, but as every path arises from collapses
(that is a V -path can only contain the cells σi) there cannot be any closed paths.

Remark III.2.3. The link between collapse and discrete gradients is deeper than that given
by Lemma III.2.2. In addition to a sequence of collapses defining a discrete Morse gradient
we also have that a discrete gradient gives us a recipe for reducing a cell complex M down
to a subset of its 0-cells. While this process is implicitly suggested by Benedetti (e.g. in [5])
we could not find a proper description of this process. We provide our own here.



We begin by removing the top-dimensional critical cells from the complex to obtain M ′.
Then we perform the collapses given by gradient paths starting at free faces of M ′. To see
that we can collapse all of the remaining top-dimensional cells in this way consider a top-
dimensional cell τ0 ⊂ M ′; we will show that there is a gradient path from a free face of M ′

to the (dimM − 1)-face of τ0 with a higher value than τ0.
There is some unique στ0 so στ0 ≺ τ . There are two cases for σ; it is either free in M ′, in

which case we are done, or there is some cell τ−1 ⊂ M ′, not τ0, so that στ0 < τ−1 which by
definition of M ′ is non-critical. We then have the same situation for τ−1 as for τ . It follows
that there must be a path στ−n, . . . , σ

τ
0 where στ−n is free a free face of τ−n in M ′. Note

that τ−i and hence the gradient path may not be uniquely determined for general complexes
but for a triangulated manifold each non-free codimension 1 cell is a face of precisely two
top-dimensional cells and hence the gradient path is unique for a triangulated manifold.

We want to perform the collapses given by this gradient path — M1 ↘στ−n
· · · ↘στ0

M ′1
— but after performing an elementary collapse, the next cell in the gradient path may not
be free, see Figure III.4. To collapse along this gradient path we may need to collapse other
cells first as shown in Figure III.4. The key point is that even if the next cell in a path σ−i is
not free after an elementary collapse, then there is only one way it ‘wants’ to collapse (into
τ−i) and the other cells that make it non-free can be collapsed earlier so as to make σ−i free.

τσ0

σ−1

Figure III.4: After performing the collapse ↘σ−1
we can see that σ0 is not free.

We know in particular that there must be some codimension 1 free faces of M ′ that points
to (has as its image under V a) top-dimensional faces. If we perform all these collapses, then
either we have collapsed all top-dimensional faces or we obtain a new subcomplex that by
the previous arguments must again have free faces that point to other top-dimensional faces.
So by inductively collapsing all the free faces we can always reduce the number of top-
dimensional faces, and hence remove all of them. In this way we have collapsed along all the
gradient paths from free faces of M ′ to remove all the codimension 0 cells.

Theorem III.2.4. Given a discrete gradient on an d-complex M , let M ′ be the subcomplex
obtained by removing all critical d-cells from M . Then M ′ ↘M1 where M1 is a subcomplex
of M with strictly lower dimension (it has codimension 1 if there is a codimension 1 cell in
M) and the elementary collapses used are given by the discrete gradient.

Proof. This is proved by the preceding discussion.

By induction on the dimension of M we obtain the following corollary.

Corollary III.2.5. Given a discrete gradient on a d-complex M , the gradient describes a
way to reduce M to its critical 0-cells by repeated application of Theorem III.2.4.



Figure III.5 gives an example of using this procedure to reduce a simplicial complex onto
its critical vertices. Each step is either given by the collapse of all free faces (indicated by
↘) or is given by removing the top-dimensional critical cells of the preceding subcomplex
(indicated by  ).
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Figure III.5: Collapsing a simplicial complex using a discrete Morse gradient; critical cells
are red and the steps given by  are the removal of critical cells.

Discrete structural theorems

The structural theorems of smooth Morse theory (Theorems I.4.9 and I.4.10) have direct
analogues in discrete Morse theory [12]. Let M be a CW complex with a discrete Morse
function f ; define M(a) to be the set of cells σ so f(σ) ≤ a and all the faces of such cells.

Suppose M and f satisfy:

• For every pair of cells σ, τ , if τ is in the smallest subcomplex of M that contains σ and
τ is not a face of σ, then f(τ) ≤ f(σ).



• For p, r ≥ 0, whenever τ (p+r+1) > σ(p) and f(τ) < f(σ) there is some τ̃ (p+1) so τ̃ > σ
and f(τ̃) ≤ f(τ).

Then we say M satisfies the discrete Morse hypothesis. The first of these conditions ensures
that M(a) is a subcomplex for any a, and the second condition tells us that to determine
whether σ(p) is in M(a) that we only need to look at the cells of dimension p+ 1.

We can now state the analogues of Theorems I.4.9 and I.4.10.

Theorem III.2.6. Suppose M is a CW complex with a discrete Morse function f satisfying
the discrete Morse hypothesis and a < b are numbers so that no critical cell of f have value
in [a, b]; then M(b)↘M(a)

Theorem III.2.7. Suppose M is a CW complex with a discrete Morse function satisfying
the discrete Morse hypothesis and a < b are such that there is a single critical point, σ(p),
with value in [a, b]. Then M(b) is homotopy equivalent to M(a)∪∂ep ep, that is M(a) with a
p-cell attached along its boundary.

For proofs see [12]. Note that any regular CW complex with a discrete Morse function
will satisfy the discrete Morse hypothesis.

3 Cobordism

A smooth cobordism is a triple of manifolds (the first with boundary) (M,N−, N+) so that
∂M = N− ∪ N+ and N− ∩ N+ = ∅. We have already seen such objects in the context
of smooth Morse theory — given a smooth Morse function the submanifolds aM , b

aM are
cobordisms

(
f−1(−∞, a],∅, f−1(a)

)
and

(
f−1[a, b], f−1(a), f−1(b)

)
respectively. We define

a Morse function on a cobordism (M,N−, N+) to be a Morse function on M so that there
are no critical points on ∂M . As we have seen it can be useful to restrict focus to one such
cobordism at a time.

In the discrete case we have an analogous object, for which we must modify the definition
of a discrete Morse function slightly.

Definition III.3.1. A cellular triad is a triple (M,N−, N+) of cell complexes so that, N±

is a subcomplex of M , N− ∩ N+ = ∅ and every cell σ(p) ∈ N± is a face of a unique cell
τ (p+1) 6⊂ N− ∪N+ and moreover σ is a regular face of τ . We will call N− the lower complex
and N+ the upper complex

By taking N± = ∅ we see that a cell complex is a special case of a cellular triad and so
any results or definitions involving cellular triads will hold for complexes as well.

Definition III.3.2. A discrete Morse function on a cellular triad is a function f : M → [a, b]
for some a, b ∈ R so that f−1(a) = N−, f−1(b) = N+ and for any cell not in N− ∪N+ f is
a discrete Morse function in the sense of Definition III.1.3 (note that cells in M±σ may be in
N− ∪N+). We define the critical points of f to be the cells not in N− ∪N+ that satisfy the
conditions of Definition III.1.4.

These definitions of a discrete Morse function and its critical points are the same as the
definitions for a CW complex when we take N− ∪N+ = ∅. When N± is not empty we have
a similar structure to smooth cobordisms defined by ranges of a Morse function, with ‘top’
and ‘bottom’ subcomplexes; the top, M+, has non critical cells.

For a discrete gradient we must make a similar modification to the standard definition.
We require that for a cell σ in N+ the image of that cell is the unique cell τ given by
Definition III.3.1. We use the standard definition on M \ (N− ∪N+), and set the gradient



to be constantly 0 on N−. Note that no cell in N+ maps to zero and that no cell in N−

is in the image of the gradient: adding these two properties to the definition of a discrete
vector field we get the generalisation of Definition III.1.7 to cellular triads. Figure III.6 gives
examples of these constructions for cellular triads. Notice that the restriction of a discrete
Morse function on (M,N−, N+) to N± will usually not be a discrete Morse function on N±.
Theorem III.1.11 also holds for cellular triads.

Figure III.6: Examples of two cellular triads, a cylinder (left) and 3-complex (right); the
upper and lower complexes are the cells at the very top and bottom. The arrows represent
the requirements of a discrete vector field on the upper complexes. Note that unlike a
cobordism the upper and lower complexes need not have the same dimension (shown by the
cellular triad on the right).

We can immediately notice that for a cellular triad all the cells of N+ can be collapsed.
This follows by definition because every face σ(p) ⊂ N+ a regular face of a unique τ (p+1) ⊂
M \ (N− ∪N+). So we have that the (dimN+)-cells of N+ are free faces and we can then
collapse the cells of N+ in order of decreasing dimension (after collapsing all i+ 1-cells, the
i-cells in N+ become free). It follows from Theorem III.2.4 that if there are no critical cells
for a discrete Morse function on a cellular triad (M,N−, N+) then M ↘ N−.

As the gradient on the bottom of a cellular triad is 0, we can stack two cellular triads
(M1, N

−, N1), (M2, N2, N
+) where the top of M1 is glued to the bottom of M2 (suppose N1

and N2 are combinatorially equivalent) resulting in the cellular triad (M = M1 tM2/N1 ∼
N2, N

−, N+). We will denote the subcomplex of M that is the gluing interface by N . If we
have vector fields on both triads, then we can define a vector field on the new triad by taking
the vector fields of either triad on the respective parts; on the interface we take the vector
field from M1.

We can see that if we had two discrete gradients on the triads then the gradient that we get
after gluing is also a discrete gradient. To get a function showing the vector field is a gradient
pick a function on each of the original triads f1 on (M1, N

−, N1) and f2 on (M2, N2, N
+) so

that the vector fields on the two triads are the gradients of these function; we can assume
that f1(N1) = − dimM1 and f2(N2) = 0. We define f on ((M1 tM2)/(N1 ∼ N2), N−, N+)
by f |M2\N = f2|M2\N and f |M1\N = f1|M1\N . On N we then set f |N = − codim. We see
immediately that this function’s gradient is the vector field constructed above.

We conclude this section by introducing some terminology that will be helpful in later
chapters.



Definition III.3.3. A boundary critical discrete Morse function is a discrete Morse function
M → R so that every cell in the boundary of M is critical.

We define the interior Morse vector for a boundary critical discrete Morse function on a
d-complex to be (c0, . . . , cd) where ci is the number of interior critical cells.

Remark III.3.4. Given a boundary critical discrete Morse function on M , the process of
Corollary III.2.5 can be adapted to collapse M onto its boundary by not removing the
(critical) boundary cells.

4 The set of discrete Morse functions on a complex

As we have already seen, in smooth Morse theory it is often useful to know that certain Morse
functions exist, and to know how they can be related to each other. In the smooth case this is
studied by Cerf theory. Ideally one would like to have a homotopy F : M×[0, 1]→ R between
two Morse functions f0 and f1 so that F |M×{t} is a Morse function for all t ∈ [0, 1], we will call
this a homotopy through Morse functions. This is not always possible. As a manifold admits
Morse functions with different numbers of critical points, we need to consider homotopies that
include births and deaths of critical points. Births and deaths necessarily violate the non-
degeneracy condition of Morse functions; at best we will have isolated cubic singularities.
If a function would be Morse except for finitely many such singularities we say that it is
a generalised Morse function. The space of generalised Morse functions is connected; in
particular there is a homotopy through generalised Morse functions between any two Morse
functions. The space of Morse functions is not connected on the other hand, as the number
of critical points in a connected component is constant [17].

In this section we will explore the analogous question in the discrete case. We see that
the discrete behaviour is much simpler: we will show that given two discrete Morse functions,
there is a homotopy through discrete Morse functions between them. We will also examine
how birth and death work in discrete Morse theory and show that the operations of birth
and death can be modified to allow us to ‘move’ a critical point.

4.1 Moving between discrete Morse functions

It is often easier to consider the vector fields of smooth Morse functions or even the flow
lines entering and leaving critical points, rather than the functions themselves. With this
view we can ask whether there is a homotopy through Morse functions that get us from
one of these vector fields to another. Note that if there is a gradient vector field X that is
gradient-like for two (smooth) Morse functions f0, f1, we can see that the obvious homotopy
ft = (1− t)f0 + tf1 is a homotopy between f0 and f1 and that X is gradient-like for any ft.

In the discrete case the question of the existence of homotopies through discrete Morse
functions is much simpler. As we will see it is possible to view two Morse vector fields as
being related through a ‘straight line homotopy’ of functions that induce those vector fields.
To do this we use the notion of a ‘flat’ discrete Morse function.

Definition III.4.1. A discrete Morse function f is flat if for all σ(k) < τ (k+1) with f(σ) ≥
f(τ) we have equality, i.e. f(σ) = f(τ) if σ ≺ τ .

Some authors build this requirement into their definition of a discrete Morse function.
This can be done due to the following result.

Proposition III.4.2. Any discrete Morse function is equivalent to a flat discrete Morse
function.



Proof. Let f be a discrete Morse function. We want to construct a discrete Morse function
f̄ so that for all cells σ < τ , f(σ) ≥ f(τ) if and only if f̄(σ) = f̄(τ). Consider two cells
σ(p) ≺ τ (p+1), then we have for all σ′(p) with σ 6= σ′ < τ that f(σ′) < f(τ) and for any other
τ ′(p) with σ < τ ′, we have f(σ) < f(τ ′). It follows that σ could take any value in [f(τ), f(σ)]
and we would still have a discrete Morse function with the same discrete gradient as the
sets M+

σ ,M
−
τ , and M+

σ′ ,M
−
τ ′ would remain the same. So by setting f ′(σ) = f(τ) we have a

discrete Morse function with the same gradient. As all pairs such pairs σ ≺ τ are disjoint,
we can do this for every pair of cells σ ≺ τ to produce f̄ .

Combining with Theorem III.1.11, this lemma show us that any discrete gradient is the
discrete gradient of a flat discrete Morse function.

Lemma III.4.3. If f, g are flat discrete Morse function on M then ft = (1−t)f+1g defines
a discrete Morse function for all t ∈ [0, 1]. Moreover for t ∈ (0, 1), ft(σ) = ft(τ) if and only
if f(σ) = g(σ) = f(τ) i.e. all ft are equivalent for t ∈ (0, 1).

Proof. This follows directly from the definitions; note that for σ < τ we have f(σ) = f(τ) if
and only if dimσ = dim τ − 1 and Vf (σ) = τ , similarly f(σ) < f(τ) if and only if Vf (σ) 6= τ .
These properties follow from the fact that f and g are flat. We have three cases to consider,
corresponding to whether there is a vector from σ to τ for both f and g, just one of them,
or neither of them.

Suppose that we have Vf (σ) = Vg(σ) = τ . Then

ft(σ) = (1− t)f(σ) + tg(σ) = (1− t)f(τ) + tg(τ) = ft(τ)

for all t. For the case where there is a vector for just one of the functions, assume without
loss of generality that Vf (σ) = τ and Vg(σ) 6= τ then ft(σ) = (1− t)f(τ) + tg(σ) < ft(τ) for
all t ∈ (0, 1). Finally if Vf (σ) 6= τ and Vg(σ) 6= τ then ft(σ) < ft(τ) for all t. So we see that
for all t ∈ (0, 1) ft(σ) = ft(τ) if and only if the same is true of both f and g. It follows that
ft is a discrete Morse function for all t and that for t ∈ (0, 1) all ft are equivalent with the
set of gradient paths of Vft being the intersection of the sets of gradient paths for Vf and
Vg.

With this proposition we see that the question of whether there is a homotopy of Morse
functions that will get us from one discrete Morse gradient field to another is relatively trivial;
there is always a homotopy through discrete Morse functions that will suffice. Figure III.7
shows a homotopy between two flat discrete Morse functions. We can see that the property
of such a homotopy that ft are all equivalent for t ∈ (0, 1) results in three discrete gradients
appearing, the initial gradient of f , the final gradient of g and an intermediate gradient whose
arrows are exactly the arrows common to both Vf and Vg.

Similarly, the question for functions has a simple answer as well: there will be a homotopy
between any two discrete Morse functions. This follows by ‘flattening’ both functions via
homotopies through discrete Morse functions and then applying Lemma III.4.3. It is clear
from the remarks made in the proof of Proposition III.4.2 and lemma III.4.3 that given any
discrete Morse function f equivalent to a flat Morse function f̄ , the homotopy (1− t)f + tf̄
will flatten f to f̄ and the discrete Morse gradient will be constant with respect to t.

4.2 Birth and death

Similarly to cancellation in the smooth case (recall Theorem I.4.15), there is a simple process
to cancel two adjacent-dimension critical cells and a simple criterion for detecting when this
is possible.
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(a) The function along the homotopy; (left) the original function f0, (right) the final function f1,
(centre) the function ft

(b) The gradient along the homotopy: (left) the gradient of f0, (right) the gradient of f1, (centre)
the gradient of ft for t ∈ (0, 1). Note that all functions ft for t ∈ (0, 1) are equivalent (have the same
gradient).

Figure III.7: A homotopy ft from f0 to f1 given by ft = (1−t)f+tg: (a) shows the functions
f, ft and f1; (b) shows the corresponding discrete Morse gradients with t ∈ (0, 1).

Proposition III.4.4 (Forman). Suppose V is a discrete gradient on M so that for two
critical cells σ(p), τ (p+1) there is a unique gradient path γ : τ ⇁ σ = σ0, . . . , σn = σ between
them and σ is a regular face of σn−1, then the discrete vector field V̄ defined by

• V̄ |M\γ = V |M\γ

• V̄ (σ0) = τ

• V̄ (σi+1) = V (σi) for i ∈ {0, . . . , n− 1}

is a discrete Morse gradient. Moreover there is a unique V̄ -path σ  σ0.

Proof. From the definition of V̄ it is clear that the critical cells of V̄ are exactly the critical
cells of V minus {τ, σ}.

Note that it is clear that V̄ is in fact a discrete vector field. By Theorem III.1.11, to
prove the proposition we just need to show that there are no closed V̄ -paths. As V̄ differs
from V only on γ we have that there is no closed V̄ -path in M \ γ as then this would also
be a closed V -path and clearly a closed V̄ -path cannot be contained in γ. So any closed V̄
path must contain a segment σi, δ0, . . . , δr, σj where δk 6∈ γ. We have V (σi−1) = V̄ (σi), so
σ0, . . . , σi−1, δ0, . . . , δr, σj , . . . , σn would be a second V -path from τ to σ, contradicting the
assumption that there is only one such gradient path.

To see that the only one V̄ -path from σn to σ0, is σn, . . . , σ0, note that any other gradient
path must have a segment of the form σi, ε0, . . . , εl, σj where εk 6∈ γ and j < i (as otherwise
we would have a closed V̄ -path), but then the V -path ε0, . . . , εl, σj , σj+1, . . . , σi−1, ε0 is a
closed V -path.

The relationship between V̄ and V , V̄ is intuitively given by ‘flipping the arrows of V ’
along γ; this is demonstrated in figure Figure III.8. We call the effect of moving from V to
V̄ the ‘death’ of the critical cells σ, τ .

The following gives us the notion of birth for a discrete Morse function.
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Figure III.8: Examples of cancelling critical points; Figures III.8(b) to III.8(f) show the
cancellation of all cancellable pairs.

Proposition III.4.5. Given a discrete Morse function f with discrete gradient V on M ,
suppose there is a exactly one gradient p-path γ : σ0  σn = σ0, σ1, . . . , σn starting at σ0 so
that V (σn) = τ (p+1). Define Ṽ by

• Ṽ |M\γ = V ,

• Ṽ (σi+1) = V (σi) for i = 0, . . . , n− 1, and

• Ṽ (σ0) = 0.

Then Ṽ is a discrete vector field with no closed Ṽ -paths. Moreover, the critical cells of Ṽ are
the critical cells of V along with {σ0, τ} and there is a unique Ṽ path τ ⇁ σ0.

Proof. The proof essentially the same as Proposition III.4.4.

The proofs for Propositions III.4.4 and III.4.5 work just as well for cellular triads. Com-
bining Propositions III.4.4 and III.4.5 we have the following corollary.

Corollary III.4.6. Critical cells created by birth can be cancelled, and two cancelled critical
cells can be made critical again by birth.

It is also possible to employ the same arrow flipping idea of birth and death to move a
critical cell. Suppose τ (p+1) is a critical cell and σ(p) a cell so that V (σ) = τ ′ and there is a
unique gradient path from τ ⇁ σ, then reversing V along this path (as is done for birth and
death) we can see that τ becomes non-critical and τ ′ becomes critical. Because there was
only one gradient path from τ to σ after reversing the gradient path we still have a discrete
gradient, and moreover the reversed path will be the only gradient path τ ′  τ . We can
think of this as the critical cell ‘moving’ from τ to τ ′.

We can also move a critical cell by using a path in the same dimension. Suppose we
have a unique gradient path from some non-critical σ(p) to a critical σ′(p). By reversing the
gradient along this path σ becomes critical and σ′ becomes non-critical in a similar fashion.



Chapter IV

Linking smooth and discrete
Morse theory

As we have seen there are many objects in discrete Morse theory that resemble objects
in smooth Morse theory. The data needed to described these discrete structures is much
simpler however and as it is discrete can make it easier to do computations particularly
with a computer. If we have some smooth manifold with a Morse function, it may then be
useful to be able to describe this structure in terms of discrete Morse theory, to simplify the
information we have. In this section see two different ways that smooth structure can be
made discrete. The first is due to Benedetti [5] who showed that given a Morse function f
on a smooth manifold, then any PL triangulation of the manifold can be subdivided (in a
nice way) so that it supports a discrete Morse function so that the critical cells of a given
dimension n are in bijection with the critical points of index n. The second approach we
discuss is a construction by Gallais [13] that uses the original smooth Morse function (with a
gradient) explicitly to produce a PL triangulation that follows along the unstable manifolds
of f and a discrete Morse function where each critical cell of dimension n contains a single
critical point of f , and the index of this critical point is n.

1 Polyhedral cell complexes

A Euclidean cell is the convex hull of finitely many points in some Rn. Given a set of
points p0, . . . , pm, we denote their convex hull by conv(p0, . . . , pm). If the points are linearly
independent (that is the vectors pi − p0 are linearly independent for i 6= 0) then the convex
hull is an m-dimensional simplex. A face of a Euclidean cell E is a Euclidean cell given
by a subset of the vertices of E. Simplices are the generalisations of triangles to arbitrary
dimensions: a 0-, 1-, 2-, 3-simplex is a point, line interval, triangle, tetrahedron respectively.

A polyhedral complex is a collection of Euclidean cells in some Rk so that each face of a
cell is in the collection and the intersection of any two cells is a common face (or empty).
We will mostly deal with simplicial complexes from here on which we define as polyhedral
complexes where every cell is a simplex. Note that polyhedral complexes are CW complexes.
We will also assume from now on that the polyhedral complexes we deal with are finite (have
finitely many cells); in particular this implies that they are compact. Note that in a simplicial
complex each n-cell is uniquely determined by its n+ 1 vertices.

Given a cell complex C we denote by |C| its underlying set, |C| =
⋃
σ∈C σ. We will often

want to consider a cell complex without a given cell (or perhaps without many cells). We
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define the cell difference of a complex C and cell σ to be C − σ = C \ {τ ∈ C | σ ⊂ τ}. That
is, C − σ is the maximal subcomplex of C that does not contain σ; this is how we generalise
the cell difference to any set of cells. If we have a set of cell D then C −D is the maximal
subcomplex of C \D, this is C \D′ where D′ = {τ ∈ C \D | ∃σ ∈ D′, σ ⊂ τ}. To see that
this is indeed the maximal subcomplex, note that for any cell τ disjoint from the cells of D,
every face of τ is also disjoint from D, so by only removing the cells that contain cells of D
we get a subcomplex. It is clear that we need to remove all of D′ and hence C \ D′ is the
maximal subcomplex in C \D.

Intuitively the cell difference takes a subset of cells and then removes all higher dimen-
sional cells that contain anything in the subset. The number of cells removed correlates
inversely with the dimension of the cells in the subset: removing a point removes all cells
containing it, whereas if we remove a top-dimensional face nothing else is taken. See Fig-
ure IV.1 for examples of cell differences; the second column shows the cell difference of the
green cells in the left column with the complex.

Definition IV.1.1. For a cell σ in a polyhedral cell complex C we define the

• star of σ, star(σ,C) to be the minimal subcomplex of C containing every cell that
contains σ.

• link of σ to be link(σ,C) = (C − σ) ∩ star(σ,C)

• join of σ and a cell τ to be σ ∗ τ = {conv(σ′, τ ′) | σ′ ∈ σ, τ ′ ∈ τ}.

When the complex C is implicit we will denote the star and link by starσ and linkσ respec-
tively.

Intuitively the star of σ is the smallest neighbourhood of σ that is a subcomplex and
the link is the boundary of the star (other than any part of the boundary that contains σ).
The star, link and join are all complexes. To construct the star we take the cells of C that
contain σ as well as all faces of these cells (to make it a complex); alternatively we have
starσ = linkσ ∗ σ̄ where σ̄ is defined to be subcomplex given by σ with all its faces.

Figure IV.1 gives examples of stars and links; each row depicts the cell difference, star
and link of the green cell(s).

One key concept when dealing with polyhedral complexes is being able to subdivide the
cells of a complex. If we think of a polyhedral complex as a way of partitioning the underlying
space, then a subdivision gives us a finer partition.

Definition IV.1.2. Given two polyhedral complexes C,D with the same underlying space,
we say that D is a subdivision of C if every cell of D is contained in a cell of C.

Definition IV.1.3. A triangulation of a manifold M is a homeomorphism φ : C →M from
a simplicial complex C. We say M is triangulated if we pick such a triangulation.

We may abuse notation and say that a subset of a triangulated manifold M is a simplex
(resp. subcomplex) if its inverse image under φ is a simplex (resp. subcomplex) as the
homeomorphism preserves the cell structure (the combinatorial data of how cells are glued
together), only losing the guarantee that cells are convex hulls (it may not even make sense
to speak of convex sets). Note that as we use finite simplicial complexes a manifold must be
compact if it admits a triangulation.



Figure IV.1: Examples of cell difference, stars and links in dimensions one and two: (left)
green denotes the cell(s) we will take the cell difference, star and link of; (centre left) the cell
difference; (centre right) the star is shown in teal; (right) the link is shown in purple.

2 PL manifolds

We will define PL manifolds in a combinatorial way without needing an atlas, as is common
for definitions of smooth manifolds. There is a definition PL manifolds using charts with
transition maps that are piecewise-linear (this is where the name comes from), but this defi-
nition is equivalent (up to PL-homeomorphism) to the one we give here [15]. The advantage
of the combinatorial approach used here is that it will be easier to think in terms of the cells
of a complex then in terms of piecewise-linear maps.

Given a polyhedral complex, we can view it as a poset (partially ordered set) of its cells,
with the order given by inclusion. Moreover, we can think of a complex as a poset of subsets
of vertices, as each face is uniquely determined by its vertices. Any face which is maximal in
this poset is called a facet.

Definition IV.2.1. A polyhedral complex is pure if all its facets have the same dimension.

For example, consider Figure III.6. We can see that the complex on the right is not



pure as it is a polyhedral 3-complex that has a 2-dimensional facet (the quadrilateral that
intersects the lower complex). If we removed the 3-cells we would obtain a pure 2-complex.
Note that the complex on the left of Figure III.6 does not fit our definition of a pure complex
as it is a CW complex but not a polyhedral complex. To create a cylinder as a polyhedral
complex requires at least 6 vertices (3 for each circle on the ends).

Definition IV.2.2. Two simplicial complexes are combinatorially equivalent if they are
isomorphic as posets.

Combinatorial equivalence is an equivalence relation on simplicial complexes. It captures
the idea that simplicial complexes are determined just by the combinatorial data of how
faces relate to each other. Two simplicial complexes are PL-homeomorphic if there is some
subdivision of both that are combinatorially equivalent.

A PL n-ball (resp. PL n-sphere) is a simplicial complex PL-homeomorphic to the n-
simplex (resp. the boundary of the (n+ 1)-simplex).

Definition IV.2.3. A PL manifold is a simplicial complex so that the star of every vertex
is a PL ball.

The requirement that stars of vertices are PL enforces that locally PL manifolds look like
balls; note that this definition allows the possibility of a PL manifold having a non-empty
boundary. We can characterise the boundary cells of a PL manifold as the cells σ for which
linkσ is a ball. This follows as if σ is in the interior of a complex, the link is the boundary
sphere of the star, and if σ is in the boundary, then the link doesn’t contain the cells of the
star in the boundary (see Figure IV.2 and compare with the links of the vertex and 1-cell in
Figure IV.1). A PL manifold without boundary is then a simplicial complex so that the link
of every vertex is a PL sphere.

Figure IV.2: The links of cells detect the boundary of a PL manifold; the links of boundary
cells are disks.

2.1 Triangulating smooth manifolds

Cairns [10] showed that there is a relatively simple process to triangulate any smooth man-
ifold. Given a smooth compact m-manifold M , we use the Whitney embedding theorem to
embed it in R2m [29]. For a chosen ε > 0 we can fix a finite number of points x1, . . . , xl



so that the balls of radius ε centred at the xi cover M . We then construct the Voronoi
diagram given by the points xi. The Voronoi diagram is a partition of R2m into regions
Ui = {x ∈ R2m | ‖x − xi‖ ≤ ‖x − xj‖,∀j 6= i} (note that these regions intersect along
their boundaries). Cairns showed that for small enough ε the sets Vi = Ui ∩M defines a
polyhedral complex where the Vi are the facets (the lower dimensional cells are then just
the intersections of these facets). A derived subdivision of this complex is then a simplicial
complex, which gives us a PL triangulation for M . This triangulation is C1 and so is unique
up to PL-homeomorphism [28]. This construction can also be extended to the case of a
non-compact manifold [9].

While any smooth structure gives us a PL triangulation, the converse is not true in
general. Given a PL manifold there can be multiple smooth structures that can be placed
on the manifold, or indeed none at all. However, in dimensions strictly less than 7 there is a
unique smooth structure for each PL structure. See [5] for a review of the PL and smooth
structures that may exist on manifolds.

3 From smooth to discrete Morse theory

Given a smooth Morse function f on a manifold M Gallais and Benedetti have both shown
ways of constructing a PL triangulation that supports a discrete Morse function with analo-
gous critical points, i.e. there is a discrete Morse function with a one-to-one correspondence
between the (smooth) critical points of index i and the dimension i critical cells of the discrete
Morse function.

Benedetti’s approach transitions between the smooth and PL structure by using handle
decompositions as an intermediary and shows that if we have a given PL handle decomposition
then there is a discrete Morse function whose critical cells have dimension corresponding to
the index of the handles.

A PL handle attachment M ∪H works just as with in the smooth case, but in this case
we only need that the subsets of the boundary of H that we glue along is a subcomplex
homeomorphic to Sj−1 × Im−j . We then identify a PL homeomorphic subcomplex in ∂M .
Then we can glue them together (possibly after subdividing). A PL handle decomposition is
then a sequence of handle attachments that form M .

We have already seen how to produce a PL triangulation for a given smooth manifold
and how to obtain a smooth handle decomposition given a smooth Morse function. By
triangulating each handle in a smooth handle decomposition separately, we get a PL handle
decomposition with the same handle vector.

3.1 An induced discrete Morse function given any triangulation —
Benedetti’s approach

This section details Benedetti’s approach to inducing a discrete Morse function on a manifold
given a smooth Morse function. The main result is the following.

Theorem IV.3.1. If M is an m-manifold with PL handle decomposition with ci i-handles,
then for large enough r the r-th derived subdivision has a discrete Morse function with ci
critical cells of index i.

In particular this means that we can take any triangulation on the manifold and construct
a suitable discrete Morse function on some derived subdivision. To prove this we will follow
Benedetti [5]. We first introduce some technical tools.



Shellable and endocollapsible complexes

Definition IV.3.2. An m-dimensional simplicial complex M with non-empty boundary is
endocollapsible if M with one m-face removed collapses onto the boundary of M .

We note that a complex is endocollapsible if and only if it admits a boundary critical
discrete Morse function with exactly one interior critical point; this follows from the weak
Morse inequalities of discrete Morse theory. If we consider attaching an m-handle H to an
m-manifold M we can immediately see that if the handle is endocollapsible then any discrete
Morse gradient on M will extend to a discrete Morse gradient on M ∪ H with one extra
critical cell of index m. To see this take the gradient on the handle to be defined by the
collapses — i.e., remove an m-cell of H and then define the gradient by the collapse of H onto
its boundary — this gradient has as its critical cells the removed m-cell and the boundary of
H. As the gradient is zero on the boundary, we can glue the gradients on M and H together
by setting the gradient on the boundary of H to be given by the gradient on M .

Definition IV.3.3. A shelling for a simplicial complex is an ordering of its facets F1, . . . , Fn
so that Fi∩

⋃i−1
j=1 Fj is pure of dimension dimFi−1. A shelling for a 0-dimensional simplicial

complex is then any ordering of its vertices. A complex is shellable if it has a shelling.

A shellable complex is one that can be formed by gluing facets together in a ‘nice’ way.
Notice that given a shelling F1, . . . , Fn for a shellable complex, the union of the first k of
these faces gives us a shellable complex with shelling F1, . . . , Fk.

Proposition IV.3.4. The boundary of the n-simplex is shellable. Moreover any ordering of
facets is a shelling.

Proof. This follows as any two codimension 1 faces of the n-simplex intersect in a codimension
2 face. Pick any ordering F0, . . . , Fn of the (n−1)-faces of the n-simplex, then the intersection
of Fi (this is an (n−1)-simplex) with the union of the previous faces in the shelling is a union
of (n− 2)-cells in ∂Fi. This is a pure subcomplex of ∂Fi and so we see that any ordering of
the facets of ∂∆n is a shelling of ∂∆n.

This proposition immediately implies that given a shelling order F1, . . . , Fn for a complex
that the intersection of Fi with the union of the previous facets is shellable, as this is simply
a subcomplex of the boundary of a simplex.

Lemma IV.3.5. Suppose C is a shellable complex of dimension greater than 1 that is dis-
connected, then all cells of positive dimension must be in a single component, and all other
components must be vertices. Moreover all these single-vertex components must make up the
tail of any shelling.

Proof. This follows as C has at least one facet in each component. Given an shelling order
of facets F1, . . . , Fn for C, if Fi, i 6= 1 is the first facet in a component then it must be
0-dimensional as it does not intersect the union of the previous facets.

Note that a single simplex is shellable (it has only one facet) and endocollapsible. In fact,
any shellable manifold is endocollapsible1.

Lemma IV.3.6 (Benedetti). Shellable d-manifolds are endocollapsible.

1By a shellable manifold we mean a manifold with a shellable triangulation, or equivalently a shellable
complex homeomorphic to a (topological) manifold.



Proof. This follows by induction. Assume that all shellable manifolds with fewer than k
facets or dimension lower that d are endocollapsible. Consider a shelling F1, . . . , Fk of some
triangulated d-manifold M . Then the subcomplex M ′ given by the shelling F1, . . . , Fk−1 is
endocollapsible by the inductive assumption. As Fk is endocollapsible we have M − Fk ↘
M ′ ∪ ∂Fk = M ′ ∪ ∂M .

In a triangulated d-manifold, every (d−1)-cell is a face of at most two cells, so if σ1, . . . , σl
are the facets of Fk∩

⋃
i<k Fi then it follows that each σi is free inM ′ and thus by the inductive

assumption we have M ′ ↘ ∂M ′ \ σi. As M ′ ∩ Fk is (d − 1)-dimensional and shellable we

have that ∂M ′ \ σi collapses onto ∂M ′ \ ˚(M ′ ∩ Fk). As ˚(M ′ ∩ Fk) is exactly the part of ∂M ′

that is not in ∂M we see that M ↘ ∂M , that is M is endocollapsible.

Stellar subdivisions

Given a polyhedral cell complex C, we define the stellar subdivision of a face σ ∈ C by
choosing some point v ∈ σ̊ and replacing σ with cells that are cones of cells τ < σ over v.
More concretely we have the complex

St(σ,C) = (C − σ) ∪ {conv {v} ∪ τ | τ ∈ star(τ, C)}

which is the stellar subdivision of σ at v; we also call this ‘starring σ’. Note that up to
PL equivalence it does not matter which point v is chosen; this can be seen immediately
by considering face posets of two subdivisions obtained by choosing different points. More
generally, we call a subdivision of C a stellar subdivision if it is obtained by a sequence of
such subdivisions.

Definition IV.3.7. A derived subdivision of a cell complex C is a subdivision sdM obtained
by doing a stellar subdivision for every cell of C in order of decreasing dimension. The r-th
derived subdivision is sdrM defined inductively by sdrM = sd(sdr−1M).

Subdividing the cells in order of decreasing dimension is important as after subdividing a
cell σ of dimension i subdividing a cell τ of dimension i− 1 in σ will have a different stellar
subdivision then if it had been subdivided first; for example see Figure IV.3. Conversely
subdividing a lower dimensional cell early subdivides all cells it is a face of (see ??) and
hence prevents us from starring all original cells of the complex. If we take the barycentre of
the cells of C for the stellar subdivisions we see that the well-known barycentric subdivision
is a special case of a 1st derived subdivision.

In general stellar and derived subdivisions preserve many combinatorial properties of a
simplicial complex. For our purposes we only need that derived subdivision preserves the
shellability of a complex [7].

Proposition IV.3.8. A derived subdivision of a shellable complex is shellable.

As a simplex is shellable we have that a derived subdivision of a simplex is endocollapsible.
This result can be strengthened to the case of a stellar subdivision. Jojić showed any stellar
subdivision of a simplex is shellable [25]; combining this with Lemma IV.3.6 we have the
have the following lemma.

Lemma IV.3.9. A stellar subdivision of a simplex is endocollapsible.

Benedetti and Adiprasito proved that PL balls becomes shellable after taking finitely
many derived subdivisions [7].

Lemma IV.3.10. For any PL ball B there is an r so that sdr(B) is shellable.



Figure IV.3: Subdividing a complex of two 2-simplices: the upper row shows a derived
subdivision; the lower row shows subdividing one of the 1-cells before the 2-cell it is contained
in, note that after doing so the original 2-cell can not be starred and hence we cannot
subdivide to obtain the derived subdivision.

This also tells us that sdr(B) will be endocollapsible via Lemma IV.3.6. In particular
this means that if we subdivide enough (using derived subdivisions), the star of any vertex
in a PL manifold becomes endocollapsible.

The next lemma is the key that let us take a discrete Morse function on a PL manifold,
subdivide the manifold and induce a ‘similar’ discrete Morse function on the subdivision.

Lemma IV.3.11. Let f be a discrete Morse function on a PL manifold M . Given a stellar
subdivision M ′ there is a discrete Morse function f ′ so that

• There is a one-to-one correspondence between the critical i-cells of f and the critical
i-cells of f ′;

• σ′ ⊂M ′ is critical for f ′ if and only if σ′ ⊂ σ ⊂M where σ is critical for f .

Proof. We need only consider the case of subdividing a single face of M as any stellar sub-
division is given by a sequence of such subdivisions. Suppose that M ′ is the subdivision
St(σ,M) for some face σ ⊂ M and let V be the discrete gradient for f , we will construct a
discrete Morse vector field V ′ for M ′ satisfying the conditions.

Consider two cells γ ≺ δ in M , we have three cases: neither γ or δ contains σ; both γ, δ
contain σ; δ contains σ but γ does not. In the first case we set V ′(γ) = V (γ) = δ as neither
is subdivided so these are also cells of M ′.

In the second case both γ and δ are subdivided in M ′. Note that δ is the cone of γ over
a single vertex v and after subdivision γ is partitioned into cells γ′i which are cones of the
faces in γ − σ over the added vertex. Then we have that δ is subdivided into cells γ′i ∗ v; we
set V ′(γ′i) = v ∗ γ′i. This then defines V ′ on the interior cells of the subdivided γ and δ.

In the third case δ is partitioned into simplices δ1, . . . , δl which are joins with v (the added
vertex) of the simplices in δ. There is a unique such simplex — v ∗ σ — containing σ, so we



set V ′(σ) = v ∗ σ. By Lemma IV.3.9 we know that the subdivision of δ is endocollapsible, so
after performing the collapse δ ↘ δ − σ we see that δ − σ collapses onto its boundary.

Now we consider what happens with a critical cell τ of f . If τ does not contain σ, then
it is not subdivided so we set V ′(τ) = 0. If τ contains σ then it is partitioned into some set
of dim τ -simplices τ1, . . . , τl. By Lemma IV.3.9 this subdivision of τ is endocollapsible, so we
set V ′(τi) = 0 for some i and then we know subdivision minus τi collapses onto the boundary
of τ .

3.2 Proof of Theorem IV.3.1

Lemma IV.3.12 (Benedetti). If a PL d-manifold M has a discrete (resp. a boundary critical
discrete) Morse function f with discrete (resp. interior) Morse vector (c0, . . . , cd) then M
has an iterated derived subdivision that supports a boundary discrete (resp. discrete) Morse
function with interior (resp. discrete) Morse vector (cd, . . . , c0).

For the proof see [5, 4].

Lemma IV.3.13. Suppose M = B1 ∪ B2 is a union of two endocollapsible d-balls so that
B1 ∩B2 is

• an (d− 1)-dimensional subcomplex of ∂B1 and ∂B2, and

• homeomorphic to Sj−1 × Id−j for some j ∈ {1, . . . , d}.

Then any boundary-critical discrete Morse function f on B1 ∩ B2 extends to a boundary
critical discrete Morse function g on M whose critical interior cells are exactly the critical
cells of f minus a (d− 1)-cell, plus a d-cell.

Proof. We follow the proof in [5] but clarify one important point, that the (d− 1) cell chosen
at the start can be a critical cell of f . This must be the case to have one less critical (d− 1)
face in g than in f .

Let σ be a critical (d−1)-cell of f in B1∩B2 we know this must exists by the weak Morse
inequalities for discrete Morse functions. We then have that there are exactly two d cells
containing σ, τ1 ∈ B1 and τ2 ∈ B2. By the endocollapsibility of B1 we have B1 − τ1 ↘ ∂B1,
and this remains true when B2 is glued to B1 as the collapsed cells are in the interior of B1,
so B1 ∪B2 − τ1 ↘ ∂B1 ∪B2. We now have that σ is a free face of τ2 in ∂B1 ∪B2, and then
by the endocollapsibility of B2 we have

∂B1 ∪B2 ↘σ ∂B1 ∪B2 − σ ↘ ∂B1 ∪ ∂B2 − σ.

Define a discrete Morse gradient V on M \ (B1 ∩B2 − σ) by these collapses. The critical
cells on this subset are exactly τ1 and the boundary cells of M that are not in ∂(B1 ∩ B2).
We then define V = Vg on B1∩B2. Then V has as its interior critical faces τ1 and all interior
critical cells of g other than σ.

The following lemma is an extension of this to the case where B1 is not a ball.

Lemma IV.3.14. Let M = M ′∪B be a PL m-manifold where M ′ is a PL m-manifold with
boundary and B is a PL endocollapsible m-ball. Suppose that

• M ′ ∩B is a (d− 1) subcomplex of ∂M ∩ ∂B;

• M ′ ∩B is homeomorphic to Sj−1 × Id−j (i.e., we have a handle attachment); and

• M ′ has a boundary critical discrete Morse function f .



Then a boundary critical discrete Morse function g on M ∩ B lifts to a boundary critical
discrete Morse function h on M ∪B whose critical interior cells are exactly those of g minus
a (d− 1)-face plus the critical interior cells of f .

Proof. The proof is the same as in Lemma IV.3.13 with f is used to collapse M ′ onto its
boundary (see Remark III.3.4) in place of the endocollapsibility of B1.

Benedetti stated this with the additional hypothesis that the function f is perfect; we
note that this is not necessary.

We now have the tools to prove Theorem IV.3.1. This will be done by proving the
‘dual’ problem, that for a PL manifold with PL handle vector (c0, . . . , cm) there is a bound-
ary critical discrete Morse function with interior Morse vector (cm, . . . , c0). Then applying
Lemma IV.3.12 gives us the result.

Proof of Theorem IV.3.1.
We will use induction on both the number of handles and the dimension of M , this will
allow us to consider just the last handle in a decomposition with the inductive assumption
that there is a suitable function for fewer handles and lower dimension. Then we will use
Lemma IV.3.14 to extend the (inductively assumed) suitable functions.

First, suppose M decomposes into a single handle; this must be a 0 handle. Then M is a
PL-ball, and hence by Lemmas IV.3.6 and IV.3.10 we have that for some r, sdrM admits a
boundary critical discrete Morse function with exactly one interior critical cell. In dimension
one each 0-handle is clearly collapsible and each 1-handle is a partitioned interval, which is
endocollapsible so the result is clear. These two cases provide the base case for our double
induction.

Suppose thatm = dimM > 1 and we have more than one handle; writeM = M ′∪B where
B is a j-handle attached to M ′. We can assume that j > 0 as the case of attaching a 0-handle
is addressed by the same argument as the single handle case with the function g t g′2 where
g′ is a function induced by the collapsibility of a PL-ball after taking derived subdivisions.
Note that M ′ has one handle fewer than M and M ′ ∩B has dimension dimM − 1 = m− 1,
so the inductive assumption applies to these submanifolds.

Let (h0, . . . , hm) be the handle vector for the decomposition of M ; we need to show that
for some r there is a boundary critical discrete Morse function on sdrM with exactly hm−i
critical interior i-cells. We have that M ′ ∩B is Sj−1× Im−j . This is an (m− 1)-dimensional
manifold that has a handle decomposition into one 0-handle and one (j − 1)-handle (note
that these are (d − 1)-dimensional handles). Taking the a-th derived subdivision for some
a, we have sdaM ′ ∩ B has a PL handle decomposition into one 0-handle and one (j − 1)-
handle. The inductive assumption then says that there is some b and a boundary critical
discrete Morse function g on sda+b(M ′ ∩B) whose only critical cells are exactly one critical
(m − 1)-cell and one critical (m − j)-cell (recall that dimM ′ ∩ B = dimM − 1); we pick
b large enough so that sdbB is endocollapsible as well. Applying the inductive assumption
to M ′ gives us a c and a boundary critical discrete Morse function f on sdcM ′ with hm−i
interior critical i-cells for i 6= j and hm−j − 1 interior critical j-cells.

Define r = max{a+ b, c}. We can apply Lemma IV.3.14 to sdrM = sdrM ′ ∪ sdr B. This
gives us a boundary critical discrete Morse function k on sdrM which has the critical interior
cells of g and f minus an (m− 1)-cell. Summing the interior critical cells of g and f , k has
exactly hm−i critical interior i-cells.

2The disjoint union g t g′ of g and g′ is the function on the disjoint union of their domains given by
restriction to either g or g′ on the two pieces.



By combining Theorem IV.3.1 with the results that a smooth Morse function induces a
smooth handle decomposition of a manifold and any smooth handle decomposition induces
a PL handle decomposition, we get the following corollary.

Corollary IV.3.15. Any smooth Morse function f on M induces a PL structure on M and
a discrete Morse function f̄ such that the number of critical i-cells of the f̄ is the same as
the number of index i critical points of f . Moreover, we can see that the critical cells of f̄
are contained in the same handle as its corresponding critical point of f .

3.3 Triangulating along flow lines — Gallais approach

The similarities between the discrete and smooth Morse functions in Corollary IV.3.15 suggest
the question of how similar one can make a discrete Morse function to a given smooth
Morse function. This section will describe a construction by Gallais that provides even
more topological similarities: the critical points are contained in the critical cells, there is
a bijection between the set of gradient paths between critical cells and flow lines between
critical points; in addition, the stable manifolds will subcomplexes of the triangulation near
critical points.

First we recall a well known result about the product of simplicial complexes [13].

Proposition IV.3.16. The product C × D of two simplicial complexes has a simplicial
subdivision without adding any new vertices.

An example for ∆2 ×∆1 is shown in Figure IV.4.

Figure IV.4: Simplicial subdivision of ∆2 ×∆1 without adding new vertices.

The following lemma is the result of a fix explained by Benedetti [5] for the original
statement given by Gallais [13]. Benedetti pointed out the it is not known whether any
simplicial triangulation of a simplex is collapsible, something that Gallais proof relies on
(Gallais proof states that X0 is collapsible and uses this), however Benedetti and Adiprasito
showed that the first derived subdivision of any simplicial subdivision is collapsible [6].

Lemma IV.3.17. Suppose X0 is a simplicial subdivision of ∆k and X1 = ∆k. Then there is
a simplicial subdivision of ∆k×∆1 (we identify ∆1 with [0, 1]) so that ∆k×{0} is subdivided
as sdX0 and ∆k × {1} is subdivided as sdX1; in addition X ↘ sdXi × {i} for i ∈ {0, 1}. If
X0 is collapsible then we can instead find a triangulation so X ↘ Xi × {i}.

Proof. When k = 0 the result is clear as ∆0 × ∆1 is ∆1 and ∆1 collapses onto either of
its vertices. Suppose for induction that the claim holds up to dimension k − 1. Then we
can subdivide ∂∆k ×∆1 using the induction hypothesis so that each ∆(k−1) in ∆k and the



corresponding subdivisions in X0 make up the subdivision Y of ∂∆k × ∆1; we then have
Y ↘ ∂Xi for i ∈ {0, 1}. We can then put X1 and X0 in along the corresponding ends to
obtain a subdivision Y ∪X0 × {0} ∪X1 × {1} of ∂(∆k ×∆1).

We now subdivide ∆k×∆1 by taking the subdivision already constructed for its boundary
and taking the join of each cell to some point v in the interior of ∆k×∆1; call this subdivision
X ′. Let X be the first derived subdivision of X ′. We now show how to collapse X onto
X0 × {0}. We will now see how to collapse X ↘ sdX0.

By collapsing in order of decreasing dimension, it is clear that we can collapse each
face of X ′|X1×{1} with its join with v; by not collapsing the cells in ∂X1 × {1} we have

X ′ ↘ X ′− (̊X1×{1}) = X ′|Y ∗v. It follows that we can collapse X onto the its corresponding
subcomplex: X ↘ X|Y ∗v.

We know we can collapse X ′|∂X1×∆1 = Y onto X ′|{∂∆k×{0}}, this collapsing also works
with the join over v: for each elementary collapse ↘σ in the collapse of Y to its base we
perform the elementary collapse↘σ∗v. After collapsing the joins, we can perform the collapse
of Y , giving us collapse X ′|Y ∗v ↘ Y ∪X0 ∗ v ↘ X ′|X0∗v. Again this means we can collapse
X|Y ∗v ↘ X|Y ∪X0×{0}∗v ↘ X|X0×{0}∗v.

We now collapse X0 ∗ v to X0; this is where we need that either X0 is collapsible or
that we have taken the first derived subdivision of X0. As sdX0 is collapsible (see [6]) we
know that we can collapse it to some point x. We can use the corresponding collapse on
the join to collapse sd(X0 ∗ v) ↘ sd(X0 ∪ x ∗ v). Note that this is slightly different from
collapsing joins seen before as we have the derived subdivision of the join; however, a similar
process works: an elementary collapse ↘σ in the sequence of collapses of sdX0 corresponds
to the set of collapses ↘σ′ where σ′ is a cell of sd(σ ∗ v) not contained in the boundary of σ
(again these must be performed in order of decreasing dimension). Finally we can collapse
sd(X0 ∪ x ∗ v)↘ sdX0 (this is just collapsing a subdivided 1-cell).

Combining the collapses above we have X ↘ X|X0×{0} = sdX0×{0}. The same process
but working the other way shows that X ↘ sdX1 × {1}. In the case that X0 is collapsible
then we can instead take X = X ′ and essentially the same argument gives the result.

Lemma IV.3.18. Let ∆n be the simplex given by vertices (σ0, . . . , σn) and δ be the face of
∆n given by (σ1, . . . , σn). Then for any m ∈ N there is a simplicial subdivision C of ∆m×∆n

so that

• C|∆m×δ is the simplicial subdivision with no new vertices given by Proposition IV.3.16

• C|∆m×σ0
= ∆m; and

• C ↘ C|(∂∆m×∆n)∪(∆m∪σ0).

We omit the proof (see [13]), which is an inductive argument on the size of m+n, noting
that whenm+n = 1 the result is trivial; we will describe the triangulation. First a subdivision
of ∂(∆m×∆n) is formed by decomposing this as (∂∆m×∆n)∪ (∆m× (σ0 ∗∂δ))∪ (∆m× δ).
We subdivide ∆m × δ without adding any new vertices by Proposition IV.3.16 and use
the induction hypothesis (that a subdivision satisfying the lemma exists for ∆i × ∆j with
i + j < m + n) to subdivide (∂∆m × (σ ∗ δ)) ∪ (∆m × (σ ∗ ∂)). We then pick a point in
the interior of the n+m cell of ∆m ×∆n and subdivide ∆m ×∆n by taking the join of the
subdivision of the boundary with this point.

The following lemma allows us to construct to triangulate a product cobordism (M,M−,M−)3

given triangulations of M− and M+ which admit a common subdivision.

3A product cobordism is a cobordism (M,M−,M+) so that M is diffeomorphic to M × I.



Lemma IV.3.19. Let N be a submanifold (which can have boundary) of M (which may
have corners). Suppose TMi and TNi are triangulations of M and N respectively so that TNi
is a subcomplex of TMi for i ∈ {0, 1}. If TM1 and TM2 admit a common subdivision then there
is a subdivision T of M × [0, 1] so that (T |M×{i}, T |N×{i}) = (sdTMi , sdTNi ) and moreover
T ↘ TM0 ∪ T |N×[0,1] and T |N×[0,1] ↘ TN0 .

Proof. Let T 1/2 be a common simplicial subdivision of TM1 and M
2 . We subdivide M × [0, 1

2 ]
and M × [ 1

2 , 1] by using Lemma IV.3.17 so that along M × { 1
2} we have the triangulation

T
1
2 . We can then take the union of these complexes to be the triangulation T on M × [0, 1].

Then we have T |M×{i} = sdTMi for i ∈ {0, 1} and we get the collapses T ↘ sdTMi from
Lemma IV.3.17.

Note that if both TMi are collapsible we remove the need to take the derived subdivision,
and so have T |M×{i} = TMi .

We now construct a triangulation of cobordism with a Morse function that has just a single
critical point. We follow Gallais [13], but expand some of the arguments in the construction;
note that Gallais uses a different definition of the stable and unstable manifolds of a critical
point (Gallais’ definitions are reversed relative to those used here, using the flow of a gradient-
like vector field whereas we use the negative of a gradient-like vector field); we have altered
the wording of the statement to suit our definitions.

Theorem IV.3.20. Suppose (f, ξ) is a Morse-Smale pair on a cobordism (Mm,M−,M+)
with one critical point p of index i. Then there is a triangulation (T, T−, T+) of the cobordism
with a discrete Morse gradient so that

• the unstable manifold of p is a subcomplex Tup of T and T ↘ Tup ∪ T−

• there is a i-cell σp ⊂ Tup so that p ∈ σp and T sp − σp ↘ Tup ∩ T−.

Proof. The stable manifold of p is a diffeomorphic to Dm−i and we pick a tubular neighbour-
hood N of p so that ξ is transverse to ∂N ; N can be thought of as the handle attached when
passing over the level of p. We think of N in terms of a diffeomorphism to Di ×Dm−i; the
stable manifold is {0} × Dm−i and the unstable manifold is Di × {0}. We triangulate the
unstable manifold with the i-simplex.

The triangulation of the stable manifold is formed by first triangulating its boundary
{0} × Sm−i−1 using any triangulation and then taking the triangulation of Dm−i to be the
cone over (0, 0). We now want to triangulate all of Di ×Dm−i. We use Lemma IV.3.18 to
triangulate each Di × ((0, 0) ∗ σ) for each simplex σ ∈ ∂Dm−i; here the δ of Lemma IV.3.18
is σ. This gives us a well defined triangulation of Di × Dm−i as for any two simplices
σ1, σ2 ∈ ∂Dm−i the subdivisions produced will restrict to the same subdivisions of Di ×
((0, 0) ∗ (σ1 ∩ σ2)). So we have a triangulation of N , which we denote TN . By taking the
collapses given by Lemma IV.3.18 we have that TN ↘ Tup ∪ TN |∂Tup ×Dm−i .

We now triangulate the rest of the cobordism. Notice that the flow gives us a diffeomor-
phism between N ∪ (M− \ N) and every point in M \ (N ∪M−), which is the region that
still requires triangulation.

Fix a triangulation T− of M− so that it agrees with TN on N ∩ M−. For example,

this can be done using any triangulation of M− \ ˚(M− ∩N), replacing the triangulation of
M−∩N with the triangulation given by N and re-triangulating the cells in M \N that share

a face with TN by stellar subdivision. Define ∂−N = M− ∩ N and ∂+N = ∂N \ (̊∂−N).
These two submanifolds decompose ∂N into two pieces that with intersection V = ∂N ∩∂+N
which is ∂Di × ∂Dm−i = Si−1 × Sm−i−1.



We now use the flow of ξ to carry the triangulation on ∂+N up to M+. As ξ is transverse
to ∂+N the flow is a diffeomorphism of ∂+N (resp. V ) onto some submanifold of M+ which
we denote M+

∂+N
(resp. M+

V ); we use the triangulation induced by the flow to on M+
∂+N

and

M+
V , in particular the triangulations of these triangulations are combinatorially equivalent

to the triangulations of ∂+N and V . The part of the manifold (along the flow) between ∂+N
and M+

∂+N
is clearly a product cobordism (diffeomorphic to ∂+N × I) and so we can use

Lemma IV.3.19 to triangulate it; this also gives us a triangulation of the product cobordism
between V and M+

V .

The same process will give us a triangulation between M− \ ˚∂−N and its image under the
flow, and on the cobordism between V and M+

V , this will agree with the triangulation already
constructed. Taking the part of this triangulation on M+ together with the triangulation
M+
∂+N

, we have a triangulation T+ of M+.
Note that triangulating the cobordisms requires us the take the derived subdivision of

the complex if the triangulations of ∂+N and M− \ ˚∂−N are not both collapsible, but recall
that the collapses already discussed will still be valid, so we may assume (for notational

convenience) that ∂+N and M− \ ˚∂−N were collapsible.
We have now completed the triangulation T of M , and in fact we have a cellular triad

(T, T−, T+). By Lemma IV.3.19 we have that T ↘ T−∪TN ; if we then perform the collapse
of TN ↘ Tup ∪ TN |∂TuP×Dm−i already discussed we have T ↘ Tup ∪ T−.

As the i-simplex is endocollapsible we can then collapse Tup ∪T− ↘ T− and so we have a
discrete Morse gradient on the cellular triad (T, T−, T+) with only a single critical cell.

Using Theorem IV.3.20 we can immediately see how to produce a triangulation for any
manifold M with a Morse-Smale pair (f, ξ) where no two critical points have the same value
of f .

Theorem IV.3.21. Given a Morse-Smale pair (f, ξ) where f : M → R is an ordered Morse
function on a manifold M , there is a triangulation T of M with a discrete Morse function
so that there is a bijection between critical cells of dimension i in T and the critical cells of
index i; moreover the critical points are contained in their corresponding critical cell and the
there is a neighbourhood of each critical point in its unstable manifold in which the unstable
manifold is a subcomplex of T .

Proof. To see this denote the critical points by pi where f(pi) < f(pi+1) and cut M up into

cobordisms
f(pi)+εi
f(pi)−εiM only critical point is pi, and product cobordisms

f(pi+1)−εi+1

f(pi)+εi
M between

them. We triangulate the non-trivial cobordisms using Theorem IV.3.20. Due to the fact
that we use the flows of these cobordisms to triangulate the upper level sets f−1(f(pi) + εi),
the triangulations on these will be C1 (and we can choose a C1 triangulation on the lower
level sets f−1(f(pi)− εi). Any two C1 triangulations of the same manifold admit a common
simplicial subdivision [28] and so we can use Lemma IV.3.19 to triangulate the product
cobordisms so that they agree on with the non-trivial cobordisms along their common level
sets. Note that the product cobordisms admit discrete Morse gradient with no critical cells
by Lemma IV.3.19 The rest of the statement follows immediately from Theorem IV.3.20 and
the previously discussed method for defining a discrete Morse gradient when gluing cellular
triads with given discrete Morse gradients together.

It is also possible to drop the requirement that critical points have distinct values by
choosing (for critical points of the same value) tubular neighbourhoods that are disjoint from
each other.



Chapter V

Morse homology

One reason to be interested in Morse theory is that it provides a way to compute the ho-
mology of smooth manifolds. Using the flows between critical points of a Morse function one
can define a chain complex whose homology is isomorphic to the singular homology of the
manifold. Here we will briefly review the smooth Morse homology theory before showing the
discrete analogue introduced by Forman [12].

1 Smooth Morse homology

We briefly recall the basic objects and structure of smooth Morse homology. Given a smooth
Morse function on a compact manifold M and a Morse-Smale gradient ξ, the intersection of
Ms(p)∩Mu(q) is a manifold with dimension dimMs(p) + dimMu(q)−dimm = (m−λ(p)) +
λ(q)−m = λ(q)− λ(p) by Proposition I.4.6. This is the set of points on flow lines from q to
p. Each flow line can be reparameterised by a translation of R, changing the initial condition
for the corresponding differential equation. Quotienting by this action of R gives the moduli
space of flow lines from q to p.

M (q, p) = (Ms(p) ∩Mu(q))/R.

It follows that M (q, p) is a manifold with dimension λ(q)− λ(p)− 1 provided that p 6= q.
Of particular interest to us is the case where λ(q) = λ(p) + 1. In this case we have

that M (q, p) is a collection of points. It can be shown that when λ(q) = λ(p) + q, M (q, p)
is compact and hence consists of finitely many points [16]. By picking an orientation on
the unstable manifold of q and the unstable manifold of p we get orientations on the flow
lines can be used to induce an orientation on TpM from the orientation of TqM ; note that
reparameterising a flow line does not change this orientation and so the points M (q, p) induce
orientations on TpM . We define n(q, p) as the signed count of the points in M (q, p) where
the sign is positive if the induced orientation agrees with the orientation of TpM given by
the chosen orientation on the Mu(p) [16, 23].

The Morse chain complex (C∞∗ (f, ξ), ∂∞) is these given by C∞i (f, ξ) = ZCri f is the
Z-module generated by the index i critical points of f and the boundary map is

∂∞ : Ci → Ci−1

p 7→
∑

q∈Cri−1 f

n(p, q)q.

This is a chain complex (∂∞ ◦ ∂∞ = 0) and its homology is isomorphic to singular homol-
ogy [23, 16].
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2 Discrete Morse homology

Given a discrete Morse function, Forman showed two different ways to construct a chain
complex with homology isomorphic to singular homology. We will consider the one that is
more closely analogous to Morse homology. For this section let M be a (finite) CW complex
with a discrete gradient V . We define CVi to be the Z-module generated by the critical
i-cells of M ; these are the chain groups for discrete Morse theory. As in the smooth case
the boundary map will be defined as a linear combination of cells by counting the number of
gradient paths between critical cells of adjacent dimension. We assume familiarity with the
cellular homology of a CW complex and in this section ∂ will denote the cellular boundary
map.

2.1 Induced orientations

In smooth Morse homology the orientations of flow lines between critical points are used to
sign the contributions of ∂∞. We will need to account for orientations induced by gradient
paths between critical cells in a similar way. We use the notation 〈∂τ, σ〉 to denote the
incidence number between τ and σ (this is symmetric with 〈∂τ, σ〉 = 〈σ, ∂τ〉). This is
motivated by recognising 〈·, ·〉 as an inner product on the Z module generated by the p-cells
of M so that the p-cells form an orthonormal basis. By doing this we identify −σ as being
the cell σ but with the opposite orientation.

The orientation on the initial cell of a gradient path induces the orientation of the terminal
cell of the path in a step-wise manner along the path. Given two p-cells σ 6= σ̃ and a (p+ 1)-
cell τ so that σ < τ and σ̃ < τ , an orientation on σ induces an orientation on σ̃ given by the
formula

〈∂τ, σ〉〈∂τ, σ̃〉 = −1.

Notice that we can think of this in two equivalent ways: σ induces an orientation on τ
so 〈∂τ, σ〉 = −1 which then induces an orientation on σ̃ so 〈∂τ, σ̃〉 = 1; or we can take
the orientations for both σ and τ to be fixed and this pair of orientations will induce the
orientation on σ̃ by the above formula. Notice that both points of view give the same result
as taking the opposite orientation for τ gives us

〈−∂τ, σ〉〈−∂τ, σ̃〉 = (−〈∂τ, σ〉)(−〈−∂τ, σ̃〉) = 〈∂τ, σ〉〈∂τ, σ̃〉.

Figure V.1 shows the orientation induced by a 1-simplex on the other faces of a 2-simplex.

2.2 The boundary map

We now fix an orientation for all the cells in M . We can follow induced orientations along a
gradient path γ : σ0, . . . , σl by first taking the fixed orientation on σ0 and V (σ) to induce an
orientation on σ1; we then induce an orientation on σi+1 by using the induced orientation on
σi. We define the multiplicity m(γ) of γ to be 1 if the orientation induced on σl is the fixed
orientation of σl and −1 if the induced orientation is opposite. Algebraically this is given by

m(γ) =

l−1∏
i=0

−〈∂V (σi), σi〉〈∂V (σi), σi+1〉

for l > 0; if we have a length 0 path (the path is just a single cell) we define the multiplicity
to be 1. This links the orientation of σ0 to the orientation of σl, telling us whether these
orientations agree or not.



Figure V.1: The orientations induced (blue) by a given orientation (red) 1-simplex.

We now define the boundary map ∂V : CVi+1 → CVi for chains by

∂V (τ) =
∑
σ∈Ci

n(τ, σ)σ

where
n(τ, σ) =

∑
σ̃(i)<τ

〈∂τ, σ̃〉
∑

γ∈Γ(σ̃,σ)

m(γ).

where Γ(α, β) denotes the set of gradient paths α β.
This is exactly analogous to the smooth case — n(τ, σ) counts all gradient paths from

i-cells in τ (i+1) to σ, just as it counted all flow lines between critical cells in the smooth case.
The terms 〈∂τ, σ̃〉 account for the orientation in moving from τ to faces that begin a path
and the multiplicities carry these to the end of the gradient paths.

The following two theorems (Theorems V.2.1 and V.2.3) were proved by Forman [12] using
an indirect method. We present proofs following those of Gallais that are more direct [13].
Gallais’ proofs of Theorems V.2.1 and V.2.3 are for simplicial complexes; we extend these to
the case of CW complexes.

Theorem V.2.1. (CV∗ , ∂
V ) is a chain complex, i.e. ∂V ◦ ∂V = 0.

Proof. We only need to consider the contributions of sets {γ(p) (α)
⇁ β

(µ)
⇁ ν} of path juxtaposi-

tions where γ and ν are fixed and β is allowed to vary. This follows as we only need to show
that the coefficient of each (p− 2)-cell in ∂V ◦ ∂V (γ) is 0. We will define

ν
(∂W ◦ ∂W )(γ) to

be the contribution of ∂W ◦ ∂W (γ) that lies in Zν. Then to prove that ∂V ◦ ∂V = 0 we just
need to show that

ν
(∂V ◦ ∂V )(γ) = 0 for any critical cells γ(p) and ν(p−2).

We prove this by induction on the number of cells in the pairing of the vector field. If there
are no paired cells, then we have that the boundary map is the cellular boundary map: ∂V = ∂
and hence ∂V ◦ ∂V = 0. Suppose for induction that for every vector field with k − l paired
edges (where 0 < l ≤ k) that we have the result. Given a vector field V with k paired edges,
let V ′ be the vector field given by removing a single pair σ(n) ≺ τ (n+1) from V (i.e. making
σ and τ critical). By the induction hypothesis we have ∂V

′ ◦ ∂V ′ = 0; moreover if dimσ = n
then CVi = CV

′

i for i 6= n, n+ 1 and ∂V |CV ′i = ∂V
′ |CV ′i for i 6= n+ 2, n+ 1, n. It follows that

we only have to check that ∂V ◦ ∂V (σ′) = 0 for these cases, where τ ′ ∈ CVn , CVn+1, C
V
n+2.



We will write Γ(α, β) for the set of gradient V -paths α  β and Γ′(α, β) for the set
gradient V ′-paths α β.

Case 1 Suppose τ ′ ∈ CVn . Notice that no path γ : τ ′ ⇁ σ′ ∈ CVn−1 passes through σ (i.e.,

no path has some segment σi
(σ)
 σi+1) since σ is paired with τ ∈ Cn+1. It follows that

making σ critical does not change (n− 1)-dimensional gradient paths and so ∂V ◦ ∂V (τ ′) =
∂V
′ ◦ ∂V ′(τ ′) = 0.

Case 2 Suppose that τ ′ ∈ CVn+1 and ν ∈ CVn−1 = CV
′

n−1; we need to show that
ν
(∂V ◦ ∂V )(τ) =

0. Let S be the set of juxtapositions of gradient V -paths τ ′ ⇁ σ′ ⇁ ν where σ′ ∈ CVn . If
there are no juxtapositions that go through σ (i.e., no path τ ′  σ′ in a juxtaposition has a

segment σ
(τ)
 σ̄), then we are done as ∂V ◦ ∂V (τ ′) = ∂V

′ ◦ ∂V ′(τ ′) = 0 as S is also the set of
juxtapositions for V ′.

We will first explain the relationships between sets of juxtaposed paths and their contri-
butions to

ν
(∂V

′ ◦ ∂V ′)(τ ′) and
ν
(∂V ◦ ∂V )(τ ′). This will show contributions cancel for V ′.

We will then see a direct computation drawn directly from this discussion that confirms the
result. To simplify notation we will prescribe that any cell that is given by σ with some
adornment (i.e. σ′, σ̃, σ̄) has dimension n and any cell given by ν with an adornment has
dimension n− 1.

Let S′ be the set of juxtapositions of gradient V ′-paths τ ′ ⇁ σ̄ ⇁ ν for σ̄ ∈ CV
′

n =
CVn ∪ {σ}. Consider the difference between S and S′. When removing the pair σ ≺ τ from
V to get V ′ we lose the juxtapositions in S that go through σ, but gain juxtapositions of the
form τ ′ ⇁ σ ⇁ ν. By the inductive assumption we have

ν
(∂V

′ ◦ ∂V ′)(τ) = 0; this means that

the set of juxtapositions τ
(σ)
⇁ σ ⇁ ν (i.e., the ones through σ) cancels the contribution of

the subset of juxtapositions τ ⇁ σ′ ⇁ ν, where σ′ 6= σ, for ∂V
′ ◦ ∂V ′(τ). The juxtapositions

in S that do not go through σ are exactly the juxtapositions in S′ that do not go through
σ. We can also see that the juxtapositions in S that do go through σ have a specific form:

τ ′ ⇁ σ
(τ)
 σ̄  σ′ ⇁ ν where σ̄(p) < τ , σ̄ 6= σ, note that we allow the possibility that σ̄ = σ′

(in which case σ̄  σ′ is length 0).
The following schematics depict these gradient paths; each arrow represents the set of

paths between cells with arrows to (resp. from) CVn representing the set of all paths to (resp.
from) any critical n-cell. First we have the V ′-paths:

CVn

τ ′ τ ν

σ

(σ)

(σ̄)

where σ 6= σ̄ < τ .
When passing to V by adding pair σ ≺ τ (i.e. setting V (σ) = τ)) we get the following



V -paths.

CVn

τ ′ σ̄ ν

σ

(τ)

Note that definition of n(α(p+1), β(p)) still makes sense when β is not critical. Examining

the contribution of juxtapositions τ ′ ⇁ σ
(τ)
 σ̄  σ′ ⇁ ν to

ν
(∂V ◦ ∂V )(τ ′) we see that

they contribute −〈∂τ, σ〉 multiplied by both n(τ ′, σ) and the contribution of juxtapositions

τ ⇁ σ̄  σ′ ⇁ ν to
ν
(∂V

′ ◦ ∂V ′)(τ); this is exactly the contribution to
ν
(∂V

′ ◦ ∂V ′)(τ ′)
of the juxtapositions in S′ that go through σ. As the juxtapositions in S that do not go
through σ are the same as the juxtapositions in S′ that do not go through σ, we then have
that

ν
(∂V ◦ ∂V )(τ ′) =

ν
(∂V

′ ◦ ∂V ′)(τ ′) = 0.
We now give an explicit computation that illustrates this. By the inductive assumption

we have
ν
(∂V

′ ◦ ∂V ′)(τ ′) = 0, in particular the contribution of juxtapositions in S′ through
σ cancels the contribution of juxtapositions in S′ that do not go through σ:

0 =
ν
(∂V

′
◦ ∂V

′
)(τ ′)

=
∑

σ′∈CVn

∑
σ̃<τ ′

〈∂τ ′, σ̃〉
∑

γ∈Γ′(σ̃,σ′)

m(γ)
∑
ν̃<σ′

〈∂σ′, ν̃〉
∑

γ∈Γ(ν̃,ν)

m(γ)ν

+
∑
σ̃<τ ′

〈∂τ ′, σ̃〉
∑

γ∈Γ′(σ̃,σ)

m(γ)
∑
ν̃<σ

〈∂σ, ν̃〉
∑

γ∈Γ(ν̃,ν)

m(γ)ν. (1)

where we have split up the contributions that do not go through σ (the part before the ‘+’)
and those that do (the part after ‘+’).

Similarly, from
ν
(∂V

′ ◦ ∂V ′)(τ) = 0 we have

−〈∂τ, σ〉
∑
ν̃<σ

〈∂σ, ν̃〉
∑

γ∈Γ′(ν̃,ν)

m(γ)ν

=
∑

σ′∈CVn

∑
σ̄<τ
σ̄ 6=σ

〈∂τ, σ̄〉
∑

γ∈Γ′(σ̄,σ′)

m(γ)
∑
ν̃<σ′

〈∂σ′, ν̃〉
∑

γ∈Γ(ν̃,ν)

m(γ)ν. (2)

Denoting the set of gradient V -paths σ̃  σ′ that pass through σ by Γσ(σ̃, σ′) we have by
definition ∑

γ∈Γσ(σ̃,σ′)

m(γ) = −〈σ, ∂τ〉
∑

γ∈Γ(σ̃,σ)

m(γ)
∑
σ̄<τ
σ̄ 6=σ

〈∂τ, σ̄〉
∑

γ∈Γ(σ̄,σ′)

m(γ) (3)

as

m(σ̃  σ
(τ)
 σ̄  σ′) = m(σ̃  σ)m(σ

(τ)
 σ̄)m(σ̄  σ′)

and

m(σ
(τ)
 σ̄) = −〈σ, ∂τ〉〈∂τ, σ̄〉.

We are now in a position to compute
ν
(∂V ◦ ∂V )(τ ′) and show it is 0. We start by noting

that we can split up the set of paths from a σ̃ < τ ′ to a (critical) cell σ′ ∈ CVn into those



that pass through sigma, Γσ(σ̃, σ′), and those that do not, Γ′(σ̃, σ′). So we have

ν
(∂V ◦ ∂V )(τ ′) =

∑
σ′∈CVn

∑
σ̃<τ ′

〈∂τ ′, σ̃〉

 ∑
γ∈Γσ(σ̃,σ′)

m(γ) +
∑

γ∈Γ′(σ̃,σ)

m(γ)


×

∑
ν̃<σ′

〈∂σ′, ν̃〉
∑

γ∈Γ(ν̃,ν)

m(γ)ν

 (4)

Let’s consider just the terms with that use paths in the various Γσ. By expanding the sums
over each Γσ (̃,σ′) (using (3)) and rearranging we get that these terms are∑

σ̃<τ ′

〈∂τ ′, σ̃〉
∑

γ∈Γ(σ̃,σ)

m(γ)

×−〈∂τ, σ〉
∑

σ′∈CVn

∑
σ̄<τ
σ̄ 6=σ

〈∂τ, σ̄〉
∑

γ∈Γ(σ̄,σ′)

m(γ)
∑
ν̃<σ′

〈∂σ′, ν̃〉
∑

γ∈Γ(ν̃,ν)

m(γ)ν. (5)

Using (2) (noting that 〈∂τ, σ〉 = ±1) we can simplify the factor on the second line and write
(5) as ∑

σ̃<τ ′

〈∂τ ′, σ̃〉
∑

γ∈Γ(σ̃,σ)

m(γ)
∑
ν̃<σ

〈∂σ, ν̃〉
∑

γ∈Γ′(ν̃,ν)

m(γ)ν.

Substituting this back into (4) and looking back at (1) we see that

ν
(∂V ◦ ∂V )(τ ′) =

ν
(∂V

′
◦ ∂V

′
)(τ ′) = 0.

Case 3 The third case, with τ ′ ∈ CVn+2 and ν ∈ V Vn works similarly to the previous case;
we will show the path schematics. The V ′-paths to consider are

CVn+1

τ ′ σ ν

τ

(σ)
(σ̄)

Where σ̄ 6= σ. Then passing to V we get

CVn+1

τ ′ σ ν

σ̄

(τ)

and similar considerations show that the contribution of these sets of paths cancel.



The key difference between our proof and Gallais’ is that as Gallais uses simplicial com-
plexes all incidence numbers are ±1. This makes it clear that the contributions of gradient
paths cancel over Z/2Z and so Gallais shows that when passing from V ′-paths to V -paths
there is still a pairing between the contributions to ∂V ◦ ∂V and then that the signs of these
are opposite. When using CW complexes it is less clear how to show that contributions
still cancel in pairs as the incidence numbers between a critical cell and its faces can be any
integer, so instead we work with the entire set of gradient paths at once.

We call the chain complex (CV• , ∂
V ) the discrete Morse chain complex.

To prove that the homology of the discrete Morse chain complex is isomorphic to singular
homology (Theorem V.2.3) we employ some general machinery for chain complexes known
as ‘Gaussian elimination’ [13, 3].

Lemma V.2.2. Suppose φ : A→ B is an isomorphism of Z modules, then the chain complex

−→ Cn+1

α
β


−−−−→ A⊕D

φ δ
γ ε


−−−−−−→ B ⊕ E

(
ξ η

)
−−−−−→ Cn−2 −→

has homology isomorphic to the homology of

−→ Cn+1
β−→ D

ε−γφ−1δ−−−−−−→ E
η−→ Cn−2 −→ .

Proof. By applying the change of basis given by T1 =

(
1 φ−1δ
0 1

)
and T2 =

(
1 0

−φ−1γ 1

)
to A⊕D and B ⊕ E respectively, the first map transforms to

T1

(
α
β

)
=

(
1 φ−1δ
0 1

)(
α
β

)
=

(
α+ φ−1δβ

β

)
=

(
0
β

)
where the last step comes from the fact that φα+ δβ = 0 as d2 = 0. Similarly the final map
transforms to (

ξ η
)
T−1

2 =
(
ξ η

)( 1 0
φ−1γ 1

)
=
(
0 η

)
.

The map in the middle transforms to

T2

(
φ δ
γ ε

)
T−1

1 =

(
φ 0
0 ε− γφ−1δ

)
.

So now we have the chain complex

−→ Cn+1

0
β


−−−→ A⊕D

φ 0
0 ε− γφ−1δ


−−−−−−−−−−−−−→ B ⊕ E

(
0 η

)
−−−−−→ Cn−2 −→ .

This is a direct sum of two chain complexes, so we have that the homology groups split with

this direct sum, but the homology of the summand 0 −→ A
φ−→ B −→ is trivial so we have that

the chain complex

−→ Cn+1
β−→ D

ε−γφ−1δ−−−−−−→ E
η−→ Cn−2 −→

has homology isomorphic to the original complex.

Theorem V.2.3. The homology of the discrete Morse chain complex is isomorphic to sin-
gular homology.



Proof. We will prove this by showing that the discrete Morse chain complex has the same
homology as the cellular chain complex. In the case where all cells are critical this is trivial
as the chain complex is then equal to the cellular chain complex. Suppose for induction that
the result is true for every discrete gradient with up to k − 1 cell pairs. Let V be a discrete
gradient with k cell pairing and let V ′ be the discrete gradient obtained by making one pair
critical. By the remarks about the relationship between CVi and CV

′

i in Theorem V.2.1 we
can see that the chain complex for V ′ is the same as the chain complex for V except for the
segment

−→ CVn+2

 α
∂V


−−−−−→ Zτ ⊕ CVn+1

〈∂τ, σ〉 δ
γ ε


−−−−−−−−−−→ Zσ ⊕ CVn

(
ξ ∂V

)
−−−−−−−→ CVn−1 −→ .

We know that 〈∂τ, σ〉 = ±1, so it is an isomorphism Zτ → Zσ and hence by Lemma V.2.2 it
follows that the homology of this is isomorphic to the homology of

−→ CVn+2
∂V−−→ CVn+1

ε−γ〈∂τ,σ〉δ−−−−−−−→ CVn
∂V−−→ CVn−1 −→ .

All that is left to show is that ε − γ〈∂τ, σ〉δ = ∂V . The contribution to ∂V of paths that
do not go through σ is the same as the contribution for V ′ — this is given by ε. For paths
that do pass through σ, the segment of the paths that gets to σ contribute δ, then passing
over the pair σ ≺ τ gives 〈∂τ, σ〉 and then from faces of τ to the end of the paths is exactly
the contribution of γ. To see that the minus sign is correct, note that in the formula for the
multiplicity we have a factor −〈∂τ, σ〉 and so the 〈∂τ, σ〉 must come with this minus sign.

The induction makes use of the fact that the discrete Morse chain complex is actually
equal to the cellular chain complex when every cell is critical. This observation lets us think of
discrete Morse homology as a generalisation of cellular homology that allows us to simplify the
chain complex by reducing the size of the chain groups. In cellular or simplicial homology, the
number of cells increases the size of the chain groups and hence the complexity of calculating
the homology groups. Discrete Morse homology can be seen as a way of allowing us to use
more cells and using the gradient paths to reduce the size of the chain groups.

2.3 Example calculations

We give two quick homology computations using discrete Morse homology. The first of
these (the projective plane) highlights the fact that when all cells are critical, discrete Morse
homology reduces to cellular homology.

Projective plane

The usual CW complex structure of RP 2 with one cell in each dimension is not regular
and in fact each cell must be critical as no cell is a regular cell of another. Say C2 = Zτ ,
C1 = Zσ and C0 = Zν. As each cell is critical, the Morse chain complex is equal to the
cellular chain complex. Explicitly, the map ∂2 : C2 → C1 maps τ → 2σ as 〈∂τ, σ〉 = 2 and
∂1 : C1 → C0 is the zero map as 〈∂σ, ν〉 = 0. It follows that H2(RP 2) = 0, H1(RP 2) = Z/2Z
and H0(RP 2) = Z.

The torus

Consider the ∆-complex structure1 for the torus depicted in Figure V.2, where the green
arrows give a discrete Morse gradient V , the dashed blue indicate the gradient paths we need

1A ∆-complex can be thought of as a generalisation of a simplicial complex where a simplex need not be
uniquely determined by its vertices; moreover the faces of a cell can coincide; see [14].



to compute the discrete Morse homology, and red indicates chosen orientations of the cells.

The critical cells are τ (2), σ
(1)
1 , σ

(1)
2 , ν(0). The chain groups are CV2 = Zτ , CV1 = Zσ1 ⊕ Zσ2

and CV0 = Zν.

σ1

σ2

τ

σ′1

σ′2

γ3

γ4

γ1

γ2

ν

γ5

Figure V.2: ∆-complex structure for the torus; green arrows define a discrete Morse gradient
and dashed blue indicates the gradient paths γi required for the computing the discrete Morse
homology. Red indicates orientations on the 1-cells.

We have m(γi) = 1 for all i ∈ {1, 2, 3, 4, 5}. We can now compute the boundary map.

∂(σ1) = 〈∂σ1, ν
′〉ν + 〈∂σ1, ν〉ν

= ν − ν
= 0

∂(σ2) = 〈∂σ2, ν〉ν
= 〈ν − ν, ν〉
= 0

For each 2-cell pick the orientation so that two 1-cells in the boundary agree with this
orientation. Then we have

∂V (τ) = 〈∂τ, σ′1〉(σ1 + σ1) + 〈∂τ, σ′2〉(σ1 + σ2)

= (σ1 + σ2)− (σ1 + σ2)

= 0.

It follows that HV
2 = CV2

∼= Z, HV
1 = CV1

∼= Z × Z and HV
0 = CV1

∼= Z as all the boundary
map is the zero map on each chain group.

Notice that even though we have more cells than needed to give the torus a cell structure,
the chain groups are as simple as they can be (the discrete Morse gradient is perfect). This
is in contrast with cellular homology, where the chain groups grow with the number of cells;
we can think of the discrete Morse gradient as telling us how to simplify the chain groups of
cellular homology.
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