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1 Introduction
In [2], Khovanov introduces a homology theory for links, which he calls a ‘categori-
fication’ of the Jones polynomial. To an oriented link projection he assigns a chain
complex of graded abelian groups, such that different projections of the same link
have homotopy equivalent chain complexes. The graded Euler characteristic of the
complex is the (un-normalised) Jones polynomial; however, Khovanov’s homology
is a strictly stronger invariant than the Jones polynomial, and is known to detect
the unknot ([4]), while it remains unknown whether the Jones polynomial does.

Khovanov’s homology for links has been extended to a tangle invariant in two ways:
by Khovanov in [3], and by Bar-Natan in [1]. Both assign chain complexes to tangle
diagrams, but in different categories. While Bar-Natan’s invariant assigns a complex
of direct sums of planar tangles and matrices of cobordisms, Khovanov’s invariant
assigns a complex of graded bimodules and bimodule maps.

In the contest for the best tangle invariant, both Khovanov and Bar-Natan have
justifiable claims. While Bar-Natan’s invariant is defined geometrically, Khovanov’s
invariant is algebraic, which immediately allows us to use the basic tools of linear
algebra to study it. On the other hand, the Bar-Natan version has excellent compo-
sition properties, allowing tangles to be composed in all conceivable ways, whereas
Khovanov’s invariant only allows tangles to be stacked ‘vertically’, but there is no
obvious way to compose tangles ‘horizontally’.
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This is an essay on the two formulations of Khovanov’s tangle invariant, with a fo-
cus on Khovanov’s version. We begin by explaining the construction of Khovanov’s
link invariant, and then discuss how this is adapted to make a tangle invariant. We
finish by showing that it is injective on planar tangles with the same number of
closed loops. This shows that there is sufficient information, given the bimodules
corresponding to two planar tangle diagrams, to compute the bimodule correspond-
ing to their horizontal composition, although it does not give a nice way to actually
compute it without reconstructing the original tangles.

2 Khovanov alla Bar-Natan
In this section, we introduce Khovanov’s link invariant from [3] as presented by Bar-
Natan in [1] (with a few straggling conventions from [3]). We begin by assigning to
each oriented link projection a chain complex in an additive category defined below.
Then we apply a functor taking this to a complex of graded abelian groups. Differ-
ent projections of the same link have homotopy equivalent complexes, and thus the
homology groups are a link invariant.

Let L be an oriented link projection with n crossings. Each crossing in L can
be replaced by a 0-smoothing – ‘approach from the bottom and turn right’ – or a
1-smoothing – ‘approach from the bottom and turn left’ (see Figure 1). Thus there
are 2n distinct ways to smooth all n crossings, called the complete smoothings of L,
each of which is a disjoint union of circles (with all orientations forgotten).

Figure 1: The two possible smoothings of a crossing.

Let Cob3(∅) be the category whose objects are complete smoothings of links, and
whose morphisms from smoothings S1 → S2 are Z-linear combinations of two-
dimensional surfaces (called cobordisms) embedded in R2× [0, 1] whose boundary is
the disjoint union of a copy of S1 in R2×{0} and a copy of S2 in R2×{1}. Morphisms
are regarded up to boundary-preserving isotopies. The identity on a smoothing S
is the vertical surface S × [0, 1], and composition of cobordisms is given by stacking
the surfaces vertically and rescaling by 1/2 (see Figure 2). Extending this compo-
sition in the natural bilinear manner, we have defined composition of morphisms in
Cob3(∅).
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Figure 2: Composition of morphisms in Cob3(∅).

Choose an arbitrary ordering of the crossings of L, so that the complete smoothings
of L may be indexed by ordered strings of 1’s and 0’s. This allows us to assign the
2n complete smoothings to vertices on an n-dimensional cube. An example is shown
in Figure 3.

Figure 3: The Hopf link and its cube of complete smoothings are shown.

Each edge connects vertices whose smoothings differ in exactly one crossing, which
is a 0-smoothing on one side of the edge (the ‘tail’) and a 1-smoothing on the other
(the ‘head’). We wish to assign to each edge ξ a morphism dξ in Cob3(∅) from the
smoothing at the tail to the smoothing at the head. We take this to be the identity
on all but a small region surrounding the crossing whose smoothing changes along
the edge, on which it is taken to be a simple saddle → , which we will write as
. This is illustrated in Figure 4.

We now define the chain complex C̃(L) associated to L. The r’th chain group is the
formal direct sum

[C̃(L)]r =
⊕

(complete smoothings with exactly r 1-smoothings) {r+n+− 2n−},

where .{ } is the formal degree shift operation, n+ is the number of positive crossings,
and n− is the number of negative crossings (see Figure 5). If we simply take the
r’th differential to be the sum of the edge maps whose tail is a direct summand of
[C̃(L)]r, our complex will not satisfy d2 = 0. Each square of our cube commutes
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Figure 4: The simple saddle cobordism that maps from a 0-smoothing to a 1-
smoothing.

(since the order of two spatially separated cobordisms does not matter), and thus if
we assign negative signs to certain edges such that each square has an odd number
of negative signs, every square will anti-commute. Then summing the edge maps,
the complex will satisfy d2 = 0.

Figure 5: Positive and negative crossings.

If ξ connects vertices which differ in the smoothing of the i’th crossing, let s(ξ) be the
number of 1-smoothings occuring before the i’th position in the complete smoothings
of the vertices on either side of the edge, which is odd for an odd number of edges
around each square. Then the r’th differential is then given by∑

ξ

(−1)s(ξ)dξ.

Finally, let C(L) be C̃(L) with a height shift of −n−; that is,

(C(L))r = (C̃(L))r+n− .

We are now ready to assign a TQFT. A TQFT, or Topological Quantum Field The-
ory, is a functor from Cob3(∅) to the category of graded abelian groups and group
homomorphisms, such that disjoint unions are mapped to tensor products.

Let A be the free abelian group spanned by 1 and X, where 1 has degree 1 and X
has degree −1. Our functor F assigns to a circle the abelian group A, and to the
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generating cobordisms it assigns the following group homomorphisms:

F
( )

= ε :

{
1 7→ 0

X 7→ 1

F
( )

= ι :
{

1 7→ 1

F
( )

= m :


1⊗ 1 7→ 1

1⊗X 7→ X

X ⊗ 1 7→ X

X ⊗X 7→ 0

F
( )

= ∆ :

{
1 7→ 1⊗X +X ⊗ 1

X ⊗X 7→ X

Figure 6: First meeting with Tony.

This functor is known to be well-defined, since the maps ε, ι, ∆ and m satisfy the
relations of a Frobenius algebra.

Appyling F to all objects and morphisms in our n-dimensional cube, and send-
ing formal direct sums to honest direct sums, we obtain a chain complex of graded
abelian groups, which is an object in the category of complexes of graded abelian
groups and chain maps between them. Different projections of the same link have
homotopy equivalent chain complexes (see [1]). Thus if we set homotopic maps to
be equal, the isomorphism class in the resulting homotopy category of complexes of
graded abelian groups is a link invariant, and it is constructed so that its graded
Euler characteristic is the Jones polynomial.

3 Extending to a Tangle Invariant
Suppose that we now wish to extend this link invariant to a tangle invariant. We
can smooth the crossings of a tangle projection and add edge maps to construct
a cube as in the previous section. The challenge we face is turning this geometric
construction into something easier to work with. Unlike with links, we cannot apply
a TQFT, since the objects assigned to each vertex are now disjoint unions of both
circles and arcs.
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Bar-Natan avoids this issue by only considering chain complexes of smoothings and
cobordisms, modulo some ‘local relations’, without assigning any algebraic structure.
Essentially, we follow the construction of the previous section, but stop immediately
before applying a TQFT, and instead we quotient out by certain ‘local relations’
(see Section 4 of [1]). The isomorphism class in the homotopy category is a tangle
invariant, although given two complexes, it may be difficult to see whether they are
homotopy equivalent. This construction does, however, have the advantage that
tangles can be composed in all possible ways (see Section 5 of [1]). Thus, if the
ultimate goal is a local method for computing the chain complex of a link, to which
we can then apply a TQFT, Bar-Natan’s construction is ideal.

If, however, we want a tangle invariant with some algebraic structure, Khovanov
shows how to assign graded bimodules to tangle smoothings, by considering all pos-
sible ‘planar closures’ of the tangle.

An (oriented) (n,m)-tangle is an (oriented) tangle in R2 × [0, 1] with 2n bound-
ary points in R2 × {0} and 2m boundary points in R2 × {1}. These are positioned
uniformly along R×{0}×{0} and R×{0}×{1} to allow (n,m)- and (m, k)-tangles
to be composed by stacking vertically (provided the orientations match). A projec-
tion of an (oriented) (n,m)-tangle onto R×[0, 1] is called an (oriented) (n,m)-tangle
diagram.

Let B̃n
m be the set of all complete smoothings of (n,m)-tangle diagrams, which

we will call flat (n,m)-tangles, or simply flat tangles. For a flat tangle T ∈ B̃n
m, let

W (T ) ∈ B̃m
n be the reflection of T in R×{1/2}. Choose a set Bn

m with one represen-
tative from each isotopy class of flat tangles without circles, such thatW (Bn

m) = Bm
n

for all n and m.

We begin by defining the rings Hn for each non-negative integer n. We will then
assign an (Hn, Hm)-bimodule to each flat (n,m)-tangle.

As an abelian group, Hn is given by

Hn =
⊕
a,b∈Bn

F(W (a)b){n},
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where F is the functor given in Section 2 and {n} denotes a grading shift of n. For
example, in B2 has two elements: either the two arcs connect adjacent points, or
the two outer points are connected and the two inner points are connected. Thus
there are four direct summands in H2, as shown in Figure 7.

Figure 7: The four direct summands in the ring H2 correspond to the above dia-
grams. From left to right, these are A⊗2{2}, A{2}, A{2} and A⊗2{2}.

We now need to define multiplication in Hn, and we do so using cobordisms and the
functor F from Section 2. Between direct summands F(W (a)b) and F(W (b′)c), we
define the multiplication to be zero if b 6= b′.

If b = b′, the idea is to find a canonical cobordism between bW (b) and the flat
tangle consisting of 2n vertical lines, which we will denote Vert2n. By taking the
identity cobordism on W (a) and c, this will give a map from

W (a)bW (b)c→ W (a)c.

But since W (a)b and W (b)c are disjoint unions of circles,

W (a)bW (b)c = W (a)b tW (b)c.

Applying F , this will give us a group homomorphism from

F(W (a)b)⊗F(W (b)c)→ F(W (a)c)

which defines the ring multiplication xy of elements in x ∈ F(W (a)b) and y ∈
F(W (b)c).

The canonical cobordism from bW (b)→Vert2n is the composition of n saddles given
by successively ‘saddling off’ outer arcs in b with their counterpart in W (b). The
resulting cobordism, which we will call S(b), is diffeomorphic to the disjoint union
of n discs. An example is shown in Figure 8.

We are now ready to define the (Hn, Hm)-bimodule associated to a flat (n,m)-tangle
T , which we will denote F(T ). The underlying abelian group of the bimodule is
given by

F(T ) =
⊕

a∈Bm,b∈Bn

F(W (a)Tb){m},

where F is the functor given in Section 2. Just like multiplication within the ring,
the ring action is defined on pairs of direct summands. For r ∈ F(W (a)b) ⊆ Hn

and m ∈ F(W (b′)Tc) ⊆ F(T ), rm is defined to be zero if b 6= b′. For b = b′, consider
the cobordism consisting of the canonical cobordism S(b) on bW (b) and the identity
cobordism on W (a) and Tc. Since

W (a)bW (b)Tc = W (a)b tW (b)Tc,
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Figure 8: The canonical cobordism S(b) : bW (b)→Vert4 is shown for b = . The
surface is drawn out explicitly on the top left; the top right gives a diagrammatic
form where vertical lines show where two arcs are joined in a saddle; the bottom is
a ‘movie representation’, where each picture is a cross-section of the cobordism.

this gives a cobordism from

W (a)b tW (b)Tc→ W (a)c.

Applying F gives a map from

F(W (a)b)⊗F(W (b)Tc)→ F(W (a)c),

which defines the left multiplication rm. The right action of Hm is defined analo-
gously, completing the definition of the bimodule associated to each vertex of the
cube of smoothings of an oriented (n,m)-tangle diagram.

For an edge ξ joining smoothings T1 and T2, consider the cobordism that is a simple
saddle on the small neighbourhood of the crossing whose smoothing differs between
T1 and T2 and the identity on the rest of T1. This induces a bimodule map from

F(W (a)T1b)→ F(W (a)T2b)

for each a ∈ Bn, b ∈ Bm, since it commutes with the spatially separated cobordism
defining the ring action. By taking the sum of all such maps, it induces a bimodule
map from

F(T1)→ F(T2).

This is the map we assign to ξ.

We have thus defined the vertices and edges of the cube of resolutions of an ori-
ented (n,m)-tangle T . The chain complex corresponding to the cube is then given
as in Section 2: the r’th chain group is the direct sum of vertices with r 1-smoothings,
with a grading shift of {r + n+ − 2n−}; the edges are given a sign and summed to
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ensure that d2 = 0; and a height shift of −n− is applied. An example is shown in
Figure 9.

Figure 9: The (geometric) complex of bimodules and bimodule maps for the (0, 2)-
flat tangle is shown. By applying F and height and grading shifts, we recover
Khovanov’s invariant.

4 Injectivity of Khovanov’s functor
Suppose that somebody hands us the bimodule F(T ) for some flat tangle T . Can
we reconstruct T up to planar isotopy?

We first note that knowing the abelian group alone is in general not sufficient to
determine the isotopy class of a flat (n,m)-tangle T , since there are non-isotopic
flat tangles (such as those shown in Figure 10) to which F assigns the same abelian
group.

Figure 10: Non-isotopic flat (2, 1)-tangles for which the associated abelian groups
are the same.

However, only a little more information is required to uniquely determine the iso-
topy class of the flat tangle up to repositioning of closed loops.

Let an ∈ Bn be the flat tangle with arcs connecting the 2i − 1’st and 2i’th points
for all i (see Figure 11). We have:

Proposition 1. Let T be a flat (n,m)-tangle. Given the abelian group F(T ), the
left ring action of the direct summand F(W (an)an) ⊆ Hn, and the right ring ac-
tion of the direct summand F(W (am)am) ⊆ Hm, the isotopy class of T is uniquely
determined up to repositioning of circles.

Proof. The proof is in two parts. First, we show how that ring actions determine T ′,
where T ′ denotes T with all circles removed. Then it easily follows that the number
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Figure 11: The flat tangle an is shown. Arcs join the 2i− 1’st and 2i’th points.

of circles in T can be determined given the abelian group F(T ).

Elements of F(W (an)an) ⊆ Hn are of the form x1 ⊗ x2 ⊗ . . .⊗ xn{n}, with xi ∈ A
the element corresponding to the i’th circle from the left in W (an)an. Let ki ∈
F(W (an)an) be of this form with xi = X and x 6=i = 1.

We now define the map µi : F(T )→ F(T ) as follows:

• For 1 ≤ i ≤ n, µi is defined as left-multiplication by ki ∈ F(W (an)an) and
right-multiplication by 1⊗m ∈ F(W (am)am).

• For n+1 ≤ i ≤ n+m, µi is defined as left-multiplication by 1⊗n ∈ F(W (an)an)
and right-multiplication by km−i ∈ F(W (am)am).

The map µi acts non-trivially only on the direct summand W (an)Tam. This is
shown in Figure 12.

Figure 12: The maps µi are given by the above cobordism, where the red lines
represent saddles, with X in the copy of A corresponding to the i’th circle counting
clockwise from the top left.
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Numbering the arcs of W (an) and am clockwise from the top left, we note that µi is
the identity on all tensor factors except the tensor factor corresponding to the circle
in W (an)Tam containing the i’th arc. Thus µi = µj if and only if the i’th and j’th
arcs are connected by T . The maps µi therefore partition the arcs into subsets Sc
of arcs contained in the same circle c ⊆ W (an)Tam.

For example, Figure 13 has three circles: one containing the first and fourth arcs,
one containing the second arc and one containing the third arc. This corresponds
to the fact that the only equality amongst the multiplication maps is µ1 = µ4.

Figure 13: The multiplication maps µ1 and µ4 are equal, since the flat tangle con-
nects the first and fourth arcs into the same circle.

If we trust whoever provided us with the bimodule, we know it corresponds to some
tangle T , so we know that there is at least one way to construct a tangle that con-
nects exactly the arcs that the µi’s tell us must be connected and has no circles,
namely T ′, defined as T with any circles removed. We now show that the maps µi
allow us to determine T ′ up to planar isotopy.

Choose a set Sc1 of arcs contained in some circle c1 ⊆ W (an)Tam. If we con-
sider the rectangle containing T now as a disk and the endpoints of the arcs in Sc1
as points on the boundary of the disk, we see that T must connect each point to an
adjacent point, since any other arc would split the disk into two regions with points
in either region. It would then be impossible to achieve a single circle. There is a
unique way, up to planar isotopy, to connect every point to an adjacent point and
end up with a single circle. Thus, up to planar isotopy, we have determined the arcs
of T ′ that connect the arcs of Sc1 ; call this set of arcs Ac1 , so that

c1 = Sc1 ∪ Ac1 .

Now choose another set Sc2 of arcs contained in a circle c2 ⊆ W (an)Tam. The arcs
in Ac1 have already split the rectangle containing T into various sections, but if we
still trust whoever provided us with the bimodule, it must be possible to connect
Sc2 into a single circle regardless, meaning that the boundary points of the arcs of
Sc2 must all lie within the same section of the rectangle. Again, we can think of this
section of the rectangle as a disk, and by the same argument as before, there is a
unique way to connect them into a single circle up to planar isotopy. Thus we have
determined Ac2 , the set of arcs in T ′ connecting the arcs of Sc2 into a single circle.
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Continuing in this way, for each circle ci ⊆ W (an)Tam, there is a unique way,
up to planar isotopy, to connect the arcs in Sci into a single circle. Thus, completing
the process for all circles ci, T ′ is uniquely determined up to planar isotopy.

All that remains is to deduce how many circles we need to add to T ′ to get T .
This is simply the difference in the tensor factors in each direct summand of F(T ′)
and F(T ).

Unfortunately, the bimodule structure alone tells us nothing about where we should
place the circles. This isn’t so bad though, because no matter where we place them
on the tangle diagram, they represent the same tangle, since we can move circles
between the various sections using Reidemeister II.

Acknowledgements
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Appendix A Alternative Ways to Write Zero
In knot theory, there can be considerable ambiguity caused by the similarity in
appearance of the circle © and the number 0. This problem can be averted by
writing the word ‘zero’. However, when the author posed this dilemma to the
LG104 office, they came up with the following notation convention. Every time a
zero is required, choose an arbitrary element of the following list:

• limn→∞ 1/n

• χ( )

• dx ∧ dx

• E(X), X ∼ N(0, 1)

•
∫
S3 dw

• ∇ · (∇× u)

• 1
12

+
∑∞

n=1 n

• π − 22
7

The present paper contained few zeroes and thus the solution was not utilised;
however, the author is confident that this notation will gain widespread use in the
field.
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