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Abstract

In this thesis, we aim to investigate the action of the centraliser of a braid on
the Khovanov homology of its trace closure. To this end, we explore the theory
of knots and braids. We define both objects and clarify the relationship between
them. We investigate link invariants including the Jones polynomial and Kho-
vanov homology and look at the uniqueness of isotopies on both braids and links.
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Introduction

The aim of this thesis is to investigate the action of the centraliser of a braid
on the Khovanov homology of its trace closure. Khovanov homology (described
in Chapter 7) is a knot invariant that assigns vector spaces to links [24, 5, 6].
These vector spaces are the homology groups of graded chain complexes and are
put together in a manner reminiscent of Kauffman’s state sum bracket [19]. The
construction of the Khovanov homology also gives explicit isomorphisms between
the Khovanov homologies of isotopic links.

The fact that isotopies between links can be described as a sequence of a fi-
nite number of generating isotopies, the Reidemeister moves, makes this quality
particularly exciting. If two links are isotopic, we can explicitly compute the cor-
responding isomorphism between the Khovanov homologies as the composition
of the isomorphisms induced by the Reidemeister moves. Should two links not be
isotopic but have isomorphic Khovanov homologies, knowing how self isotopies
act on their Khovanov homologies could help to distinguish them. Thus, they
could be used to make Khovanov homology a stronger invariant.

Every link can be represented by a braid closure [1]. This braid representative
of the link is not unique however each braid does represent a unique link. We
can take an element of the centraliser of the braid representative to construct a
well-defined isotopy of the braid closure (see Definition 2.2.1 and Theorem 2.3.1).
This will induce an automorphism of the Khovanov homology of the link. Hence
Khovanov homology gives a representation of the centraliser of a braid on the
Khovanov homology of its closure.

The isomorphisms associated to individual Reidemeister moves have been de-
scribed previously, but not in a manner compatible with algorithms for comput-
ing Khovanov homology. Thus, to date, there are no explicit computations of the
isomorphism associated to a non-trivial self-isotopy of a link. These calculations
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2 CONTENTS

would lead to a greater understanding of Khovanov homology. To this end, we
explore the theory behind Khovanov homology and the main concepts in knot
theory necessary to derive these relationships.

In Chapter 1, we go over precise definitions of what a mathematical knot is,
what it means for two knots to be the same and how to depict them for easier
analysis. In Chapter 2, we introduce braids. It is a useful fact that the trace
closure of a braid is a link. We look at the aspects of the braid that determine
what this link is and the relationship between any two braids with the same trace.
Another important section of Chapter 2 is the introduction of the centraliser of a
braid. We will be using elements of the centraliser later in this thesis to generate
automorphisms of links that differ from the identity. These will give us insight
into the specific isomorphisms between the Khovanov homologies of related knots.

In Chapter 3, we discuss Alexander’s theorem on the relationship between
knots and braids. A proof of the theorem is covered in some detail. This is be-
cause the connection is one of the central relations we will exploit when analysing
Khovanov homology. It is also particularly suited to implementation as it pro-
vides a purely algorithmic approach to find the braid representatives of knots.

Chapter 4 returns to the topic of knots and links and introduces knot in-
variants. We look particularly at the Jones polynomial, one of the most famous
invariants and Kauffman’s contribution in the state sum calculation. Again, the
algorithmic nature of calculating the Jones polynomial via a state sum lends itself
perfectly to computer calculations. This chapter also leads in to the calculation
of the Khovanov homology of a knot.

We briefly cover movies as a way of visualising isotopies in Chapter 5 before
looking at the Khovanov homology in Chapter 6. We review the basics of homo-
logical algebra and describe how the chain complexes and maps are assigned to
each link to create an invariant. As I implemented the calculation of the Kho-
vanov homology of braid closures, an example of how the calculation is performed
is included.



Chapter 1

Knots and Links

This chapter introduces readers to some basic concepts used throughout this
thesis. Mathematical knots are very similar to everyday knots. We can think of
them as being made up of flexible, elastic strings that might take the form of a
single, circular loop or be so tangled that we can’t even tell if they are made up
of just one string by looking. The main thing to remember is that mathematical
knots are always closed loops. We must remember to fuse the two ends of our
imagined strings so that for some knots there is no possibility of them unravelling.

1.1 Definitions
We’ll begin by looking at the formal definitions knots, links, and isotopies.

Definition 1.1.1. A knot is a smooth embedding of S1 in R3.

Definition 1.1.2. A link is a smooth embedding of a disjoint union of copies
of S1. Each of these copies of S1 is itself a knot. We call each of these knots a
component of the link.

Definition 1.1.3. An oriented link is a link along with an orientation on each
of its components.

Ususally we are not interested in the particular embedding of S1 into R3.
Rather, we look at this embedding only up to an equivalence relation called
‘isotopy’. Informally, links are isotopic if we can pull and stretch the various
parts of one link, making sure that each strand never passes through itself, until
it resembles the other link. Unfortunately, this is generally a long process —
there are pairs of links whose planar projections require intermediate isotopies
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via significantly more complicated projections before we can prove that they are
isotopic [25]. Further, this method can’t be used to prove inequivalence. Instead,
we look for link invariants — qualities that isotopic links share.

Definition 1.1.4. An isotopy is a family of links Lt : tS1 → R3, t ∈ [0, 1]
such that the associated map M : tS1 × [0, 1]→ R3 given by M(x, t) = Lt(x) is
smooth.

Definition 1.1.5. Two links, L1, L2 are isotopic if there is an isotopy, M , such
that M(x, 0) = L1 and M(x, 1) = L2.

Definition 1.1.6. The isotopy group of a link, L : tS1 → R3, is the set of all
isotopies of L modulo higher order order isotopies. We will define these in §2.3.

Note that in this thesis we distinguish between isotopies and planar isotopies
which will be defined later in this chapter.

Thus, a central question in knot theory is determining whether two links are
equivalent or not; that is, are they isotopic? There are a variety of methods
with which this has been attempted. Typically, we look for what are called link
invariants. These are properties of a link that do not change under isotopy.

To do this, it is often convenient to write links in the form of knot diagrams.

1.2 Planar diagrams
Informally, a diagram of a link, L is the image of a projection of L onto a plane,
along with the relative heights of strands at each crossing. A regular projection
is a projection to a plane such that

• No more than two strands of L ever overlap at a single point in our diagram

• The tangents of the two strands at a crossing must not align

• No strand runs perpendicular to the plane of our projection

We call the points on this plane where two strands of L overlap crossings and
the strands between crossings arcs. If the link has an orientation, its projection
inherits this orientation in a natural way.

Definition 1.2.1. A diagram of a link, L, is a regular projection to a plane,
along with the relative heights of the strands at each crossing.
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The relative heights at each crossing are represented by drawing the overstrand
as an unbroken line while there will be a gap between the understrand and the
crossing point in the diagram. The information about the relative heights means
we preserve the 3-dimensional structure of the link. In particular, each diagram
can be interpreted (by lifting overcrossings out of the plane) as a 3-dimensional
link and it is obvious that all links so constructed from the same diagram will be
isotopic.

We often want to project a link onto a specific plane. This could be for reasons
such as minimising the number of crossings or maintaining the same perspective
when projecting a transforming link. Unfortunately, it is not guaranteed that
this will result in a regular projection. Hence, when choosing a projection like
this, we shift the offending arcs slightly with an isotopy of the original link to
ensure we create a regular projection. Any projection of a knot with a finite
number of crossings of a finite number of strands can be transformed into a reg-
ular projection by shifting any strands that violate the requirements. This is can
be seen by performing induction on the edges [9]. Links with a regular planar
projection are a dense subset of links in R3. Moving the strands like this means
that the planar diagram depicts a different link. The two links are related by an
isotopy. It is important to note here that we often do not distinguish between
isotopic links as the link invariants we will be working with are isotopy invariants.

Definition 1.2.2. A planar isotopy is a deformation of the link within the
plane of its planar diagram that leaves every crossing intact.

Two diagrams are isotopic if and only if we can transform one into the other
via a planar isotopy. If they are isotopic, the projected links must also be isotopic.
However, isotopic knots may not always have isotopic diagrams.

It is helpful to have a combinatorial description of a link diagram. This
makes it possible to program computers to perform calculations. It also reduces
the number of diagrams necessary in explanations and makes entering links into
a computer much easier. One such description is the “planar diagram” or “PD”
notation from the KnotTheory mathematica package [8]. We label each of the
arcs in an oriented link diagram. Choose any arc to start and number from 1,
incrementing at every crossing and following the direction of orientation. After
making a circuit of the first component, start with the next number on another
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until all arcs are labelled. We can then label each crossing by the four arcs that
meet there. The arcs are given in an anticlockwise order, starting from the in-
coming understrand.

Example 1.2.1. The PD presentation of the knot below isX8,4,1,3X4,8,5,7X6,1,7,2X2,5,3,6

1

2

3

4

5

6
7

8

1.3 Equivalence of Links
In a planar diagram, both the path of each arc and the number of crossings in the
diagram can differ between isotopic links and even between different projections
of the same link. Two diagrams which differ by only the path of an arc between
two crossings are clearly isotopic. This means that only the crossings and the
endpoints of each path are necessary to determine the isotopy class of a link. If
this information is identical for two diagrams, the corresponding links must be
isotopic. However, the converse is not necessarily true. That is, two diagrams
which are not planar isotopic may still represent isotopic links. It is still not
clear how to tell if two diagrams with different crossings are isotopic. To more
easily classify links, we need a better understanding of the action of isotopies on
the projections of links and when two different diagrams represent the same knot.

To this end, we introduce Reidemeister’s Theorem. Reidemeister proved that
we can express all isotopies between links with regular projections as combina-
tions of planar isotopies and three ‘generating’ isotopies.
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Theorem 1.3.1 (Reidemeister’s Theorem). [28] Two link diagrams are projec-
tions of links from the same isotopy class if and only if we can transform one into
the other through a sequence of planar isotopies and Reidemeister moves. The
Reidemeister moves are:

• Reidemeister 1

' '

• Reidemeister 2

' '

• Reidemeister 3

'

Murasugi describes a proof of this theorem in his book Knot Theory and its
Applications [27].
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Chapter 2

Braids

Braids have been studied since the 1920’s when they were first described by Artin
[3]. While he originally studied them as geometric objects, he also proved that
the braid groups have an equivalent, purely algebraic definition. They appear
in many areas of mathematics including cryptography [2], operator algebras [22]
and robotics [17] and their study has enriched many branches of mathematics.
We introduce them here because of the parallels between the geometric interpre-
tation and links and the opportunity this provides us to study links from a more
algebraic perspective.

In order to define a braid, we need to fix some notation. Take a cube in R3

e.g. {(x, y, z) ∈ R3|x, y, z ∈ [0, 1]}, a set of n points, Ai, on the bottom face,
at ( i

n+1 ,
1
2 , 0), and a set of n points, Bi, on the opposing face, at ( i

n+1 ,
1
2 , 1) for

i ∈ 1, ..., n.

Definition 2.0.1. Given such a cube, an n-stranded braid is a collection of n
smooth, non-intersecting curves such that one curve starts at each Ai and ends
at some Bj. These curves, or strands, must have non-zero partial z derivative
and remain within the cube.

9
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A1

A1

A2

A2

A3

A3

B1

B1
B2

B2
B3

B3

Figure 2.1: The braid σ1σ2σ1 ∈ B3

We say that two braids are equivalent if they are related by an isotopy that
fixes the endpoints of each strand. Braids with a fixed number of strands form a
group. The identity is the braid with strands travelling vertically from each Ai
to Bi.

A1

A1

A2

A2

A3

A3

B1

B1
B2

B2
B3

B3

Figure 2.2: The identity on B3

The group operation is stacking two braids on top of each other so that the
ends of the strands line up this must then be dilated back into the cube.
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A1

A1

A2

A2

A3

A3

B1B1 B2B2 B3B3

B1

C1
B2

C2
B3

C3

A1

A1

A2

A2

A3

A3

B1B1 B2B2 B3B3

Figure 2.3: Composing braids σ1σ2σ1 and σ1σ1

Definition 2.0.2. The trace closure of a braid, b, is the object formed when
we connect each Ai with an arc in the plane y = 1

2 to the corresponding Bi such
that no two arcs cross and each lies outside the unit cube defined around b.

Example 2.0.2. The trace closure of σ1σ2σ1 is the link depicted in Figure 2.4.
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A1 A1 A2 A2 A3 A3

B1 B1 B2 B2 B3 B3

Figure 2.4: Tr(σ1σ2σ1)

The braid groups can be represented algebraically as

Bn =

σ1, ..., σn−1

∣∣∣∣∣∣ σiσj = σjσi |i− j| > 1
σiσjσi = σjσiσj |i− j| = 1


where n is the number of strands in each braid [3]. The braid depicted in Defi-
nition 1.4.1 is written as the ‘word’ σ1σ2σ1 and reads from bottom to top in the
diagram.

Definition 2.0.3. A word in the braid group generators is called a braid word.

2.1 Markov’s Theorem

We have seen earlier that we can obtain a link from any braid by taking its trace
closure. The link obtained is unique up to isotopy. To confirm this, we need
to ensure that the braid relations all correspond to isotopies. If every form of a
braid is isotopic, the trace closure is unique.

Theorem 2.1.1. If b1 and b2 are braid words which correspond to the same
braid, there exists an isotopy between them.
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Later, in §2.3, we show that this isotopy is unique.

Proof. The first,
σiσj = σjσi |i− j| > 1

denotes a planar isotopy.

'

The second braid relation,

σiσjσi = σjσiσj |i− j| = 1

is equivalent to performing a Reidemeister 3 move on the braid.

'

Finally, we musn’t forget the trivial relation,

σiσ
−1
i = Id

which is the equivalent of a Reidemeister 2 move on the braid.

'

All braid relations correspond to isotopies in the geometric interpretation.

While the link obtained by taking the trace closure of a braid is unique, the
reverse is not true. We show in the next chapter that every link has a braid
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representative whose trace closure is isotopic to the link, however, this braid rep-
resentative is not unique.

Consider the link depicted in Figure 2.4. Clearly, σ1σ2σ1 is a braid repre-
sentative of this link. However, we can reduce the number of crossings in this
diagram by performing a Reidemeister 1 move on the second crossing, σ2. The
resulting link is isotopic to Tr(σ1σ2σ1) however, it is clearly also the trace clo-
sure of σ1σ1. This is called a destabilisation. Doing the opposite and adding
a loop to the trace closure via a Reidemeister 1 move is known as a stabilisation.

A1 A1 A2 A2 A3 A3

B1 B1 B2 B2 B3 B3

A1 A1 A2 A2

B1 B1 B2 B2

A1 A1 A2 A2

B1 B1 B2 B2

Figure 2.5: Tr(σ1σ2σ1) ' Tr(σ1σ1)
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Similarly, we can pull one of the crossings through the closure of the braid
from one end to the other. This is a planar isotopy of the trace closure but causes
a significant change in the braid word. It is equivalent to conjugating the braid
by the shifted generator. Hence, we refer to it as a conjugation.

A1 A1 A2 A2 A3 A3

B1 B1 B2 B2 B3 B3

A1 A1 A2 A2

B1 B1 B2 B2

Figure 2.6: Tr(σ1σ2σ1) ' Tr(σ1σ1σ2)

In 1935, Markov [26] proved that these two operations, applied to a braid,
generate all other braids with the same trace. The statement of the theorem is
as follows:

Theorem 2.1.2. Given two braids b and b′, Tr(b) = Tr(b′) if and only if we can
transform from b to b′ via a sequence of the following operations:

1. Conjugation with any other element of the braid group
i.e. b ∼ cbc−1 ∀b, c ∈ Bn

2. Stabilisation/Destabilisation
i.e. b ∼ bσ±1

i for i = n where Bn is the smallest braid group that contains
b.

These are called the Markov moves.

2.2 Centralisers
The centraliser of a braid, b, in Bn is defined as

Z(b) = {c ∈ Bn|cb = bc}
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It is the subgroup of all elements that commute with b. The braid itself and the
full twist ∆ ∈ Bn (δ ∈ B3 illustrated in Figure 2.7) are always members of the
centraliser; however other generators are more difficult to find.

A1

A1

A2

A2

A3

A3

B1

B1
B2

B2
B3

B3

Figure 2.7: The full twist in B3

Franco and González-Meneses describe an algorithmic method to calculate
centralisers in the braid groups [15]. It has been implemented and used to com-
pute centralisers in some of the smaller braid groups including the centraliser in
the examples below. Their method works by constructing a graph associated to
a braid, b, such that the fundamental group of the graph maps onto Z(b). The
generating set of the fundamental group will then map onto the generators of Z(b).

Example 2.2.1.
Z(σ6

1 ∈ B4) = 〈σ1, σ3, σ2σ
2
1σ2〉

The full twist, σ1σ2σ3σ1σ2σ
2
1σ2σ3σ1σ2σ1, and σ6

1 can both be generated by a
composition of the above three generators.

We can use the elements of the centraliser to find an isotopy from Tr(b) to
itself.

Definition 2.2.1. Given a braid, b, and an element of its centraliser, c, the map
ζ(c) : Z(b)→ Isotopy(Tr(b)) is shown in the following diagram1:

1Note: The diagram shown is a movie of the isotopy. These are described in chapter 6
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b
R2

b

c−1

c

M1

c

b

c−1

braid relations

b

c

c−1

R2

That is, we take the trace of the braid, b, and, through a sequence of Reide-
meister 2 moves, we introduce c and its inverse so that we now have Tr(cc−1b).
Pulling the centraliser around the braid through a Markov 1 move, we obtain
Tr(c−1bc). The elements c and b commute so using the braid relations, we obtain
Tr(c−1cb) which we can return to Tr(b) through another sequence of Reidemeis-
ter 1 moves. In §2.3 we prove that there is a unique isotopy between bc and cb
in the braid group so this map is well defined. The isotopy, ζ, is not necessarily
isotopic to the identity. This will become important later on when we look at the
Khovanov Homology.

Lemma 2.2.2. Applying this map to the full twist, ζ(∆), rotates the braid by
2π around the core of the braid closure.

Proof sketch. We can imagine the first part of the map, Tr(b) 7→ Tr(∆∆−1b) as
taking the strands just above b and twisting them in opposite directions to get
Tr(∆∆−1b). To perform the Markov 1 move, we drag ∆ around the closure of
the braid. This equates to rotating every strand in the closure by 2π. The map
Tr(∆−1b∆) 7→ Tr(∆−1∆b) is also just a rotation of b by 2π and then we rotate
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the last remaining stretch of the trace closure to cancel out ∆−1 leaving us with
just Tr(b). Hence, we have rotated the whole link by 2π.

In §6.3 we show that, when b is the identity, ζ(∆) is nontrivial.

2.3 Isotopies on braids

Isotopies of braids are defined in the same way as isotopies of links with the caveat
that the end points remain fixed. We need to show that when two braid words,
w1 and w2 are equal in the braid group, there is a unique (up to higher isotopy)
isotopy between them. We relied on this for w1 = bc and w2 = cb in the previous
section.

To investigate, we need to clarify what it means for two isotopies to not be
distinct. That is, we need to define how two isotopies can be isotopic.

Definition 2.3.1. An n-isotopy is a family of isotopies ϕu : tS1 × [0, 1]n−1 →
R3, u ∈ [0, 1] such that the associated map M : tS1 × [0, 1]n−1 × [0, 1] → R3

given by M(x, t1, ..., tn−1, u) = ϕu(x, t1, ..., tn−1) is smooth.

More specifically for our purposes:

Definition 2.3.2. Two isotopies ϕ0, ϕ1 : tS1×[0, 1]→ R3 are 2-isotopic if there
exists a 2-isotopy ψ : tS1× [0, 1]× [0, 1]→ R3 such that ψ(x, t, 0) = ϕ0(x, t) and
ψ(x, t, 1) = ϕ1(x, t)

An isotopy between two braids is unique if it is isotopic to every other isotopy
between those braids.

Theorem 2.3.1. If two braids, b1, b2, are isotopic, then the isotopy between them
is unique up to a 2nd order isotopy.

Before we get to the proof of this theorem, we need a closer look at the
structure of the braid group and a little more background in topology.

Firstly, we introduce the term homotopy.

Definition 2.3.3. A homotopy is a family of maps ft : tX → Y, t ∈ [0, 1]
such that the associated map F : tX × [0, 1] → Y given by F (x, t) = ft(x) is
continuous.
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The definition of a homotopy is very similar to an isotopy, the difference being
that the associated map is continuous rather than smooth. Hence, isotopy is a
stronger statement than homotopy.

Definition 2.3.4. A covering space of a space X is a space X̃ with a map
p : X̃ → X such that there is an open cover {Uα} of X and that, for every
α, p−1(Uα) is a disjoint union of open sets in X̃ and each of these open sets is
mapped homeomorphically onto Uα by p. The map p is called a covering map.

We have two facts about covering spaces that we will soon need.

Lemma 2.3.2 (Homotopy lifting property). Given a covering space, p : X̃ → X,
a homotopy ft : Y → X and a map f̃0 : Y → X̃ lifting f0, we can find a unique
homotopy f̃t : Y → X̃ of f̃0 that lifts ft.

Lemma 2.3.3. A covering map p : (X̃, x̃0) → (X, x0) induces isomorphisms
p∗ : πn(X̃, x̃0)→ πn(X, x0) for all n ≥ 2.

Proof sketch. Following the proof in Hatcher [20], we find that the surjectivity of
p∗ is given by the fact that every map (Sn, s0) → (X, x0) where n ≥ 2 lifts to
(X̃, x̃0) and that the injectivity is a consequence of the homotopy lifting property.

Definition 2.3.5. A fibration is a map p : E → B with the homotopy lifting
property with respect to all spaces X. This means that for every map h : X ×
[0, 1]→ B and lift f0 : X → E such that p(f0(x)) = h(x, 0), there exists a lift of
all of h to E denoted h̃ : X × [0, 1]→ E where p(h̃) = h and h̃(−, 0) = f0.

Definition 2.3.6. A fibre of the space X given a map f : X → Y is a subspace
U ∈ X corresponding to the preimage of a point y ∈ Y .

Definition 2.3.7. Given a topological space X and a positive integer k, we define

F (X, k) = {(x1, ..., xk) ∈ Xk : xi 6= xj when i 6= j}

to be the k-configuration space of X.

Each element of the k-configuration space of X is a set of k distinct, ordered
points in X. The symmetric group on k letters, Σk acts freely on F (X, k) by
permuting the k points. This means that we can quotient F (X, k) by Σk to get
the unordered k-configuration space of X. That is

SF (X, k) = F (X, k)/Σk.
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This quotient map, p : F (X, k) → SF (X, k) is a covering map. We can see this
by setting {Uα} in our definition to be a set of open neighbourhoods around each
of the k distinct, unordered points that make up each element of SF (X, k).

Definition 2.3.8. Given a space X, the map

pk : F (X, k)→ F (X, 1)

is the projection onto the first point of configuration space.

The following theorem by Fadell and Neuwirth [13] is one of the fundamental
theorems of k-configuration spaces.

Theorem 2.3.4. The projection p : F (R2, k)→ F (R2, 1) is a fibration with fibre
F (R2, k − 1).

Definition 2.3.9. Let G be a discrete group and n ≥ 1. A topological space X
is an Eilenberg-MacLane space, K(G, n), if all homotopy groups πk(X) are
trivial except for πn(X) and πn(X) is isomorphic to G.

This leads us to the following theorem:

Theorem 2.3.5. The k-configuration space F (R2, k) is a K(G, 1) space.

Cohen and Pakianathan give an inductive proof of this claim in [12]. Fur-
ther, they prove that F (R2, k) is actually a K(PBk, 1) space where PBk is the
pure Âğbraid group — the group of braids that do not permute their endpoints
so that, in the previous description of the braid group, the curve from each Ai

terminates at Bi. In other words, π1(F (R2, k)) = PBk. There is a one-to-one cor-
respondence between homotopy classes of paths in F (R2, k) starting and ending
at some fixed point x = (x1, ..., xk) ∈ F (R2, k) and pure braids based at x. (This
means (x1, ..., xk) = (A1, ..., Ak)). This makes 2-disks in F (R2, k) the equivalent
of isotopies between braids and 3-disks the 2-isotopies of braids.

Given that F (R2, k) is a K(PBk, 1) space and p : F (X, k) → SF (X, k) is a
covering map, the homotopy groups πk(SF (R2, k)) are trivial. This means that
SF (R2, k) is also a K(G, 1) space, possibly for a different G. More specifically,
p : F (X, k) → SF (X, k) is a quotient map that removes the order of the points
so in this case G is PBk with the order on the endpoints removed. This gives us
the braid group, Bk. Hence, SF (R2, k) is a K(Bk, 1) space.
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Proof sketch that π1(SF (R2, k)) is Bk. F (R2, k) is a covering space of SF (R2, k).
Hence, its fundamental group π1(F (R2, k)) is a subgroup of π1(SF (R2, k)). Fix-
ing x = (x1, ..., xk) ∈ F (R2, k), let us identify elements of π1(SF (R2, k)) with
homotopy classes of paths in F (R2, k) which start at x. If we use the same cor-
respondence as that between loops in F (R2, k) and the pure braids, we find that
these homotopy classes have a one-to-one correspondence with braids based at
x.

Proof of Theorem 2.3.1. Given that SF (R2, k) is aK(Bk, 1) space, there is a one-
to-one correspondence between the elements of π1(SF (R2, k), x) and the braids
based at x. Following from this, there is a on-to-one correspondence between
the elements of π2(SF (R2, k), x) and the isotopies between braids based at x.
Given that π2(SF (R2, k)) is trivial, any two isotopies, φ1, φ2 between two braids
b1, b2 must be 2-isotopic. Hence any isotopy between two braids is unique up to
2-isotopy.
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Chapter 3

Alexander’s Theorem

Alexander’s Theorem [1] tells us of the close relationship between knots and
braids.

Theorem 3.0.6 (Alexander’s theorem). Every link is isotopic to the trace closure
of a braid.

There are many ways of proving Alexander’s Theorem. This chapter gives an
algorithmic proof that particularly lends itself to computation and provides an
explicit method of calculating a braid whose trace closure is the original knot or
link. In 1987, Yamada published an alternative proof of Alexander’s theorem.
His motivation was to develop a method of finding the braid representative of a
link that keeps both the writhe and the number of Seifert circles (described later
in this chapter) invariant. This method was later refined and simplified by Vogel
to make it easier to program into a computer.

Before we get into the proof, we first need to clarify a few terms.

3.1 Seifert Surfaces
In the 1930’s Pontrjagin and Frankl [16] devised the following theorem:

Theorem 3.1.1. Given an oriented link, L, in R3, there exists an orientable,
connected surface, F , with boundary L. We call such a surface a Seifert surface.

Seifert’s algorithm to find one of these surfaces is also a very nice proof of the
theorem.

23
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Proof. To find a Seifert surface for a link, L, we first need to find a link diagram,
D. We replace every crossing with an oriented smoothing. This decomposes D
into a collection of simple closed curves, Seifert curves, so that we now have a
link diagram of one or more copies of the unknot. To avoid losing the crossing
information, we place a band at every smoothing and label it with the type of
crossing it is replacing.

+ −

We now have what is referred to as a Seifert diagram.

+ +

−

−
+ + −

−

Figure 3.1: An example of applying the Seifert algorithm to the figure eight knot.

We construct the Seifert surface in several steps. First, some of the circles
may be nested. If this is the case, we raise the circles in R2 × [0, 1] so that the
disks they bound are entirely disjoint. Next, we replace each of the circles with
these disks.

Moving on to the bands, we replace each with a twisted square. The orien-
tation of the twist will depend on the type of crossing the band represents. A
negative crossing will be replaced with a negative twist and a positive crossing
with a positive one as depicted below.
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These twisted squares attach to the disks at the points the bands intersect.
The resulting surface is connected, orientable and has boundary isotopic to L.
The orientation is induced by the orientation of L.

It is important to note that there is not a unique Seifert surface for every
link and an isotopy between links does not imply an isotopy exists between their
Seifert surfaces. In fact, we do not even get a unique surface by following the
above algorithm. Apart from the effect of the initial choice of link diagram,
changing the relative heights of any nested circles can result in a different surface
at the output. Additionally, we can change the genus of any Seifert surface with-
out affecting its boundary. The minimum genus of a Seifert surface of a link is a
link invariant. Methods of calculating this minimum genus for links are beyond
the scope of this thesis but for more information, Murasugi’s book [27] is a good
reference.

Notice that since each band represents a crossing, any adjacent circles con-
nected by a band will have opposite orientations while any nested circles con-
nected by a band will have the same orientation.
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−

+

3.2 The Yamada-Vogel Algorithm

The following is the simpler, algorithmic proof of Alexander’s Theorem developed
by Yamada and Vogel [30, 29].

To find a braid for any knot or link, we take the planar diagram of a link and
rewrite it as a Seifert diagram using Seifert’s algorithm in S2. We can then apply
the Yamada-Vogel algorithm to the Seifert diagram to get the braid.

The Yamada-Vogel algorithm works by finding what are called reducing arcs
between two circles of the same orientation and then combining these into one
circle with a nested circle inside. We will call this a reducing move. Every time
this is done, the number of ‘incoherent circles’ is reduced.

Definition 3.2.1. A reducing arc is an arc that connects two circles of the
same orientation and does not intersect the diagram except at its end points.

Definition 3.2.2. A reducing move is an operation on a Seifert diagram that
is equivalent to performing a Reidemeister 2 move on the corresponding link
diagram. Two circles connected by a reducing arc are shifted so that they overlap
each other. The Seifert algorithm is then applied to the two new crossings and
two nested circles are created as in the following diagram.
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++
++ ++

−

+

Definition 3.2.3. A pair of Seifert circles are incoherent if they are unnested
with respect to each other and have the same orientation or if one is nested within
the other but they have different orientations.

Definition 3.2.4. Given a Seifert diagram, D, the height, h(D), is the number
of pairs of incoherent circles in the diagram.

Note that the Seifert diagram of the closure of a braid will always have height
0 as all Seifert circles will have the same orientation and will already be nested.

Lemma 3.2.1. Given a Seifert diagram, D, if h(D) > 0, we can perform a
reducing move on it.

Proof. Given a diagram, D, in S2, if h(D) > 0, there is at least one pair of
incoherent circles in the diagram. Choosing one of these circles, c1, there are two
possibilities:

1. There is a circle, c2, in the same nesting as c1 that is incoherent to c1. That
is, c1 and c2 share the same orientation and are both unnested or nested in
the same circle.

2. There is a circle, c2, that is nested within c1 but has a different orientation.

In the first case, we can find a reducing arc between c1 and either c2 or another
circle of the same orientation. We can reach every circle in the same nesting as c1

by finding a path along bands and around circles. The circle after every second
band will have the same orientation as c1. Hence, if we trace a path along a band,
b1, from c1 to an intermediate circle, ci, and then along a band adjacent to b1 on
ci, we will reach a circle, c, with the same orientation as c1. We can then perform
a reducing move along the reducing arc that connects c1 and c.
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In the second case, we first ensure that there are no pairs of unnested incoher-
ent circles. This means that there can only be, at most, two unnested circles in
our diagram. We take the containing circle of the outermost incoherent pair and
any circles it is nested in. Stretching these around the sphere, we can invert them
so that the other stack of circle is now nested within them. Inverting the circles
changes their orientation so that we now have an incoherent pair of unnested
circles and we can reduce these as above.
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+

+
− +

+
−

+
+

−

+
+

−

Thus, we can reduce the height of any Seifert diagram to 0. If h(D) = 0, then
we have either one or two stacks of nested circles. We can ensure that we are left
with just one stack of nested circles using the method described in Case 2 above.
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Reverting all the bands back to crossings, we have an oriented link whose
strands orbit in the same direction around a single point. This means that we
can cut the strands along some radial, stretch out the link and obtain a braid. In
this manner, we can find a braid representative for any link.

3.3 Implementation
I have implemented this proof in Mathematica; the notebook is available at
https://tqft.net/web/research/hilaryhunt. To use this implementation,
you must have the KnotTheory‘ package, which is available at http://katlas.
org/wiki/The_Mathematica_Package_KnotTheory%60, installed. Run all cells
in the notebook. The program takes links in PD notation as input and returns a
braid, again in the notation used at katlas.org.

Example 3.3.1. To find a braid representative of the second eight-crossing knot
listed in the Rolfsen knot table (found at [8], we can enter an input such as

diagramToBraid[PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11,
4, 10], X[11, 3, 12, 2], X[7, 14, 8, 15], X[9, 16, 10, 1],
X[13, 6, 14, 7], X[15, 8, 16, 9]]]

or simply

diagramToBraid[PD[Knot[“8 2”]]]

The program will then output

BR[3, {1, -2, 1, -2, -2, -2, -2, -2}]

Indicating that σ1σ
−1
2 σ1σ

−1
2 σ−1

2 σ−1
2 σ−1

2 σ−1
2 ∈ B3 is a braid representative of the

knot.

https://tqft.net/web/research/hilaryhunt
http://katlas.org/wiki/The_Mathematica_Package_KnotTheory%60
http://katlas.org/wiki/The_Mathematica_Package_KnotTheory%60
katlas.org


Chapter 4

The Jones Polynomial

One of the more successful link invariants is the Jones Polynomial. The Jones
polynomial is a Laurent polynomial that can be computed from an oriented link.
It was originally discovered by Jones in his study of von Neumann algebras [21].

Theorem 4.0.2 ([22]). The Jones polynomial, V (L), is a Laurent polynomial
valued invariant of oriented links which satisfies the following relation:

1
t
V (L+)− tV (L−) =

(√
t− 1√

t

)
V (L0)

where apart from one crossing, L+, L− and L0 are idential link diagrams. At this
crossing, L+ has a positive crossing, L− has a negative crossing and L0 has the
oriented smoothing (see below) of the crossing. It is uniquely determined by

V ( ) = 1

V (L∪ ) = −
(

1√
t

+
√
t
)
V (L)

The uniqueness of the Jones polynomial and its invariance under isotopy are
explored throughout this chapter.

Definition 4.0.1. The oriented smoothing of a crossing is depicted below:

±
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To calculate the Jones polynomial of a link, we choose a crossing to label it and
determine the other two new links by changing the orientation of the crossing.
Rewriting the earlier equation, we get an equation of the Jones polynomial in
terms of the Jones polynomial of two simpler links.

For example, the Jones polynomial of the figure eight knot can be calculated
as follows:

Figure 4.1: The figure eight knot

1
t
V =

(√
t− 1√

t

)
V+tV

The Jones polynomial is invariant under all three Reidemeister moves. Using
them, we can see that the second link is isotopic to the unknot. Similarly, the
third link in the above equation is isotopic to the negative Hopf link. So we have

V = t2V +t
(√

t− 1√
t

)
V
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V = t2 + t
(√

t− 1√
t

)
1
t2
V

−1
t

(√
t− 1√

t

)
V

V (figure eight knot) = t2 − 1
t

(√
t− 1√

t

) (√
t+ 1√

t

)
−
(√

t− 1√
t

)2

= t2 − t+ 1− 1
t

+ 1
t2

While this method provides a quick way to calculate the Jones polynomial
by hand, it is much harder for a computer to simplify diagrams and realise, for
example, that just changing the first crossing of the figure eight knot above turns
it into the unknot. Hence, when implementing a program to compute the Jones
polynomial I used the algorithmic method developed by Kauffman instead [23].
This involves taking a state sum over all possible resolutions of a the link. This
state sum is called the Kauffman bracket. The Kauffman bracket is much
easier to implement and we will later be using similar methods to compute the
Khovanov homology of links.

4.1 The Kauffman bracket
Soon after the discovery of the Jones polynomial, Kauffman introduced a state
sum model. In doing so, he discovered another method to calculate the Jones
Polynomial. It is calculated by assigning a specific weighting to each resolution
of a link depending on how it was resolved.

Definition 4.1.1. The 0-smoothing of a crossing, is formed by joining the
overstrand with the understrand on the left when heading towards the crossing.

Definition 4.1.2. The 1-smoothing is the other resolution of the crossing.
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Definition 4.1.3. Given an unoriented link diagram, D, the Kauffman
bracket, 〈D〉, is a Laurent polynomial calculated using the following skein re-
lation on the crossings:

A +A−1

The 0-smoothings are given the weighting A while 1-smoothings are given weight-
ing A−1.
It is uniquely determined by

〈 〉 = 1

〈D∪ 〉 = − (A2 + A−2) 〈D〉

We can calculate the Kauffman bracket polynomial of a link diagram, D,
by taking what is known as a state sum over all possible resolutions of D
with the weightings given above. That is, for each resolution of D, we add
A2k−n(−A2 − A−2)c to the polynomial where n is the number of crossings in D,
k is the number of 0-smoothings and c + 1 is the total number of loops in the
resolution. Note that since there are 2 possible resolutions for each crossing, there
will be 2n resolutions of D. This state sum constructs a unique polynomial for
each link diagram. Hence, the Kauffman bracket is well defined.

Notice that the Kauffman bracket depends only on the crossings in the link
diagram. Hence, it is an invariant of planar isotopies — isotopies that don’t affect
the crossings in a link diagram. To be a link invariant, it must also be invariant
under all three Reidemeister moves.

Lemma 4.1.1. The Kauffman bracket is invariant under Redemeister 2 and
Reidemeister 3.



4.1. THE KAUFFMAN BRACKET 35

Proof. This can be seen with some short calculations:
Invariance under Reidemeister 2

R2

= +A−1A

= A2 + + +A−2

= (A2 + A−2 − (A2 + A−2)) +

=
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Invariance under Reidemeister 3

R3

= +A−1A

+A−1= A

= +A−1A

+A−1A

==⇒

While it is invariant under Reidemeister 2 and 3, the Kauffman bracket is not
invariant under Reidemeister 1. Every crossing introduced by a Reidemeister 1
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move multiplies the Kauffman bracket by −A3 or −A−3 depending on the direc-
tion of the ‘twist’. We can see this by applying the skein relation to the twist and
removing the loop generated. An example is shown below.

R1

= +A−1A

+A−1= A(−A2 − A−2)

= −A3

4.2 From the Kauffman bracket to the Jones
polynomial

To turn the Kauffman bracket into a link invariant, we need a normalisation to
account for the variance under Reidemeister 1. The Kauffman bracket is not a
true link invariant because it is not invariant under Reidemeister 1. To prevent
this, we need to take into account what is known as the writhe of a link.

Definition 4.2.1. The writhe of a link diagram is the sum of the signs of each
crossing.

Notice that the writhe either increases or decreases by 1 under Reidemeister
1; however, it is invariant under both Reidemeister 2 and 3. We can ensure that
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the bracket polynomial is invariant under Reidemeister 1 by taking the crossing
orientations into account. Hence, we have different rules for each type of crossing.
It can be shown that (with a change of variable) this normalised Kauffman bracket
polynomial is the Jones polynomial.

Proof sketch (We follow the proof in [19] very closely). When we increase the writhe
of a link diagram, D, under Reidemeister 1, we multiply the Kauffman bracket
by −A3. Similarly, decreasing the writhe by 1 multiplies 〈D〉 by −A−3. Hence,
we can define a function

f(D) = (−A)−3∗writhe(D)〈D〉

which is invariant under Reidemeister 1. As 〈D〉 is invariant under both Reide-
meister 2 and 3, it follows, that f(D) is invariant under all three Reidemeister
moves.
Let D! be the mirror image of D. Then we find that

f(D) = f(D!).

Recall that the equation of the Jones polynomial is given by

1
t
V (L+)− tV (L−) =

(√
t− 1√

t

)
V (L0)

and

V ( ) = 1

A positive crossing is the mirror image of a negative crossing and we have:

A +A−1

A−1 +A

Hence, we find that:
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−A−1A = (A2 − A−2)

Orienting the crossings and normalising according to the writhes, we find:

−A−4fA4f = (A2 − A−2)f

With a change of variable, A−4 = t, this is the equation of the Jones polynomial.

Definition 4.2.2. The Jones polynomial of a link can be calculated using the
following skein relation on any of its link diagrams, D:

+
V qV − q2V

−
V q−1V − q−2V

It is uniquely determined by:

V ( ) = 1

V (D∪ ) = − (q + q−1)V (D)

In this definition, we have changed variables again both to distinguish between
the Kauffman polynomial and this new formulation of the Jones polynomial and
also as this is the form we will see in when we get to the Khovanov homology.
For reference, q = t2 where t was our original variable.

A few short calculations show that this formulation is invariant under Reide-
meister 1. Below is an example when introducing a negative crossing:
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R1

= −q−2q−1

−q−2= q−1(q + q−1)

=

As the Jones polynomial can be calculated by taking a state sum and is
invariant under the Reidemeister moves, we can conclude that, up to isotopy, it
assigns a unique polynomial to each link.



Chapter 5

Movie presentations of isotopies

5.1 Definitions

In order to get a better picture of the action of the isotopy of a link, we can
draw the isotopy in stages; as a sequence of planar diagrams showing the gradual
deformation of the link using the same projection. These stages, called stills,
differ by a Reidemeister move or a planar isotopy. We call the maps between
stills elementary moves.

Definition 5.1.1. The sequence of stills and elementary moves between them is
called a movie.

Every movie represents an isotopy that is well-defined up to 2nd order isotopy.
This isotopy is isotopic to the composition of elementary moves in the movie. We
can use movies to show how isotopies between two different links might differ. We
can also think of isotopies of links as surfaces in 4-space where the 4th dimension
is time. Each of the stills in a movie is the projection onto R2 of a slice of this
surface at a particular point in time. As with the planar projections of links, it is
not always possible to project an isotopy so that each still is a regular projection
of the link in each time slice. However, as with finding a regular projection, it is
always possible to perturb the surface slightly so that we can depict a 2-isotopic
isotopy in a movie. We have the following theorem:

Theorem 5.1.1. For every isotopy, M , between links, we can find a movie which
represents M .

The proof of this theorem can be found in [11].

41
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5.2 Carter-Saito Theorem

One question we might ask about isotopies is, given two different isotopies (with
different movies), φ and ψ, between the same links, are φ and ψ themselves 2-
isotopic? What is the difference if they are not? In 1993, Carter and Saito came
up with the movie equivalent of Reidemeister moves. They called these movie
moves and proved the following theorem.

Theorem 5.2.1. Two movies are isotopic if and only if they are related by a
sequence of movie moves. These movie moves are listed in Figure 5.1.KHOVANOV’S HOMOLOGY FOR TANGLES AND COBORDISMS 23

MM1 MM5MM2 MM4MM3

Figure 11. Movie moves as in Carter and Saito [CS]. Type I: Reidemeister and inverses.

These short clips are equivalent to “do nothing” identity clips.

Kob/h = Kob /(homotopy), Kob/± = Kob / ± 1 and Kob/±h := Kob/h/ ± 1 can be regarded
as canopolies.

We note that precisely the same constructions as in Section 8.1, though replacing the empty
boundary ∅ by a general k element boundary B, define a functor Kh0 : Cob4(B) → Kob(B)
for any B. As these constructions are local, it is clear that these functors assemble together
to form a canopoly morphism Kh0 : Cob4 → Kob from the canopoly of movie presentations of
four dimensional cobordisms between tangle diagrams to the canopoly of formal complexes
and morphisms between them.

We also note that the notion of a graded canopoly can be defined along the lines of Section 6
— grade the cans (but not the planar algebras of the “tops” and “bottoms”) and insist that
all the can composition operations be degree-additive. One easily verifies that all the above
mentioned canopolies are in fact graded, with the gradings induced from the gradings of
Cob3 and of Cob4 (Cob3 was given a grading in Definition 6.2 and Exercise 6.3, and the same
definition and exercise can be applied without changing a word to Cob4). Clearly Kh0 is
degree preserving.

The following theorem obviously generalizes Theorem 4 and is easier to prove:

Theorem 5. Kh0 descends to a degree preserving canopoly morphism Kh : Cob4
/i → Kob/±h

from the canopoly of four dimensional cobordisms between tangle diagrams to the canopoly
of formal complexes with up to sign and up to homotopy morphisms between them.

8.3. Proof. We just need to show that Kh0 respects the relations in the kernel of the projec-
tion Cob4 → Cob4

/i. These are the “movie moves” of Carter and Saito [CS], reproduced here
in Figures 11, 12 and 13. In principle, this is a routine verification. All that one needs to do
is to write down explicitly the morphism of complexes corresponding to each of the clips in
those figures, and to verify that these morphisms are homotopic to identity morphisms (in
some cases) or to each other (in other cases).

But this isn’t as simple as it sounds, as many of the complexes involved are quite com-
plicated. The worst is of course MM10 of Figure 12 — each frame in that clip involves
a 6-crossing tangle, and hence a 6-dimensional cube of 64 smoothings, and each of the 8
moves in MM10 is an R3 move, so the morphism corresponding to it originates from the
morphism displayed in Figure 8. Even if in principle routine, it obviously isn’t a simple task
to show that the composition of 8 such beasts is homotopic to the identity automorphism
(of a 6-dimensional cube).
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MM6

MM10

MM7

MM9

MM8

Figure 12. Movie moves as in Carter and Saito [CS]. Type II: Reversible circular clips —

equivalent to identity clips.

MM13 MM14 MM15MM11 MM12

Figure 13. Movie moves as in Carter and Saito [CS]. Type III: Non-reversible clips (can be

read both from the top down and from the bottom up).

This is essentially the approach taken by Jacobsson in [Ja1], where he was able to use clever
tricks and clever notation to reduce this complexity significantly, though much complexity
remains. At the end of the day the theorem is proven by carrying out a number of long
computations, but it remains a mystery whether these computations had to work out, or is
it just a concurrence of lucky coincidences.

Our proof of Theorem 5 is completely different, though it is very similar in spirit to
Khovanov’s proof [Kh4]. The key to our proof is the fact that the complexes corresponding
to many of the tangles appearing in Figures 11, 12 and 13 simply have no automorphisms
other than up-to-homotopy ±1 multiples of the identity, and hence Kh0 has no choice but
to send the clips in Figures 11 and 12 to up-to-homotopy ±1 multiples of the identity.

We start with a formal definition of “no automorphisms” and then prove 4 short lemmas
that together show that there are indeed many tangles whose corresponding complexes have
“no automorphisms”:

Definition 8.5. We say that a tangle diagram T is Kh-simple if every degree 0 automorphism
of Kh(T ) is homotopic to a ±1 multiple of the identity. (An automorphism, in this context,
is a homotopy equivalence of Kh(T ) with itself).

Lemma 8.6. Pairings are Kh-simple (a pairing is a tangle that has no crossings and
no closed components, so it is just a planar pairing of its boundary points).

Proof. If T is a pairing then Kh(T ) is the 0-dimensional cube of the 20 smoothings of
T — namely, it is merely the one step complex consisting of T alone at height 0 and of no

Figure 5.1: These diagrams are reproduced with permission from [6]

Finding an isotopy between movies is equivalent to finding an isotopy of iso-
topies. That is, we take two isotopies, φ1 : tS1× I → R3 and φ2 : tS1× I → R3,
from the link L1 : tS1 → R3 to L2 : tS1 → R3 and find an isotopy
ψ : tS1 × I × I → R3 from φ1 to φ2. [draw square picture]
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5.3 Flying rings and distinct 2-isotopies

In light of Theorem 2.3.1, that isotopic braids are uniquely 2-isotopic up to 3-
isotopy, one might wonder how to see that there are link isotopies which are not
2-isotopic. To do this, we will look at one of the simplest examples, the config-
uration space of n flying rings, otherwise known as the group of isotopies of the
trivial link with n components.

In their paper on the configuration spaces of rings and wickets [10], Brendle
and Hatcher prove both that these two group have the same homotopy type and
that their fundamental group is the welded braid group Wn defined by Fenn,
Rimanyi and Rourke [14], also known as the loop braid group [4].

The welded braid group is well understood and its generators are distinct —
non-isotopic. It is defined as follows

Wn =



σ1, ..., σn−1, s1, ..., sn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σiσj = σjσi |i− j| > 1
σiσi+1σi = σi+1σiσi+1

s2
i = 1
sisj = sjsi |i− j| > 1
sisi+1si = si+1sisi+1

σisj = sjσi |i− j| > 1
sisi+1σi = σi+1sisi+1

σiσi+1si = si+1σiσi+1



The isotopies of the link are generated by permuting the positions of the com-
ponents. There are a few ways to do this. One method is to just move them
around each other so that they do not meet at all. The others involve pulling
one through the center of another in the process of swapping them. For every
two adjacent components, xi, xi+1, we get three isotopies — one from the first
method and two from the second where pulling xi through xi+1 is distinct from
pulling xi+1 through xi.
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Exercise 2.5. Show that the OC relation is equivalent to the relation

σ−1
i si+1σi = σi+1siσ

−1
i+1 or =

While mostly in this paper the pictorial / algebraic definition of w-braids (and other w-
knotted objects) will suffice, we ought describe at least briefly 2-3 further interpretations of
wBn:

2.2.1. The group of flying rings. Let Xn be the space of all placements of n numbered disjoint
geometric circles in R3, such that all circles are parallel to the xy plane. Such placements
will be called horizontal11. A horizontal placement is determined by the centres in R3 of the
n circles and by n radii, so dim Xn = 3n + n = 4n. The permutation group Sn acts on Xn

by permuting the circles, and one may think of the quotient X̃n := Xn/Sn as the space of

all horizontal placements of n unmarked circles in R3. The fundamental group π1(X̃n) is
a group of paths traced by n disjoint horizontal circles (modulo homotopy), so it is fair to
think of it as “the group of flying rings”.

Theorem 2.6. The group of pure w-braids PwBn is isomorphic to the group of flying rings
π1(Xn). The group wBn is isomorphic to the group of unmarked flying rings π1(X̃n).

For the proof of this theorem, see [Gol, Sa] and especially [BH]. Here we will contend
ourselves with pictures describing the images of the generators of wBn in π1(X̃n) and a few
comments:

σi =si =

i i + 1 i i + 1

Thus we map the permutation si to the movie clip in which ring number i trades its
place with ring number i + 1 by having the two flying around each other. This acrobatic
feat is performed in R3 and it does not matter if ring number i goes “above” or “below” or
“left” or “right” of ring number i + 1 when they trade places, as all of these possibilities are
homotopic. More interestingly, we map the braiding σi to the movie clip in which ring i + 1
shrinks a bit and flies through ring i. It is a worthwhile exercise for the reader to verify that
the relations in the definition of wBn become homotopies of movie clips. Of these relations
it is most interesting to see why the “overcrossings commute” relation σiσi+1si = si+1σiσi+1

holds, yet the “undercrossings commute” relation σ−1
i σ−1

i+1si = si+1σ
−1
i σ−1

i+1 doesn’t.

Exercise 2.7. To be perfectly precise, we have to specify the fly-through direction. In our
notation, σi means that the ring corresponding to the under-strand approaches the bigger
ring representing the over-strand from below, flies through it and exists above. For σ−1

i we
are “playing the movie backwards”, i.e., the ring of the under-strand comes from above and
exits below the ring of the over-strand.

11 For the group of non-horizontal flying rings see Section 2.5.4
10

To see this, we imagine the group of isotopies as braided tubes in 4-space with
the fourth dimension being time. Passing the rings around each other without
them interacting is equivalent to the welded crossings in Wn. Pulling one ring
through the other, means one tube passes through the other and is equivalent to
a positive or negative crossing.1

Let “the signed w braid group”, swBn, be the group of horizontal flying rings where both
fly-through directions are allowed. This introduces a “sign” for each crossing σi:

i i + 1 i i + 1

+ −σi− =σi+ =

In other words, swBn is generated by si, σi+ and σi−, for i = 1, ..., n. Check that in swBn

σi− = siσ
−1
i+ si, and this, along with the other obvious relations implies swBn

∼= wBn.

2.2.2. Certain ribbon tubes in R4. With time as the added dimension, a flying ring in R3

traces a tube (an annulus) in R4, as shown in the picture below:

i i + 1 i i + 1

si = σi =

Note that we adopt here the drawing conventions of Carter and Saito [CS] — we draw
surfaces as if they were projected from R4 to R3, and we cut them open whenever they are
“hidden” by something with a higher fourth coordinate.

Note also that the tubes we get in R4 always bound natural 3D “solids” — their “insides”,
in the pictures above. These solids are disjoint in the case of si and have a very specific kind
of intersection in the case of σi — these are transverse intersections with no triple points,
and their inverse images are a meridional disk on the “thin” solid tube and an interior disk
on the “thick” one. By analogy with the case of ribbon knots and ribbon singularities in R3

(e.g. [Ka1, Chapter V]) and following Satoh [Sa], we call this kind if intersections of solids
in R4 “ribbon singularities” and thus our tubes in R4 are always “ribbon tubes”.

2.2.3. Basis conjugating automorphisms of Fn. Let Fn be the free (non-Abelian) group with
generators ξ1, . . . , ξn. Artin’s theorem (Theorems 15 and 16 of [Ar]) says that the (usual)
braid group uBn (equivalently, the subgroup of wBn generated by the σi’s) has a faithful
right action on Fn. In other words, uBn is isomorphic to a subgroup H of Autop(Fn) (the
group of automorphisms of Fn with opposite multiplication; ψ1ψ2 := ψ2 ◦ ψ1). Precisely,
using (ξ, B) $→ ξ!B to denote the right action of Autop(Fn) on Fn, the subgroup H consists
of those automorphisms B : Fn → Fn of Fn that satisfy the following two conditions:

(1) B maps any generator ξi to a conjugate of a generator (possibly different). That is,
there is a permutation β ∈ Sn and elements ai ∈ Fn so that for every i,

ξi ! B = a−1
i ξβiai. (11)

(2) B fixes the ordered product of the generators of Fn,

ξ1ξ2 · · · ξn ! B = ξ1ξ2 · · · ξn.
11

We can find a representation, ρ : Wn → U(1), of Wn given by

ρ(si) = ±1
ρ(σi) = q ∈ U(1)

As si, σi and σ−1
i , the three different types of generators of Wn, are distinct in

this representation, the three isotopies switching any two flying rings must also
be distinct. Hence, we have an example of non-2-isotopic isotopies of a trivial
link.

1Diagrams in this section are reproduced with permission from [7]



Chapter 6

The Khovanov Homology

6.1 General Outline
Before getting into the mechanics of Khovanov Homology, let us first take a look at
the overall picture. Khovanov discovered that we can associate a particular vector
space to the resolutions of a planar diagram, and choose the differentials between
each resolution so that the resulting chain complex, considered up to homotopy
equivalence, is a link invariant. The big theorem in Khovanov Homology can be
paraphrased as follows:

Theorem 6.1.1 ([24, 5]). Given two planar diagrams L1 and L2 differing by a
Reidemeister move φ, Khovanov homology associates a chain complex to each
diagram and a chain map to the Reidemeister move such that

1. The chain map is a homotopy equivalence and so induces an isomorphism
on homology

2. The chain maps associated to each side of each movie move are homotopic
up to a sign.

This leads to the following corollaries.

Corollary 6.1.2. If two planar diagrams are isotopic, they have isomorphic Kho-
vanov homologies.

Proof. From Reidemeister’s theorem, we know that all isotopies are sequences
of Reidemeister moves. If each Reidemeister move is associated to a chain map
that induces an isomorphosm on homology then an isotopy is associated to a
composition of these chain maps. Hence all isotopies must induce an isomorphism
on homology.

45
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Corollary 6.1.3. There is a well defined isomorphism associated to any isotopy
class of isotopies on the homology.

Proof. Isotopic isotopies are related by a sequence of movie moves and the chain
maps associated to each side of a movie move are homotopic up to a sign. Hence,
they give the same isomorphism on homology.

Khovanov tells us how to find these isomorphisms explicitly [24].

6.2 Action of the centraliser of a braid on the
Khovanov homology of its trace closure

Theorem 6.2.1. Given a braid, b, there is a representation of its centraliser,
Z(b), on its Khovanov homology, Kh(Tr(b)).

Proof. Recall the isotopy of Tr(b), ζ(c) : Tr(b)→ Isotopy(Tr(b)) defined in sec-
tion 4.3 for an element of the centraliser, c ∈ Z(b).

b
R2

b

c−1

c

M1

c

b

c−1

braid relations

b

c

c−1

R2

This isotopy is well-defined so the representation is given by Kh ◦ ζ.
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6.3 Chain Complexes and Homologies

Before we move on to how to the construction of Khovanov homology, we need
to define a few more tools.

Definition 6.3.1. A chain complex, C, is a sequence of homomorphisms (or
differentials), dn : Cn → Cn−1, dn−1 : Cn−1 → Cn−2, ..., d1 : C1 → C0 between
abelian groups Ci ∈ C where i ∈ Z and didi+1 = 0 ∀i.

The last condition ensures that im dn+1 ⊂ ker dn. For our purposes, it suffices
to work with vector spaces rather than abelian groups; one can easily generalise
the remarks of this section to any abelian category.

Definition 6.3.2. The nth homology group of a chain complex is

Hn(C) := ker dn
im dn+1

Just as we have maps between vector spaces, we also have maps between chain
complexes. These are called chain maps.

Definition 6.3.3. A chain map f : V � → W � consists of linear maps fn : Vn →
Wn for each n such that df = fd.

Lemma 6.3.1. A chain map, f : V �→ W �, induces a map on homology

H(f) : H(V �)→ H(W �).

Proof. Let x′ ∈ ker(dV ) be a representative of x ∈ H(V �). Using the fact that
fd = df , we see that f(x′) must be in ker dW . DefineH(f)(x) := f(x′)+(im dW ) ∈
H(W �). If we choose a different representative of x, e.g. x′′ = x′ + c where
c ∈ imδV ,

f(x′′) + (im δW ) = f(x′ + c) + (im δW )
= f(x′) + (im δW )

So H(f) doesn’t depend on the choice of representative and is well defined.

Definition 6.3.4. Two chain maps, f, g : V � → W �, are homotopic if ∃h :
Vn+1 → Wn such that f − g = dh+ hd.

Lemma 6.3.2. If f and g are homotopic (f ' g), then H(f) and H(g) are equal.
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Proof. Let the homotopy between f and g be h : Vn+1 → Wn such that f −
g = dh + hd. Let x′ be a representative of x ∈ H(f). Then x′ ∈ ker d so
hd(x′) = 0. Clearly dh(x′) ∈ im dW . Hence, we have that (f − g)(x′) = y where
y ∈ im dW . However, we know that elements differing only by members of im d

are representatives of the same element in the homology group. This means that
H(f)(x) = H(g)(x) so the two homology groups are equal.

In another analogy to vector spaces, we can talk about the Euler characteristic
of a chain complex just as we talk about the dimension of a vector space.

Definition 6.3.5. The Euler characteristic of a chain complex, V �, is

χ(V �) :=
∑
n

(−1)n dim Vn

Note that this doesn’t make sense unless we have a finite chain complex.

Lemma 6.3.3.
χ(V �) = χ(H � (V ))

Proof. The dimension of each homology group, Hn is given by

dimHn = dim ker dn − dim im dn−1

Hence, the Euler characteristic of the homology is

χ(H(V �)) = ∑
n(−1)n dimHn(V )

= ∑
n(−1)n dimHn

= ∑
n(−1)n(dim ker dn − dim im dn−1)

= ∑
n(−1)n(dim ker dn + dim im dn)

= ∑
n(−1)nVn (by the rank-nullity theorem)

= χ(V �)

When computing Khovanov homology, we use what are known as graded
vector spaces. A graded vector space, V , is a vector space which decomposes
as a direct sum over Z. i.e. V = ⊕

n∈Z Vn.

An example of a graded vector space is the space of polynomials, P. It can be
broken down into a direct sum of Pn, the space of monomials of degree n. Hence,
polynomials can be ‘graded’ by degree.
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Definition 6.3.6. The graded dimension (or qdim) of a graded vector space
is a Laurent series which is usually given in the variable q

qdim V =
∑
n

∈ Zqn dim Vn

Example 6.3.4. The graded dimension of the space of polynomials in x and y
of degree at most two is

qdimC{x, y, x2, xy, y2} = q0 dimC + q1 dimC{x, y}+ q2 dimC{x2, xy, y2}
= 1 + 2q + 3q2

Definition 6.3.7. The graded Euler characteristic of a chain complex, V �,
is

χ(V �) :=
∑
n

(−1)n qdim Vn

6.4 Construction

To define the Khovanov homology, we need to first build a chain complex,
KhC(L), from our knot diagram. Denote the number of crossings in the knot
diagram as n. We start by resolving all n crossings of our link into either 0-
smoothings or 1-smoothings (recall from §5.1).

As there are two options for each crossing, we end up with 2n different possi-
ble resolutions. Drawing edges between resolutions where a 0-smoothing becomes
a 1-smoothing and arranging these by the number of 1-smoothings, we end up
with an n-dimensional cube where each edge connects the 0-smoothings and 1-
smoothings of a single crossing. This is what we call the cube of resolutions.
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6 DROR BAR-NATAN

of diagram (2) is forced, except the height shift [°n°]. The parity of this shift is determined

by the (°1)n° factor in the definition of Ĵ(L). The given choice of magnitude is dictated
within the proof of Theorem 2.

3.2. Maps. Next, we wish to turn the sequence of spaces C(L) into a chain complex. Let
us flash the answer upfront, and only then go through the traditional ceremony of formal
declarations:

1

3

2 V {1}

100

±
d1?0

//

±

EEEEEEEE

d10?

""EEEEEEEE©

V ≠2{2}

110

d11?

""FFFFFFFFFFFFFFFFFF

©

V ≠2

000

d?00

==zzzzzzzzzzzzzzzzzz

d0?0

//

d00?

""FFFFFFFFFFFFFFFF

≤≤

V {1}

010

d?10

<<yyyyyyyyyyyyyyyyyy

±

d01? ##GGGGGGGGGGGGGGGG

©

V ≠2{2}

101

±
d1?1

//

©

V ≠3{3}

111

≤≤

V {1}

001

wwwwwwww

d?01

;;wwwwwwww

d0?1

//

≤≤

V ≠2{2}

011

d?11

;;vvvvvvvvvvvvvvvvv

≤≤££ §§0 d0
//
££ §§1 d1

//
££ §§2 d2

//
££ §§3

|ª|=0

(°1)ªdª

≤≤

|ª|=1

(°1)ªdª

≤≤

|ª|=2

(°1)ªdª

≤≤

=
££ §§ ·[°n°]{n+°2n°}°°°°°°°°°°°°°!

(with (n+, n°) = (3, 0))
C( ).(3)

This diagram certainly looks threatening, but in fact, it’s quite harmless. Just hold on
tight for about a page! The chain groups [[L]]r are, as we have already seen, direct sums of
the vector spaces that appear in the vertices of the cube along the columns above each one
of the [[L]]r spaces. We do the same for the arrows dr — we turn each edge ª of the cube to
map between the vector spaces at its ends, and then we add up these maps along columns as
shown above. The edges of the cube {0, 1}X can be labeled by sequences in {0, 1, ?}X with
just one ? (so the tail of such an edge is found by setting ? ! 0 and the head by setting
? ! 1). The height |ª| of an edge ª is defined to be the height of its tail, and hence if the
maps on the edges are called dª (as in the diagram), then the vertical collapse of the cube
to a complex becomes dr :=

P
|ª|=r(°1)ªdª.

It remains to explain the signs (°1)ª and to define the per-edge maps dª. The former is
easy. To get the differential d to satisfy d±d = 0, it is enough that all square faces of the cube
would anti-commute. But it is easier to arrange the dª’s so that these faces would (positively)
commute; so we do that and then sprinkle signs to make the faces anti-commutative. One

Figure 6.1: The cube of resolutions of the right-handed trefoil. Taken from [5]

Each resolution is the union of one or more disjoint unknots.

Lemma 6.4.1. If we assign each resolution of a link, L, a term of the form
(−q)r(q+ q−1)k where r is the number of 1-smoothings in the resolution and k is
the number of disjoint cycles in the smoothing, we can then sum all these terms
to get the Kauffman bracket of L.

After normalisation, this is the Jones polynomial of our link.
Khovanov’s idea was to categorify the Jones polynomial by replacing it with a

chain complex of graded vector spaces with graded dimensions chosen so that the
Euler characteristic would give the Jones polynomial. The homology of the chain
complex could then be calculated and, if the differentials are chosen cleverly, this
could be an invariant of the link. Khovanov found that this was indeed possible
and we describe his recipe here. Let V be the vector space with basis elements v+

and v− whose degrees are ±1 respectively. We assign the vector space, V ⊗k{r}
to each resolution where k and r are as above. The number, r, in curly brackets
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is the grading shift of the vector space. Thus qdim(V {r}) = qrqdim(V ). Each
1-smoothing increases the grading of the vector space associated to the resolution
by 1. The rth chain group, KhC(L) is the direct sum of every resolution with r
1-smoothings.

If we follow any edge between two vertices of our cube, we find that either one
of the loops in the tail resolution splits into two loops in the next resolution or two
loops merge into one. To see this, imagine that we take a small disk just contain-
ing our smoothing (where the crossing used ot be). There are two arcs contained
in this disk. Either these two arcs are part of the same cycle and so changing the
smoothing splits this cycle into two or the arcs are part of different cycles and
changing the smoothing merges them into one cycle. We need to define differen-
tials from one resolution of L to another along these edges which a 0-smoothing
into a 1-smoothing. To see what is happening to the vector spaces assigned to
each resolution, we define the differentials on their basis vectors. These should
be the identity on the tensor products associated with the unaffected cycles so
we can look at just the affected loops.

In his paper [24], Khovanov defines these maps to be:

m : V ⊗ V → V, m :



v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

∆ : V → V ⊗ V, ∆ :

 v+ 7→ v+ ⊗ v− + v+ ⊗ v−
v− 7→ v− ⊗ v−

There are a number of factors taken into account in choosing these maps. No-
tice that the degree of both maps is -1. The degree of the vector space associated
to each resolution is shifted up by 1 for each 1-smoothing. Hence, the degree of
our differentials is 0. Additionally, there is no specific order on the loops in our
resolutions so m(v+ ⊗ v−) = m(v− ⊗ v+) and v+ ⊗ v− and v− ⊗ v+ always have
the same coefficients in the image of ∆. These restrictions determine the maps
up to scalar factors.

We have the additional constraints that d ◦ d = 0 and that the differentials
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chosen ensure that every face of the cube commutes. Focusing on the latter, there
are several cases we must consider. If every map on a face is m or every map
is ∆, showing that the face commutes is trivial. If half the maps are m and the
other half ∆, we have one of the following scenarios.

• Both paths around the square give us ∆m. While the order in which we
change the resolution of each crossing changes, the same loops are involved
in both paths so we get the same chain map. This means that the following
diagram commutes.

∆

∆

m

m

• Both paths around the square give us m∆ = m∆. This gives us the follow-
ing diagram which also commutes.
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m

m

∆

∆

• Lastly, we need to show that ∆m and (1⊗m)(∆⊗1) give us the same result.

The map ∆m is given by:

∆m : V ⊗ V m−→ V
∆−→ V ⊗ V

v+ ⊗ v+ 7→ v+ 7→ v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v− 7→ v− 7→ v− ⊗ v−
v− ⊗ v+ 7→ v− 7→ v− ⊗ v−
v− ⊗ v− 7→ 0 7→ 0

The map (1⊗m)(∆⊗ 1) is given by:

(1⊗m)(∆⊗ 1) : V ⊗ V ∆−→ V ⊗ V ⊗ V m−→ V ⊗ V
v+ ⊗ v+ → (v+ ⊗ v− + v− ⊗ v+)⊗ v+ → v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v− → (v+ ⊗ v− + v− ⊗ v+)⊗ v− → v− ⊗ v−
v− ⊗ v+ → (v− ⊗ v−)⊗ v+ → v− ⊗ v−
v− ⊗ v− → v− ⊗ v− ⊗ v− → 0

As we can see, ∆m = (1⊗m)(∆⊗ 1). The relevant picture is:
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m

∆

∆

m

The commutivity of the cube of resolutions ensures that the basis of the vector
space attached to each resolution is independent of the order the 1-smoothings
are introduced.

The differential, d, must satisfy d ◦ d = 0. This will be achieved if the faces of
our cube anti-commute. By choice of differential, we have ensured that all faces of
the cube commute. By sprinkling in somes signs at the right points, we can force
the faces to anticommute. There are various methods of calculating exactly where
the ‘right points’ are.[[cite]] In this thesis we will stick to the method outlined in
the following example.

6.5 An Example: The Trefoil

To illustrate the construction of Khoanov homology, let us look at the right-
handed trefoil. We start by drawing out the cube of resolutions of the trefoil and
labelling each resolution by the number of 0 and 1-smoothings. Label the edges
similarly but with a ? for the crossing that is being changed (See Figure 6.1). For
example, we would label the edge between 001 and 101 with ?01.

We assign a copy of V generated by {v+, v−} to each circle in each resolution.
Each resolution is assigned a graded vector space taken as the tensor product
of each copy of V it contains. The homological grading of each vector space
depends on which resolution it is attached to. Which grading it is in depends



6.5. AN EXAMPLE: THE TREFOIL 55

on the number of 1-smoothings in its resolution. We take the direct sum of the
vector spaces in each grading. This leaves us with the following vector spaces:

{0}V ⊗2

{1}V ⊕ V ⊕ V
{2}V ⊗2 ⊕ V ⊗2 ⊕ V ⊗2

{3}V ⊗3

Now to make a chain complex, all we need are the maps between them. To
explicitly construct the differentials, we need to give an order to the cycles in each
of our resolutions. We have defined the merging and splitting differentials above
and we have the identity on all vectors assigned to uninvolved circles. This tells
us exactly what the differentials need to be. Having calculated the dimensions
of each of the vector spaces we can represent the differentials as m× n matrices
where we are travelling from an n-dimensional vector space to an m-dimensional
vector space.

Looking at the maps from the 0 grading to the 1 grading, both circles in the
0 grading are involved and they merge into one circle in the 1 grading. Hence,
we have three copies of the merging differential. These can be written in matrix
form as follows:

d?00 =
 1 0 0 0

0 1 1 0

 d0?0 =
 1 0 0 0

0 1 1 0

 d00? =
 1 0 0 0

0 1 1 0



With the circle order given in the diagram, think of the first column as the
case where both circles are assigned the basis vector v+, the second as the circles
beign assigned the basis vectors v+ and v− respectively and so on. Similarly, the
first row of the matrix is the case where the newly formed circle is assigned v+

and the second row is where it is assigned v−. As we are taking the direct sum
of the three vector spaces, the resulting differential is:
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d0 =



1 0 0 0
0 1 1 0
1 0 0 0
0 1 1 0
1 0 0 0
0 1 1 0


Similarly, all of the edges between the 1 grading and the 2 grading are assigned

the splitting differential. We assign − signs to d01?, d10? and d1?0.

d0?1 =


1 0
0 1
0 1
0 0

 d01? =


−1 0
0 −1
0 −1
0 0

 d10? =


−1 0
0 −1
0 −1
0 0



d?01 =


1 0
0 1
0 1
0 0

 d?10 =


1 0
0 1
0 1
0 0

 d1?0 =


−1 0
0 −1
0 −1
0 0


Putting all of these together is slightly trickier as we must keep in mind the

order and insert 0 blocks where there is no map.

d1 =



1 0 −1 0 0 0
0 1 0 −1 0 0
0 1 0 −1 0 0
0 0 0 0 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 1 0 0 0 −1
0 0 0 0 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 0 1 0 −1
0 0 0 0 0 0


Determining the maps between the 2 grading and the 3 grading, we need to

be aware of which circle is splitting and which circles are then formed. Note
especially that in d11?, the first circle in grading 2 splits into the first and the
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third circle in grading 3.

d?11 =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0



d1?1 =



−1 0 0 0
0 −1 0 0
0 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1
0 0 0 −1
0 0 0 0



d11? =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



The resulting differential is:

d2 =



1 0 0 0 −1 0 0 0 1 0 0 0
0 0 1 0 0 −1 0 0 0 1 0 0
0 1 0 0 0 −1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



Lastly, we have the map d3 which sends everything to 0.

Finally, after determing the chain complex associated to the link, we must
calculate its homology groups. While finding the image and kernel of each matrix
is feasible for the trefoil and other links with only a small number of crossings,
doing so and then finding the homology becomes increasingly unwieldy as the
number of crossings scales up. Instead, we look at each grading individually. We
have already discussed which vector spaces lie in which homological (t) grading.
However, the chain complex we have built is bigraded. As mentioned above, we
assign each v+ a q-grading of 1 and each v− a q-grading of −1. The link has 3
positive crossings but no negative crossings so we increase the q-grading of every
vector space by 3. Hence, we can also break the differential matrices down into
matrices for each q-grading. Let dt,q be the map from homological grading t and
q-grading q. Then we have:
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d0,1 = [0] d0,3 =


1 1
1 1
1 1

 d0,5 =


1
1
1


ker d0,1 = {(1)} ker d0,3 =


 1
−1

 ker d0,1 = 0

im d0,1 = 0 im d0,3 =




1
1

1−


 im d0,1 =




1
1
1




d1,3 =


1 −1 0
1 0 −1
0 1 −1

 d1,5 =



1 −1 0
1 −1 0
1 0 −1
1 0 −1
0 1 −1
0 1 −1



ker d1,3 =




1
1
1


 ker d1,5 =




1
1
1




im d1,3 =




1
1
0

 ,


1
0
−1


 im d1,5 =





1
1
1
1
0
0


,



−1
−1
0
0
1
1





d2,3 =
[

1 −1 1
]

d2,5 =


0 1 −1 0 1 0
1 0 −1 0 0 1
0 1 0 −1 0 1



ker d2,3 =




1
1
0

 ,


1
0
−1


 ker d2,5 =





1
1
1
1
0
0


,



−2
−1
−1
0
0
1


,



1
0
1
0
1
0




im d2,3 = {(1)} im d2,5 =




0
1
0

 ,


1
0
1

 ,

−1
−1
0



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d2,7 =


1 0 1
0 −1 1
1 −1 0


ker d2,7 = 0

im d2,7 =




1
0
1

 ,


0
−1
−1

 ,


1
1
0




Of course, everything is in the kernel of d3 and its image is 0.
After finding the image and kernel of each differential, we get the homology

groups:

H0 = C{ker d0,1 ∪ ker d0,3 ∪ ker d0,5}

= C

(v− ⊗ v−),
 v+ ⊗ v−
−v− ⊗ v+


qdim(H0) = q + q3

H1 = C{(ker d1,2/ im d0,3) ∪ (ker d1,4/ im d0,5)}
= 0

H2 = C{(ker d2,1/ im d1,2) ∪ (ker d2,3/ im d1,4) ∪ ker d2,5}

= C

0 ∪


v− ⊗ v+

v− ⊗ v+

v− ⊗ v+

 ∪ 0


= C



v− ⊗ v+

v− ⊗ v+

v− ⊗ v+




qdim(H2) = q5

H3 = C{ker d3/(im d2,3 ∪ im d2,5 ∪ im d2,7)
= C{(v+ ⊗ v+ ⊗ v+)}

qdim(H3) = q9

Now that we have all the homology groups, we can construct what is known
as the Khovanov polynomial

Definition 6.5.1. The Khovanov polynomial, K(q, t), is a two variable Laurent
polynomial invariant of links calculated from the Khovanov homology using the
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following equation:
K(q, t) =

∑
k

tk qdim(Hk)

The Khovanov homology of a link is often represented by its Khovanov poly-
nomial. The polynomial contains slightly less information as it only conveys the
isomorphism classes of the homology groups rather than the groups themselves
but it is more concise.

The Khovanov polynomial of the right-handed trefoil is

q + q3 + t2q5 + t3q9.

Notice that, if we set t = −1, the Khovanov polynomial becomes the graded
Euler characteristic of the homology.

Ktrefoil(q,−1) = q + q3 + q5 − q9

= (q + q−1)(q2 + q6 − q8)

This is the Jones polynomial of the trefoil with the change of variable described
in §4.2 multiplied by (q + q−1).

In fact, since, to find the Khovanov polynomial, we give the same weighting
to each smoothing and assign a vector space with q-grading (q+q−1) to each loop
in each resolution, the graded Euler characacteristic of the Khovanov homology
is the Jones polynomial with the value of the unknot being:

V ( ) = q + q−1

6.6 Implementation
Together with Scott Morrison, I have implemented a program to calculate the
Khovanov homology of a braid closure in Mathematica; the notebook is available
at https://tqft.net/web/research/hilaryhunt. To use this implementation,
you must have the KnotTheory‘ package, which is available at http://katlas.
org/wiki/The_Mathematica_Package_KnotTheory%60, installed. Run all cells
in the notebook. The program takes braids as input and returns the Khovanov
polynomial of their trace closure.

Example 6.6.1. To find the Khovanov polynomial of knot 52 from the Rolfsen
knot table (found at [8]) which has braid representative σ1σ1σ1σ2σ

−1
1 σ2 ∈ B3, we

enter

https://tqft.net/web/research/hilaryhunt
http://katlas.org/wiki/The_Mathematica_Package_KnotTheory%60
http://katlas.org/wiki/The_Mathematica_Package_KnotTheory%60
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Kh[BR[3,{1,1,1,2,-1,2}]]

The program will then output the Khovanov polynomial:

q + q3 + q3t+ q5t2 + q7t2 + q9t3 + q9t4 + q13t5

In order to calculate the isomorphisms corresponding to self-isotopies of a
link, I have been working on implementing a function to calculate them for each
Reidemeister move. This function currently calculates the isomorphisms for Rei-
demeister 2 moves.

Hannah Keese, Anthony Licata, Scott Morrison and I have adapted this pro-
gram to calculate the Annular Khovanov homology of links. While Annular
Khovanov homology will not be covered in this thesis, we refer you to [18].
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