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Notation and quick reference

A link may be referred to by numbers, for example 31 denotes the trefoil knot. This is from
Rolfsen’s knot classification and can be found in the Knot Atlas online [BNMea].

For a crossing in a tangle diagram, is its zero smoothing and is its one smoothing.

For an oriented tangle diagram, is a positive crossing and is a negative crossing. The one

and zero smoothings of oriented crossings are the same as their non-oriented counterparts.

[[−]] is the ‘Bar-Natan bracket’, which is a chain complex in Cob3. See Proposition 2.1.

BN(−) is [[−]] with gradings. See Definition 2.19.

CKh(−) is the Khovanov chain complex. See Definition 1.10, Remark 2.23, or Example 2.25.

Kh(−) is Khovanov homology (the homology of the Khovanov complex).

CKhLee(−) is the Lee chain complex. See Example 2.26.

KhLee(−) is Lee homology (the homology of the Lee complex).

CKhα(−) is the chain complex for ‘universal Khovanov homology’. See Definition 4.10.

Khα(−) is ‘universal Khovanov homology’ (the homology of CKhα).
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Chapter 1

Introduction

Khovanov homology is a (co)homology theory that gives invariants of tangles. It was originally
described by Khovanov as a categorification of the Jones polynomial in [Kho00]. This original
construction, however, was only defined for links, but in a series of papers [BN02] [BN05] [BN07]
Bar-Natan generalised the theory to give an account for tangles, as did Khovanov in [Kho01]. At
about the same time, Lee [Lee05] defined another homology theory, appropriately dubbed ‘Lee
homology’ that is ‘interestingly boring’. In fact, as we will explain below, Khovanov homology
is naturally viewed as the second page of a spectral sequence that converges to Lee homology.
This spectral sequence was then skilfully used by Rasmussen in [Ras10] to define the ‘s-invariant’,
which is a knot invariant that provides an obstruction to 4-dimensional smooth structure. More
sepcifically, the s-invariant s(K) of a knot K gives a lower bound on the slice (4-ball) genus of
such a knot,

|s(K)| ≤ 2g4(K).

That is, any surface Σ in B4, with ∂Σ = K ⊂ S3 = ∂B4 has minimal genus at least 1/2|s(K)|.
This is great news since we have very few invariants in 4 dimensional topology, and of those the
interesting ones come from gauge theory which are hard to compute. For example, one consequence
of the s-invariant is a purely combinatorial proof of the Milnor Conjecture [Ras10] that was
originally proved using gauge theory by Kronheimer and Mrowka [KM93].

In [FGMW10], Freedman, Gompf, Morrison, and Walker showed that for a certain 4-manifold W 4,
where W 4 is homeomorphic to B4, but where it is unknown whether W 4 and B4 are diffeomorphic,
there is a knot K in S3 which is slice in W so it ‘bounds a disk in W ’. In other words, if the slice
genus g4(K) > 0, then W 4 �diffeo B

4. Thus, motivating this thesis is that we need to find more
4-manifold invariants out of Khovanov homology, not just the s-invariant. We would like to have,
for example, another invariant ŝW for knots K ⊂ ∂W 6= S3, so that |ŝ(K)| ≤ slice genusW (K).
To do this, we will investigate the Lee spectral sequence, but this method seems much harder
to generalise from ∂B4 to ∂W 4. Hopefully what is written below should at least provide a clear
account of the subject, and assist in future progress in the area. Most of what is written below
(besides perhaps Bar-Natan’s seminal papers) is often talked about in research, but not clearly
written down, and the literature is inaccessible to the non-expert.

The breakdown is as follows:

• In chapter 1, we will start with an introduction to Khovanov homology, and briefly explain
Khovanov’s orginal categorification of the Jones polynomial. The material here covers [BN02]
and [Kho00] closely, and hopefully provides a good introduction to the subject and lays down
some preliminary ideas and definitions.

• In chapter 2, we will then exposit Bar-Natan’s generalisation of Khovanov homology to ‘local
Khovanov homology’, which gives an extension of the theory from link to tangles. Bar-Natan
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CHAPTER 1. INTRODUCTION

introduces this theory in a series of three papers [BN02] [BN05] [BN07], which is so clear,
that the account below provides almost nothing new. If something is unclear, refer back
to these papers. We will then focus on the possible TQFTs that arise from Bar-Natan’s
construction, as these are then used to describe the Lee spectral sequence which will be of
primary importance in later chapters.

• In chapter 3, we will digress and give a brief description of spectral sequences. If you are
familiar with spectral sequences, then skip this chapter, however we use this chapter to
specify the conventions for spectral sequences that we will be using thereafter. The material
here is based on [Wei94].

• In chapter 4, we introduce Khα, which is a generalisation of Khovanov homology and Lee
homology, and see how you can get bounds on the slice genus from this construction as proved
by Rasmussen in [Ras10]. In this chapter, we compare Khα to the Lee spectral sequence. The
correspondence is very close, thus giving us a way to bypass discussion of spectral sequences,
and perhaps giving us a better way of viewing the relation between the homology theories.
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CHAPTER 1. INTRODUCTION 1.1. PRELIMINARIES

1.1 Preliminaries

A lot of what follows in this paper stems from Khovanov’s original categorification of the Jones
polynomial which we will briefly describe. Although this construction is not strictly essential to
what follows, and we could alternatively dive right into Bar-Natan’s generalisation, it gives an
introduction to the subject and helps provide examples and computations. Moreover, it allows us
to set up some of the conventions for what comes afterwards. In the following chapter we will then
go on to understand Bar-Natan’s generalisation of Khovanov homology to tangles, from which
we can easily recover Khovanov’s original construction. But before we discuss into the homology
theories, we will spell out a few preliminary definitions.

Definition 1.1. A knot is a smooth embedding of S1 into S3, K : S1 → S3. A link is a disjoint
union of knots, L : S1 t · · · t S1 → S3.

Definition 1.2. A tangle is a proper smooth embedding of a compact 1-manifold X, possibly
with boundary, into a 3-ball B3 such that the 1-manifold X and the boundary of the 3-ball B3

intersect transversely.

We will want to consider links up to smooth isotopy, so we can compare links by a deformation
without breaking the link, or allowing the link to pass through itself. The smoothness condition
rules out ‘pulling the knot tight’ that would mean that all knots are isotopic to the unknot.

Definition 1.3. Let L1 and L2 be two links, regarded as the images of the maps f1 : S1 → S3

and f2 : S1 → S3, respectively. Then the links are smoothly isotopic if there is a smooth homotopy
H : S1 × [0, 1]→ S3 from f1 to f2 such that H(S1, t) is an embedding for all fixed t ∈ [0, 1].

For the rest of this paper, we will refer to smooth isotopy simply as isotopy. For tangles, we
consider a tangle up to isotopy relative its boundary, so we can’t move around the endpoints.

We will often consider a link’s or tangle’s diagram, which is a (regular) projection of the link onto
a plane where we take note of strands going ‘over’ or ‘under’:

For tangles, we call a tangle a (n,m)-tangle if it has n ‘input’ strands (in the bottom) and m ‘output
strands’, so the above picture would be for a (2, 2)-tangle. In particular, a link is a (0, 0)-tangle.

Projections of the same tangle are not unique, we could isotope the link so that it looks totally
different, and then consider a different projection of the tangle. However, we have the following
very useful theorem that allows us to compare diagrams:

Theorem 1.4. (Reidemeister). Two tangle diagrams D1 and D2 correspond to the same tangle
up to isotopy if D2 can be obtained from D1 by the following ‘Reidemeister moves’ and planar
isotopies (relative boundary):

R1 R2 R3
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1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION CHAPTER 1. INTRODUCTION

Thus to find link and tangle invariants, we wish to find properties of the link or tangle diagrams
that do not depend on the Reidemeister moves.

Throughout this paper, we will take the trace of an (n, n)-tangle T , denoted tr(T ). This is just
joining the top and bottom strands to make a tangle T into a link L.

tr

· · ·

· · ·
T =

· · ·

· · ·
T · · ·

1.2 Khovanov’s Original Categorification of the Jones Poly-
nomial

This section will describe Khovanov’s original categorification of the Jones polynomial. The original
formulation of Khovanov homology is a direct result of ‘categorifying’ the Jones polynomial, as we
will describe below.

The Jones polynomial is a function J : {oriented link diagrams} → Z[q±1] that can be defined
via the Kauffman bracket, 〈−〉. The Kauffman bracket has the following properties: 〈∅〉 = 1,
〈©L〉 = (q + q−1)〈L〉 and 〈 〉 = 〈 〉 − q〈 〉 for some formal variable q, where is called a
‘1-smoothing’ or ‘1-resolution’ and is called a ‘0-smoothing’ or ‘0-resolution’. For example,

〈 〉 = 〈 〉 − q〈 〉
= (q + q−1)〈 〉 − q〈 〉
= q−1〈 〉.

(So the Kauffman bracket gains a factor of q±1 under the first Reidemeister move!)

Consider an oriented link L embedded in S3, and consider its projection, for example consider a
diagram for the oriented 41 knot (with numbered crossings)

1 2

3

4

A crossing that locally looks like

is called a positive crossing, and a crossing that locally looks like

6



CHAPTER 1. INTRODUCTION 1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION

is called a negative crossing. Their 0- and 1- smoothings are the same as their non-oriented versions.
Denote (n+, n−) to be the number of positive crossings and negative crossings, respectively. So in
the above example (n+, n−) = (2, 2).

Definition 1.5. The unnormalized Jones polynomial is defined by Ĵ(L) = (−1)n−qn+−2n−〈L〉.
The normalized Jones polynomial is defined to be J(L) = Ĵ(L)/(q + q−1).

Theorem 1.6. The Jones polynomial is an oriented link invariant. That is, it is invariant under
the Reidemeister moves.

Note that the Jones polynomial is defined for oriented links, whereas the Kauffman bracket does not
see this orientation. An easy way to compute the Jones polynomial is via the following algorithm
as explained in Bar-Natan [BN02]. Suppose we have a link diagram with n crossings labelled 1 to
n. From this diagram we can apply a 0- or 1- smoothing to every crossing to obtain a ‘complete
smoothing’ of the diagram. For example, below we have a complete smoothing of the 41 knot.
We record which smoothing we have applied to which crossing by a string of n digits comprised
of 0s and 1s (so v ∈ {0, 1}n) which records in the ith position whether we have applied a 0- or
1-smoothing on the ith crossing. Thus the complete smoothing below is a 1110 smoothing of the
41 knot.

1110 smoothing of 41

1

3

4

2

Each complete resolution is then going to be a disjoint collection of circles. For example, in the
case of the above diagram, we have two circles.

From all possible complete smoothings we then can form the ‘cube of resolutions’ for this knot,
which at each vertex of this (hyper)cube has a complete smoothing of the knot diagram. We
assemble the vertices so that smoothings with the same ‘height’ (i.e. number of 1-smoothings in
the complete smoothing) are in the same column, and there is an edge between two smoothings if
their resolution differs by changing one digit. To each vertex of the cube we assign a polynomial
(−1)rqr(q + q−1)k, where k is the number of disjoint circles at the vertex, and r is the height of
the complete smoothing. We sum up all of the polynomials at each vertex and then multiply by a
normalisation term (−1)n−qn+−2n− .

Example 1.7. Take the oriented trefoil 31, with crossings numbered as below:

12

3

Then the cube of resolutions for such a diagram is given by

7



1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION CHAPTER 1. INTRODUCTION

000 010

001

100

101

011

110

111

(−1)0q0(q + q−1)2 + 3(−1)1q1(q + q−1) + 3(−1)2q2(q + q−1)2 + (−1)3q3(q + q−1)3

Adding the polynomials above, the polynomial is equal to p(q) = q−2 + 1 + q2 − q6, and since
(n+, n−) = (3, 0), (−1)n−(qn+−2n−)p(q) = q + q3 + q5 − q9, which is the unnormalised Jones
polynomial. This method gives a version of the Jones polynomial that may differ from other sources
by a relabelling and change of variables, but we will use this algorithm since it will be easier to
‘lift’ to Khovanov homology.

1.2.1 Categorification

Categorification is a loosely defined term, that we will convey through some examples. In its most
simple description, categorification lifts mathematical structures from sets to categories, where
these categorified structures provide additional information that their decategorified counterparts
do not. Perhaps the opposite process of decategorification is simpler to describe. One way to
decategorify is to take the Grothendieck group K0(−), which, in the case of pre-additive categories
(a category enriched in abelian groups, see Definition 2.2) , amounts to looking at the isomorphism
classes of the objects modulo [A⊕B] = [A]⊕ [B], and in categories of complexes in pre-additive
categories amounts to taking the Euler characteristic of the complex valued in the Grothendieck
group of the underlying category. The Jones polynomial is a Laurent polynomial, so let’s try
to categorify Z[q, q−1]. The steps below are shown using graded vector spaces, as Bar-Natan’s
exposition does [BN02], but this works more generally — Khovanov does this for graded free
Z-modules [Kho00].

• The category Vectk of finite dimensional vector spaces over the field k categorifies Z+, and
is decategorified by dim(−). Indeed, via decategorification (where the Grothendieck group
amounts to considering isomorphism classes of vector spaces which are classified up to positive
integers), V 7→ dim(V ). Moreover, the operations on the natural numbers are categorified,
too, where the operations ⊕ and ⊗ descend to + and × respectively. As you would hope,
these intertwine with dim(−) in the following way:

dim(V ⊕W ) = dim(V ) + dim(W )

dim(V ⊗W ) = dim(V )× dim(W ).

For example, the distributive law for the operations in natural numbers, (a+ b)c = ac+ bc,
for all a, b, c ∈ Z≥0, also hold for Vectk:

(V ⊕W )⊗ U ∼= (V ⊗ U)⊕ (W ⊗ U),

8



CHAPTER 1. INTRODUCTION 1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION

for all V,W,U ∈ Vectk.

• To extend to all of Z, we consider the category Kom(Vectk) of finite length complexes of
finite dimensional vector spaces over k. This category categorifies Z, and is decategorified by
Euler characteristic. Recall that for a chain complex V• of vector spaces,

· · · → Vn+1 → Vn → Vn−1 → · · · ,

the Euler characteristic is given by∑
n

(−1)n dim(Hn(V•)) =
∑
n

(−1)n dim(Vn),

where Hn is taking the nth homology of the chain complex and where the equality is since V
is finite dimensional and by the Rank-Nullity Theorem. Thus for V,W ∈ ob(Kom(Vectk)),

χ(V ⊕W ) = χ(V ) + χ(W )

χ(V ⊗W ) = χ(V )× χ(W )

χ(C(f)) = χ(W )− χ(V ).

where C(f) is the cone of a chain map f : V →W .

• The category GVectk of finite dimensional Z-graded vector spaces over k categorifies Z+[q, q−1]
(without subtraction), decategorified by the graded dimension. The graded dimension for a
graded vector space V =

⊕
m∈Z V

m is defined by

qdim(V ) =
∑
m∈Z

qmdim(V m).

It can be easily checked that this decategorifies the operations ⊕ and ⊗ in the desired way.

• Lastly, consider the category Kom(GVectk) of finite chain complexes of finite dimensional
graded vector spaces (so the differentials between objects preserve gradings: d(V mn ) ⊂ V mn−1,
where n is the nth piece of the chain complex and m is the grading in each space). The
homology of such a complex is then a bigraded vector space

H(V ) =
⊕
n,m∈Z

Hm
n (V )

where each Hm
n (V ) is the nth homology of the subcomplex

· · · → V mn+1 → V mn → V mn−1 → · · ·

Taking the graded Euler characteristic of such a complex gives a Laurent polynomial with Z
coefficients. Here, the graded Euler characteristic is given by

χ(V ) =
∑
m∈Z

qmχ(V m) =
∑
n,m∈Z

(−1)nqmdim(Hm
n ) =

∑
n,m∈Z

(−1)nqmdim(V mn ).

So, in hindsight, although a surprise at the time Khovanov published his original paper [Kho00],
the natural thing to do to categorify the Jones polynomial is to lift the Jones polynomial to
the category of finite complexes of finite dimensional graded vector spaces. Khovanov gives us a
construction that enables us to lift the Jones polynomial to such a category.

9



1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION CHAPTER 1. INTRODUCTION

1.2.2 Computing Khovanov Homology

We will compute Khovanov homology for the trefoil knot 31, as does Bar-Natan [BN02]. Compare
with the computation of the Jones polynomial for 31 in Example 1.7 which is almost identical. We
will also provide some extra detail, that involves indexing the vector spaces to help work out the
differentials between those vector spaces.

For this computation, we introduce the following definitions:

Definition 1.8. For a graded vector space W =
⊕
Wm, we define the ‘degree shift’ operation

·{r}, where W{r}m := Wm−r. So qdim(W{r}) = qrqdim(W ).

Definition 1.9. For a chain complex C•, we have the ‘height shift’ operation ·[s] so that C[s]m =
Cm−s with differentials shifting accordingly.

As before, we index the crossings so that we can keep track of the smoothings in the cube of
resolutions. We also index the arcs between the crossings in the diagram (in smaller text), as
below:

12

3

5

3 1
4

2

6

The crossings are all positive, so (n+, n−) = (3, 0). From this diagram, we get the following cube
of resolutions, where, as with computing the Jones polynomial, each vertex of the diagram will be
a collection of disjoint circles. The circles are indexed by the smallest index of the arcs it contains:

000 010

001

100

101

011

110

111

W0 W1 W2 W3

1

2

1

1

1 2

1

2

1

1

3

3

2

1

Figure 1.1: Cube of resolutions for 31
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CHAPTER 1. INTRODUCTION 1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION

where

W0 = V1 ⊗ V2

W1 = (V1 ⊕ V1 ⊕ V1){1}
W2 = ((V1 ⊗ V2)⊕ (V1 ⊗ V2)⊕ (V1 ⊗ V3)){2}
W3 = (V1 ⊗ V2 ⊗ V3){3}.

For each disjoint circle we assign a graded vector space Vi = V = k〈v−, v+〉, where deg(v±) = ±1,
so qdim(V ) = q−1 + q. Moreover, we index each V by the index of the circle that it corresponds
to. At a given vertex of the cube of resolutions, we tensor the vector spaces corresponding to the
circles in a smoothing diagram and apply a degree shift according to the number of 1 smoothings
at the vertex. So at each vertex we have V ⊗k{r} and qdim(V ⊗k{r}) = qr(q−1 + q)k. We then
take the direct sum down the columns to get the spaces CKh′(L)s = Ws.

Next we need to define differentials to make this into a complex. Each edge of the cube corresponds
to a differential (of a subcomplex in homogeneous q-grading). We label the differentials dα where
α ∈ {0, 1, ∗}n, where there is a single ∗, and where n is the number of crossings in the link diagram.

The ∗ records which digit in the vertex’s index changes: for example, 0010
d0∗10−−−→ 0110 since the

second index in the two smoothings changes. We then sprinkle minus signs on the differentials
to make the cube faces anticommute according to (−1)s where s is the number of 1’s before the
star ∗. For the maps dα, we want them to have degree zero so that the graded Euler characteristic
returns the Jones polynomial. Since each column has a degree shift according to the number of 1
smoothings at the vertex, and this will increase by +1 from column to column, we must have the
differentials to have degree −1. From vertex to vertex, either two circles will merge into one, or
one circle will split into two circles. Since deg(v ⊗ w) = deg(v) + deg(w), Khovanov defines the
differentials to be:

(© ©→©)

(©→© ©)

= m : V ⊗ V → V

v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

= ∆ : V → V ⊗ V
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−,

and we set dα to be the identity on the circles that don’t participate. Since there is no order on the
circles in the diagram at each vertex, this forces m and ∆ to be commutative and cocommutative,
respectively. So, in particular, this forces m(v+ ⊗ v−) = m(v− ⊗ v+) and m and ∆ to be defined in
the above way up to scalars. By the indexing of vector spaces we can keep track of which circles are
merged or split. So for the vector space Vi⊗Vj , which has basis {vi+⊗v

j
+, v

i
+⊗v

j
−, v

i
−⊗v

j
+, v

i
−⊗v

j
−},

we define mij : Vi ⊗ Vj → Vmin{i,j} and ∆ij : Vmin{i,j} → Vi ⊗ Vj . Thus, for example, in Figure 1.1,
d1∗1 = −idV1

⊗∆23, so

−d1∗1 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

v1
+ ⊗ v2

+ 7→ v1
+ ⊗ v2

+ ⊗ v3
− + v1

+ ⊗ v2
− ⊗ v3

+

v1
+ ⊗ v2

− 7→ v1
+ ⊗ v2

− ⊗ v3
−

v1
− ⊗ v2

+ 7→ v1
− ⊗ v2

+ ⊗ v3
− + v1

− ⊗ v2
− ⊗ v3

+

v1
− ⊗ v2

− 7→ v1
− ⊗ v2

− ⊗ v3
−

11



1.2. KHOVANOV’S ORIGINAL CATEGORIFICATION CHAPTER 1. INTRODUCTION

An edge map will be of the following form: ordering the basis of V1 ⊗ V2 to be (v1
+ ⊗ v2

+, v
1
+ ⊗

v2
−, v

1
− ⊗ v2

+, v
1
− ⊗ v2

−) and the basis of V1 ⊗ V2 ⊗ V3 to be (omitting ⊗)

(v1
+v

2
+v

3
+, v

1
+v

2
+v

3
−, v

1
+v

2
−v

3
+, v

1
−v

2
+v

3
+, v

1
+v

2
−v

3
−, v

1
−v

2
+v

3
−, v

1
−v

2
−v

3
+, v

1
−v

2
−v

3
−),

we get the differential

d1∗1 =



0 0 0 0
−1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 −1 0
0 0 0 −1


.

The differentials of our complex CKh(L)′• will be the sum of the edge maps

d0 = d∗00 + d0∗0 + d00∗

d1 = d1∗0 + d10∗ + d∗10

d2 = d∗01 + d01∗ + d0∗1

d3 = d11∗ + d1∗1 + d∗11

We now have a complex CKh′(L) with rth space CKh(L)′r. This is a complex because d2 = 0
because the faces of the cube anticommuted.

Definition 1.10. We define the Khovanov complex to be CKh(L) = CKh′(L)[−n−]{n+ − 2n−}.

In the case of the trefoil above, the Khovanov complex is thus

0→W0
d0−→W1

d1−→W2
d2−→W3 → 0.

(Since n− = 0, W0 is in homological height 0). Indeed, with these degree and height shifts, the
graded Euler characteristic of this complex is, by construction, the unnormalised Jones polynomial:
χq(Kh(L)) = Ĵ(L).

Knowing the differentials, we can take homology. Sparing you the details, and letting our vector
spaces be over the field Q,

H0 = Q {v− ⊗ v−, v+ ⊗ v− − v− ⊗ v+}
H1 = 0

H2 = Q


v− ⊗ v+

v− ⊗ v+

v− ⊗ v+


H3 = Q{v+ ⊗ v+ ⊗ v+}

Thus, with grading shifts,

qdim(H0) = q + q3

qdim(H1) = 0

qdim(H2) = q5

qdim(H3) = q9

So the Poincaré polynomial is

K(q, t) =
∑
k

tkqdim(Hk) = q + q3 + t2q5 + t3q9.

12
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Setting t = −1 returns the graded Euler characteristic, which is the unnormalised Jones polynomial:

K(q,−1) = q + q3 + q5 = q9 = (q + q−1)(q2 + q6 − q8).

It turns out that this construction gives us a knot invariant Kh(K) of a knot K that is stronger
than the Jones polynomial. For example, Ĵ(5̄1) = Ĵ(10132), but Kh(5̄1) 6= Kh(10132). To show
that it is a knot invariant, we should check that for two links L and L̃ that differ by a Reidemeister
move, that Kh(K) ∼= Kh(L̃) (the map CKh(L)→ CKh(L̃) is a quasi-isomorphism of complexes).
The interested reader can find this [Kho00] and [BN02].

1.2.3 A note on Functoriality

In addition to the quasi-isomorphisms CKh(L)→ CKh(L̃) between two link diagrams that differ
by a Reidemeister move, we also have chain maps for ‘Morse moves’

∅ → ©,©→ ∅, → ,

called birth, death and fusion moves, respectively.

Given a link cobordism Σ, we can decompose it as a union of elementary cobordisms Σ1 ∪ · · · ∪Σk
given by the Morse and Reidemeister moves, and we would like to associate chain maps to each
of these moves so CKh(Σ) : CKh(L)→ CKh(L̃) is the composition CKh(Σ) = CKh(Σ1) ◦ · · · ◦
CKh(Σk). Unfortunately, different ways of decomposing a cobordism gives different answers. For
example,

    

is just the identity, but however we pick our homotopy equivalences for Reidemeister moves, this
composition is assigned −id. In fact, this is the best we can do: the description of Khovanov
homology in this chapter is only functorial up to a minus sign. This was independently fixed by
Clark, Walker and Morrison in [CMW09], Caprau in [Cap08] and Blanchet in [Bla10].

Thus, to summarise, Khovanov homology is a categorical link invariant. It sends objects in
C• = Kom(GVeck) and isotopies Σ between links L and L′ to isomorphisms in that category. The
Grothendieck group K0(C•) is Z[q, q−1], and the image there is exactly the (unnormalised) Jones
polynomial.

L Kh(L) [Kh(L)] = Ĵ(L)

L′ Kh(L′)

Kh

Σ

K0

Kh(Σ)

Kh

In fact, a braided tensor category C (or just a tensor category with a functor from tangles) will
always give a link invariant, since we can think of the L ∈ HomC(0→ 0). For example in string
diagrams L ∈ HomC(0→ 0) looks like

13
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0

0

This motivates the following chapter’s generalisation of Khovanov homology to tangles: if we start
with a tangle, then its cube of resolutions will have at each vertex a complete smoothing that
will be an element of HomTL, where TL is the Temperley-Lieb category, which is a braided tensor
category defined by

• objects are the natural numbers N

• HomTL(n,m) is the free Z[q, q−1]-module of planar diagrams with n ‘input’ strands and m
‘output’ strands with no crossings

• composition is by stacking diagrams with common endpoints, replacing loops with q + q−1

• tensor product is by juxtaposing diagram horizontally.

In fact, the Hom space of TL can be viewed as a category (so TL is a tensor 2-category) and we
can look at the morphisms between the Hom spaces of TL. This will be the content of Chapter 2.

It turns out that Khovanov homology is associated to the braided tensor category Rep(sl2(C))
(which is equivalent as a category to the idempotent completion of TL) and there are more general
Khovanov homology theories that are related to other Lie algebras, such as sln(C). An introduction
can be found in [Lau12].

14
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1.3 Topological Quantum Field Theories

Before progressing onto the next chapter, the reader who is familiar with TQFTs (topological
quantum field theories) may have noticed that we have applied a TQFT to the cube of resolutions.
For those who are not familiar we will briefly describe this more general theory. This section is
intentionally brief, since the the term TQFT is used throughout this paper but only its basic
definition is used. For further introductory explanation of TQFTs, there are plenty of references
such as [Koc04]. TQFTs have a functorial axiomatisation due to Atiyah on which we will base our
discussion.

Definition 1.11. An n-dimensional TQFT is a symmetric monoidal functor from (nCob,t, ∅, τ)
to (Vectk,⊗,k, σ). This is also called a linear representation of nCob.

Here, nCob is the category whose objects are closed oriented (n− 1)-manifolds and a morphism
between two (n − 1)-manifolds Σ and Σ′ is an oriented n-dimensional manifold M whose ‘in-
boundary’ is Σ and whose ‘out-boundary’ is Σ′. This manifold (a cobordism) M is defined up to
diffeomorphism relative its boundary. It does not need to be embedded in any ambient space, and
can be considered as an abstract manifold.

Composition of morphisms is by gluing common boundaries (this is just topological gluing and the
smooth structure is well-defined up to diffeomorphism). The identity cobordisms are cylinders.
The symmetric monoidal structure of nCob is as follows: the tensor product of two manifolds Σ and
Σ′ is their disjoint union Σ

⊔
Σ′ and the tensor unit zero is the empty manifold. The symmetry

map τΣ,Σ′ : Σ
⊔

Σ′ → Σ′
⊔

Σ that switches the two factors is a diffeomorphism that provides
the symmetry structure. This extends to the disjoint union of cobordisms: given the cobordisms
M0 : Σ0 → Σ′0 and M1 : Σ1 → Σ′1 we can form the disjoint union M0 tM1 : Σ0 t Σ1 → Σ′0 t Σ′1.

In the case n = 2, 2Cob is generated by disjoint sets of circles and the morphisms are obtained by
composing 2 and tensoring the following basic building blocks:

There is an equivalence of categories between 2-dimensional TQFTs and commutative Frobenius
algebras given by sending the TQFT to its value on the circle. A Frobenius algebra is an algebra
which is simultaneously a coalgebra with certain compatibility condition between multiplication
and comultiplication:

Definition 1.12. A Frobenius algebra A is a vector space with multiplication map µ : A⊗A→ A,
unit η : k → A, a comultiplication map ∆ : A → A ⊗ A, and counit ε : A → k, such that the
Frobenius relation holds:

(1⊗ µ) ◦ (∆⊗ 1) = ∆ ◦ µ = (µ⊗ 1) ◦ (1⊗∆).

This is all we will need for the following chapters.

15
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Chapter 2

Bar-Natan’s Khovanov Homology

2.1 The Categorical Setting

Our goal is to apply different TQFTs to the n-dimensional cube of resolutions we’ve just described.
From this, we can obtain link invariants from any knot (or tangle) diagram by taking homology.
Already, we have seen one such TQFT, the Khovanov TQFT, which for a link L gives us a chain
complex CKh(L). The following theory was developed by Bar-Natan [BN05] in order to extend
Khovanov homology to tangles, giving us a ‘local’ Khovanov homology. Furthermore, we wish to
develop our understanding of the category where the cube of resolutions is an object, so we can
simplify the cube (its objects and morphisms) before we apply the TQFT, via Bar-Natan’s dotted
theory. This will ultimately lead to savings in computational complexity.

As with Khovanov’s original homology theory, we want to think of such a cube obtained from a
tangle T as a chain complex BN(T ) in a certain graded category where we have direct sums. Each
vertex of the cube of resolutions for a diagram has a complete smoothing. Thus, this category
should have smoothings as objects and cobordisms for maps between these objects.

Definition 2.1. The category Cob3(∅) has the following data: it has smoothings (simple closed
curves in the plane) as objects, and the morphisms are cobordisms between such smoothings
regarded up to boundary preserving isotopies. We could also take a finite set of points B on a
circle (such as the boundary ∂T of a tangle T ) and get the category Cob3(B) which has as objects
smoothings with boundary B, and the morphisms again are cobordisms between such objects up
to boundary preserving isotopy. In both cases, composition of morphisms is given by stacking
cobordisms and then a rescaling.

For example if |B| = 2, a smoothing and a boundary preserving cobordism will look like

and .

17
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Remarks.

• There is a minor difference here with the category 2Cob defined earlier, where we now allow
objects to be not necessarily closed (i.e. compact without boundary).

• The 3 in Cob3 refers to the fact that this category can be interpreted as a 3-category: there
are 1-morphisms in N given by addition, 2-morphisms between pairs of numbers given by
TL-diagrams, and then 3-morphisms that are surfaces between TL diagrams modulo isotopy.

We will stack morphisms from top to bottom, as below, which has g, f and f ◦ g from left to right:

You can think of the ‘input’ going into the bottom and the ‘output’ coming out of the top.

Going back to our cube of resolutions, and having defined the objects and morphisms of our
category, we also want the rth chain space [[T ]]r−n− of the complex [[T ]] to be the ‘direct sum’ of the
spaces (smoothings) at height r in the cube, and sum the maps (cobordisms) to get a differential
for [[T ]]. To introduce direct sums into our category, we first make our category ‘pre-additive’.

Definition 2.2. A pre-additive category C is a category enriched in the monoidal category of abelian
groups. So the morphisms between two objects form an abelian group, and the composition maps are
bilinear in the sense that composition distributes over the group operation: f ◦(g+h) = f ◦g+f ◦h.
In particular, for any A,B ∈ ob(C), there is a zero map 0 ∈ HomC(A,B).

If the category C is not pre-additive, we can consider another category C̃ with the same objects
and morphisms, but C̃ is pre-additive by taking Z-linear combinations of elements in HomC(A,B)
for any two objects A and B, and by allowing composition to distribute Z-linearly.

Example 2.3. The category Ab of abelian groups is pre-additive. Without the commutativity, Grp
is not pre-additive since sums of group homomorphisms may not again be a group homomorphism,
that is, it is not the case that we have the following for all f, g ∈ HomGrp(A,B), and all a, b ∈ A,
because we need commutativity for the third equality:

(f + g)(a+ b) = f(a+ b) + g(a+ b)

= f(a) + f(b) + g(a) + g(b)

= f(a) + g(a) + f(b) + g(b)

= f(a+ b) + g(a+ b).

Continuing in this vein,

Definition 2.4. An additive category is a pre-additive category with a zero object (a unique object
that is both initial and terminal), and hence zero morphisms, and an additive category also has
biproducts, denoted ⊕.

Lastly, we describe abelian categories.

Definition 2.5. Abelian categories are additive categories where each morphism has a kernel and
cokernel, and every monomorphism is the kernel of its cokernel and every epimorphism is the
cokernel of its kernel.

18
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This is the most general category in which we can work with homology, or rather, it is the most
general setting where the Snake lemma holds. Examples include the categories Ab,R-Mod and
Vectk.

Definition 2.6. If C is a pre-additive category, then we can form a new additive category, called
the additive closure of C, Mat(C), via the following:

• The objects of Mat(C) are formal direct sums ⊕ni=1Ai of C.

• For two objects A = ⊕mi=1Ai and A′ = ⊕nj=1A
′
j , a morphism between them F : A→ A′ is an

n×m matrix F = (Fij) where each Fij : Ai → A′j is a morphism in C.

• Morphisms in Mat(C) are added via matrix addition.

• Composition of morphisms is by matrix multiplication; i.e. (F ◦G)ik :=
∑
j Fij ◦Gjk.

The category Mat(C) is additive, and if C was additive with biproduct ⊕′, then no harm was done:
X ⊕ Y ∼= X ⊕′ Y .

At this point, our cube of resolutions can be interpreted as a tower of morphisms between formal
direct sums of smoothings. For example, for an n-crossing tangle T , we can interpret it as a length
n tower of morphisms between formal direct sums of smoothings

[[T ]] =
(
[[T ]]−n− → [[T ]]−n−+1 → · · · → [[T ]]n+

)
.

In fact, these towers will be complexes, for which we provide the following definition.

Definition 2.7. Let C be a pre-additive category. Then Kom(C), ‘the category of complexes over
C’, is the category with the following information:

• objects are complexes of finite length . . . −→ Cn−1
dn−1−−−→ Cn

dn−→ Cn+1 −→ . . . where dndn−1 =
0 for all n.

• morphisms between such complexes F : C → C ′ are the set of maps {Fn} that give
commutative diagrams

· · · Cn−1 Cn Cn+1 · · ·

· · · C ′n−1 C ′n C ′n+1 · · ·

Fn−1

dn−1

Fn

dn

Fn+1

d′n−1 d′n

where all arrows are morphisms in C. This is just the formal analogue of maps of chain
complexes in homological algebra. Composition F ◦G is defined as in ordinary homological
algebra, (F ◦G)n = Fn ◦Gn.

We can consider these formal complexes up to homotopy, which works the same as the homological
algebra case: let C be a category, and Kom(C) its category of complexes. Then two morphisms
f, g : C• ⇒ D• between complexes (C•, d

C
• ) and (D•, d

D
• ) are homotopic if there exist diagonal

maps maps hn : Cn → Dn+1 so that fn − gn = dDn+1hn + hn−1d
C
n , i.e. their difference is null

homotopic).

Given the previous definitions, and by firstly making our category pre-additive, we aim to consider
[[T ]] as an object in Kom(Mat(Cob3)). For this we will have to check that [[T ]] is indeed a chain
complex (we need to check that the differentials square to be zero), which we will do below in
Proposition 2.1.
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Now we are in a position to define the Khovanov complex [[T ]] of an oriented tangle diagram T ,
this is going to be very reminiscent of Khovanov’s original construction, but now we think of the
cube of resolutions as an object in Kom(Mat(Cob3)).

Definition 2.8. Consider the diagram of a tangle T with n = n+ + n− crossings. As we did in
Khovanov’s original construction, label each of the crossings from 1 to n. We will again construct
the cube of resolutions, where at each vertex there is complete smoothing of the original tangle,
described completely by a length n word of 0s and 1s. Two vertices are connected by an edge
if and only the words at the vertices differ by one letter. We orient these edges by having the
arrow directed towards the larger word (when the word is viewed as an integer). We then label the
arrows by an n letter word in {0, 1, ∗} where the ∗ is in the position where the words at the top
and tail of the arrow differ:

0010
0∗10−−−→ 0110.

Lastly, to make each face of the cube anticommute, we sprinkle minus signs according to multiplying
each differential with label ξ1ξ2 . . . ξn by (−1)

∑
i<j ξj where ξj = ∗ (this is just to the power of k,

where k is the number of 1s before the ∗). Recall that in Kom(Mat(Cob3)) each differential is a
matrix of cobordisms. The cobordism corresponding to an arrow is, in the cyclinder between the
two smoothings that differ, the obvious saddle. The kth column in the cube of resolutions (which
is a direct sum of objects in Mat(Cob3)) has homological height k − n−.

Proposition 2.1. For any tangle diagram T , the chain [[T ]] is a complex in Kom(Mat(Cob3(∂T))).
That is, d2 = 0 for these chains.

Proof. Take any square in our cube of resolutions. We have to show that this square anticommutes.
Firstly, as stated above, the cube of resolutions has minus signs sprinkled according to (−1)

∑
i<j ξj .

Thus in each square, the edges will have an odd number of minus signs. So we just need to show
that morphisms (without minus signs) commute. Each vertex is labelled by a string of 0’s and
1’s, so as we traverse around the square, then, for example, the i and j index will switch to i+ 1
mod 2 and j + 1 mod 2, respectively. To make it clear, the indices change +1 mod 2 as follows

{. . . i+ 1 . . . j . . . }

{. . . i . . . j . . . } {. . . i+ 1 . . . j + 1 . . . }

{. . . i . . . j + 1 . . . }

djdi

dj di

The maps i→ i+ 1 and j → j + 1 are disjoint saddles, so the compositions djdi, didj are equal
since they are isotopic relative boundary (they are just a time reordering of saddles). �

Remark 2.9. It is always possible to sprinkle minus signs on a cube so that each of the faces
anticommute (so each face has an odd number of minus signs), and the space of choices in contractible.
To see this, suppose you have a solid cube X = [0, 1]n. We want a map σ : {edges} → {±1}, i.e.
an element σ in the 1-cocyles of X with coefficients in {±1} = Z/2, so σ ∈ C1(X;Z/2), such that
for all faces A, Πedge e in ∂Aσ(e) = −1. We also want σ such that, δ1σ = M in C2(X;Z/2), where
M(A) = −1 for all faces A of X. Now, δ2M ∈ C3(X;Z/2) and (δ2M)(X) = (−1)6 = 1 (and 1
is our ‘zero’ in Z/2). So M is a 2-cocycle. But H2(X;Z/2) = 0 because X is contractible, so
ker δ = im δ, so there exists some σ such that δ1σ = M as desired. Moreover, suppose we had
two sprinkling of signs σ and σ′. Then δ1(σ · σ′) = 0 which implies σ · σ′ is a 1-cocycle. But
H1(X;Z/2) = 0, so there exists a τ ∈ C0(X;Z/2) (so τ : {vertices} → ±1) such that δ0τ = σ · σ′,
and τ(v) · τ(v′) = σ(e)σ′(e) where e is an edge between vertices v and v′. Therefore σ(e) = σ′(e)
if and only if τ(v) = τ(v′). Define φ : [[T ]] → [[T ]]′ to be the map of complexes with different
sprinkling of signs such that all faces anticommute, where φ is induced by τ(v) · id. Then φ is an
isomorphism of chain complexes.

Given this category, we can consider the morphisms modulo some local relations, written Cob3
/l
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so that [[T ]] in Kom(Mat(Cob3/l)) is invariant up to homotopy of formal complexes. These local
relations are described below, denoted S, T and 4Tu respectively:

S

= 0

T

= 2

4Tu

+ = +

That is, when a cobordism contains a component isotopic to a 2-sphere, that cobordism is equal
to zero. When a cobordism contains a component isotopic to a torus, it is equal to the same
cobordism without the torus, but multiplied by 2. And the last relation says that you can change
the cobordisms locally in the specified way.

We will write Kom/h(C) for Kom(C) modulo homotopies. Moreover, we will use the shorthands

Kob(B) := Kom(Mat(Cob3
/l(B))) and Kob/h(B) := Kom/h(Mat(Cob3

/l(B))).

Theorem 2.10. The isomorphism class of [[T ]] in Kob/h is an invariant of the tangle T . This
means that [[T ]] does not depend on the ordering of the column vectors obtained from the cube of
resolutions, and that it does not depend on the ordering of the crossings, and that it is invariant
under the Reidemeister moves.

A proof of Theorem 2.10 can be found in [BN05].

This functor has excellent composition features by which we mean it is a planar algebra.

Definition 2.11. A d-input planar arc diagram D is an ‘output’ disk with the following data:

• d smaller ‘input’ disks removed. The input disks are labelled 1 to d, each with a basepoint
marked (this basepoint is often omitted from pictures).

• a collection of disjoint embedded arcs with endpoints intersecting the boundary of either the
input or output disks transversely.

Planar diagrams can be either oriented or unoriented. Below is an example of an oriented planar
diagram, where if we insert three positive crossings into the input disks, we get the right-handed
trefoil.
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Definition 2.12. A collection of sets P(k) along with operations defined for each (oriented)
unoriented planar arc diagram is an (oriented) unoriented planar algebra if

• the radial planar arc diagrams act as identities,

• associativity condition: if Di is the result of plugging D′ into the ith hole of D (provided
this is possible), then as operations Di = D ◦ (I × · · · ×D′ × · · · × I)

Note. In the categorical context, the axiom where the radial arc diagrams act as identities needs
to be weakened, but can be safely ignored in this paper. For example, see [ETW17].

We usually consider the sets as topological objects, as in the above diagram, where we can place
positive crossings into the operator that is the output disk. Let’s see how planar algebras come
into play in this context. Firstly, consider the collection of all unoriented tangle diagrams in a
based disk with k endpoints on the boundary, considered up to boundary preserving isotopies,
T 0(k). Let T (k) be the quotient of T 0(k) by the three Reidemeister moves. Then both T 0(k) and
T (k) are planar algebras: let D be an output disk with ki arcs intersecting the ith input disk and
k arcs intersecting the boundary of the output disk. Then we define the operator

D : T 0(k1)× T 0(k2)× · · · × T 0(kd)→ T 0(k)

by placing the d input tangles into the holes of D. The radial arc operators clearly act as identities,
and the associativity condition also holds. We can define the planar algebra T (k) in the same way.

More importantly for us, the collection ob(Cob3
/l) and Hom(Cob3

/l) are both planar algebras. The
objects form a sub-planar algebra of T (k). For the morphisms, consider a cylinder over the output
disk D, D × [0, 1]. This will have d cylindrical holes in it, connected by vertical curtains joining
the top and bottom arcs in D × {0} and D × {1}. We can simply place cobordisms in the holes,
defining an operation D : (Hom(Cob3

/l))
d → Hom(Cob3

/l).

Now suppose we wish to place tangle complexes in the holes of a planar arc diagram, that is,
put elements of Kob into planar arc diagrams. This will work like the tensor product of chain
complexes, which we will define below for the unfamiliar reader.

Definition 2.13. Given two chain complexes (C•, d
C) and (D•, d

D), we can form the tensor
product double complex, where the (p, q)th position of the lattice is (C ⊗D)p,q = Cp ⊗Dq. The
vertical maps are dv = (−1)p ⊗ dD and the horizontal maps are dh = dC ⊗ 1. From the tensor
product double complex, we can form the tensor product total (chain) complex, where the nth space
is Tot(C ⊗D)n =

⊕
p+q=n(C ⊗D)p,q. The differential on such a complex is simply d = dv + dh.
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In Example 3.8 we show as an example how spectral sequences can be used to compute the
homology of Tot(C ⊗D) where C and D are complexes of vector spaces.

For Kob(Bk) and Kob/h(Bk) (where Bk is a fixed placement of k points on a based circle), we
define the operator D, where D is a d input planar arc diagram with ki arc endpoints on the ith
holes and k arc endpoints on the boundary of the disk, as follows: for a collection of complexes
(Ci, di) ∈ Kob(ki), D(C1, . . . , Cd) is the complex (D, d) with components

Dj :=
⊕

j1+···+jd=j

D(C1
j1 , . . . , C

d
jd

)

and differentials

d
∣∣
D(C1

j1
,...,Cdjd

)
=

d∑
i=1

(−1)
∑
n<i jnD(IC1

j1
, . . . , di, . . . , ICdjd

).

Properties of honest tensor products of chain complexes still hold in this case of tensor products of
formal chain complexes. For example, morphisms f : Ci → Ci

′
induce morphisms D(I, . . . , f, . . . I) :

D(C1, . . . Ci, . . . , Cd)→ D(C1, . . . Ci
′
, . . . , Cd).

Proposition 2.2. The collection Kob(Bk) is a planar algebra. Moreover, the operators D acting
on Kob(Bk) send homotopy equivalent complexes to homotopy equivalent complexes, so Kob/h(Bk)
is also a planar algebra.

Definition 2.14. A morphism Φ of planar algebras (P (k)) → (Q(k)) is a collection of maps
Φ : P (k)→ Q(k) such that for any operator D of P (k), Φ ◦D = D ◦ (Φ× Φ× · · · × Φ).

Definition 2.15. The Bar-Natan bracket [[−]] is an oriented planar algebra morphism [[−]] :
(T (k))→ Kob/h(Bk).

We are now due for an example which will hopefully make this all clear. Consider the oriented
Hopf link, denoted 22

1, which can be viewed as the operator D with input tangles that are a pair of
positive crossings:

22
1 = D(X1, X2)

X1

X2

D X1 = X2

Thus, [[22
1]] = [[D(X1, X2)]] = D([[X1]], [[X2]]) = tr([[X1]]⊗ [[X2]]), where [[Xi]] =

s−→ . Here, and
thoughout this paper, the underline in the first space in the complex [[Xi]] denotes homological
height zero, and s is the appropriate saddle
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Computing this tensor product,

tr([[X1]]⊗ [[X2]]) = D( , )

D( , )

D( , )

D( , )⊕

D(1, s)

D(s, 1)

D(s, 1)

−D(1, s)

[[22
1]]0 [[22

1]]1 [[22
1]]2

⊕=

.

−

Next we want to add some gradings to this category just we did in the original Khovanov theory.
The rewards for this are great as it then allows us to read off the Jones polynomial as before.

Definition 2.16. A graded category is a pre-additive category C with the following properties:

• for any two objects C1, C2 ∈ ob(C), the set of morphisms HomC(C1, C2) form a graded abelian
group. Under composition, deg(f ◦ g) = deg(f) + deg(g) for all f and g where this makes
sense. Moreover, all identity maps have degree zero.

• there is an action by Z that ‘shifts degrees’: for an object C ∈ ob(C), and m ∈ Z, we can
define the same object but with a degree shift C{m}. This does not change the morphisms
between objects, i.e. HomC(C1{m1}, C2{m2}) = HomC(C1, C2), but changes the degrees of
the morphisms so that deg(f : C1{m1} → C2{m2}) = deg(f : C1 → C2)−m1 +m2.

Later, we will use the convention of recording the grading of an object A with grading m by qmA
rather than A{m}, referred to as the q-grading.

So we can make Cob3 and Cob3
/l (and thus Kob and Kob/h) graded categories, where the grading is

given by the following:
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Definition 2.17. Let C ∈ Hom(Cob3(B)) be a cobordism in a cylinder, with |B| vertical boundary
components on the side of the cylinder. Then we define the degree of the morphism to be
deg(C) := χ(C)− 1

2 |B|.

This is also known as the relative Euler characteristic, which is computed by taking the Euler
characteristic of the relative (simplicial) homology.

Example 2.18. The degree of a (upside down) pair of pants is −1 since it has Euler character-

istic of −1 (it is homotopy equivalent to a twice punctured disk) and has no boundary components.
The degree of a cap or cup is +1 since it is homotopy equivalent to a disk and also has no
boundary components. The degree of a saddle s is −1 since it is homotopy equivalent to a disk
(χ(s) = 1) and has four vertical boundary components so |B| = 4.

For our next definition, we will use ‘•’ to denote the zero object in Kob/h.

Definition 2.19. Let T be a tangle diagram with n+ positive crossings and n− negative crossings.
Define BN(T ) to be the complex with each space in the complex

BNr(T ) := [[T ]]r{r + n+ − n−}

and whose differentials are the same as the differentials of [[T ]]:

[[T ]] : • → [[T ]]−n− → · · · → [[T ]]n+ → •
BN(T ) : • → [[T ]]−n−{n+ − 2n−} → · · · → [[T ]]n+{2n+ − n−} → •

So BN(−) is just the complex [[T ]] decorated with grading shifts.

Thus, using the above definitions, we have

BN( ) = • → q
s−−−−→ q2 → •

BN( ) = • → q−2 s−−−−→ q−1 → •

where s is the saddle cobordism.

Theorem 2.20. With the above gradings, BN(−) has the following properties:

• All differentials for BN(T ) for any tangle T have degree zero.

• The bracket BN(T ) is a tangle invariant up to degree-zero homotopy equivalence. That is, if
T1 and T2 differ by a sequence of Reidemeister moves, then there is a degree-zero homotopy
equivalence F : BN(T1)→ BN(T2).

• The BN(−) induces a planar algebra morphism (T (k))→ Kob(k), and all the planar algebra
operations are of degree zero.

At this point, we have extended the original Khovanov homology of links to tangles. However,
this category is clearly difficult to work with. To compare two tangles whose diagrams differ by a
sequence of Reidemeister moves we need to construct an explicit homotopy equivalence between
two complexes in Kob. To manage this, we will take a functor (a TQFT) from Kob into some
abelian category where we can take homology. Through this process we lose information but will
be able to detect homotopy inequivalence much more easily.

Note. Bar-Natan denotes the graded complex obtained from a tangle T via this method Kh(T )
(which we call BN(T )). We do this to emphasis that we are working in the topological category,
and we reserve Kh for the homology of the complex CKh which is obtained by a certain TQFT
from BN to vector spaces that is isomorphic to Khovanov’s original homology theory.

25



2.2. TAKING HOMOLOGY OF BN(T ) CHAPTER 2. B-N’S KHOVANOV HOMOLOGY

2.1.1 Adding dots

Next we will describe Bar-Natan’s dotted theory, which is how we will think of Khovanov
homology and its variants from here on. We change our category Kob to its dotted version
Kob• = Kom(Mat(Cob•/l)), which will allow us to consider new homotopy equivalences.

This begins by extending the category Cob3 to a category of dotted cobordisms Cob3
•, where the

objects are the same as Cob3, but morphisms can carry dots ‘•’ on them of degree −2. If 2 is
invertible, dots are really a shorthand for

• = 1
2

The specified degree really makes sense since • is a genus 1 hole in our surface, and a punctured
torus has relative Euler characteristic −2.

Dotted cobordisms are isotopic if the underlying cobordisms are isotopic and contain the same
number of dots per component, and we consider morphisms up to boundary preserving isotopy.
We then consider Cob3

• up to local relations Cob3
•/l defined by

= 0 = 1• •

•
= +

where the last relation is called the ‘neck cutting’ relation. Using these relations,

= 0

Notably, we also have the following computation,

Example 2.21.

=
1

8

(
+

)
=

1

8

So for example, if we additionally set the three holed torus to be zero, we have a sheet with two
dots on it is also zero. As we will see below, this extra condition will return the original Khovanov
homology.

2.2 Taking Homology of BN(T )

Up to now, we have extended Khovanov homology to the case of tangles by looking at a topological
complex rather than an algebraic one. However, as a link/tangle invariant, it is difficult to work
with, as it is difficult to construct explicit homotopy equivalences between complexes in Kob.
Instead, we take a functor from Kob into an abelian category, where if we take homology, we can
find whether two complexes are not homotopy equivalent.

Let A be an abelian category. A functor F : Cob3
/l → A extends to a functor F : Mat(Cob3

/l)→ A
by sending the formal direct sums to honest direct sums in the abelian category. This again
extends to a functor F : Kob→ Kom(A), since F(d) ◦ F(d) = F(d ◦ d) = 0 because F is additive.
Thus for a tangle T , FBN(T ) is an ordinary complex in Kom(A). If we apply F to all (formal)
homotopies in Kob(T ), FBN(T ) is an invariant of tangles up to homotopy, and thus H•(FBN(T ))
is an invariant of T . If A is graded, and F is degree respecting, then H•(FBN(T )) is a graded
invariant of T .
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2.2.1 Choices of functor F

We will outline two choices for the monoidal functor on Cob3(∅) valued in the abelian category of
graded Z-modules ZMod (we will also later work with Q[α]-modules) that maps disjoint unions
to tensor products. For this we define the functor on the generators of Cob3(∅). The objects
of Cob3(∅) are generated by a single circle ○ (i.e. they are disjoint unions of circles) and the

morphisms are generated by the cup , cap , pair of pants and upside down pair of pants .

Definition 2.22. Let V be the graded Z-module freely generated by the two generators {v±}
with grading deg(v±) = ±1. Let F be the TQFT defined via F(○) = V , F( ) = ε : V → Z
(v− 7→ 1, v+ 7→ 0), F( ) = η : Z→ V (1 7→ v+) and most importantly, we have ‘multiplication’

F( ) = m : V ⊗ V → V

v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0.

and ‘comultiplication’

F( ) = ∆ : V → V ⊗ V

v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−.

It can be checked that this indeed gives us a Frobenius algebra structure.

Proposition 2.3. The functor F is well-defined and the degree of the morphisms is preserved.
Moreover F induces a functor Cob3

/l(∅)→ ZMod (so the local relations are preserved).

Proof. To see that F is well-defined, we have to see that it respects the relations between the
generators of Cob3, or in other words the image of the functor has the structure of a Frobenius
algebra. To see that F is preserves the degrees of the morphisms, recall that a pair of pants (and
an upside down pair of pants) has degree −1. This indeed is the case for m and ∆, which lower the
degrees by 1. The degrees deg(F( )) = 1 = deg(F( )) also checks out. To see that F also induces
a functor on the category modulo local relations, we note those relations:

S : 1 7−→ v+ 7−→ 0,

and

T : 1 7−→ v+ 7−−→ v+ ⊗ v− + v− ⊗ v+ 7−−→ 2v− 7−→ 2.

The relation 4Tu also holds:

(F( ))(1) + (F( ))(1) = (F( ))(1) + (F( ))(1)
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because

(F( ))(1) = ∆ε1⊗ ε1⊗ ε1
= v− ⊗ v+ ⊗ v+ ⊗ v+ + v+ ⊗ v− ⊗ v+ ⊗ v+

:= v−+++ + v+−++

(F( ))(1) = v++−+ + v+++−

(F( ))(1) = v+++− + v+−++

(F( ))(1) = v++−+ + v−+++.

�

Remark 2.23. It can be seen that for a link L, H•(F(BN(L))) is equal to Khovanov’s categorifi-
cation of the Jones polynomial. That is, CKh(L) = F(BN(L)).

So now we have a functor (TQFT) that defines Khovanov’s categorification of the Jones polynomial.
Now we want to construct more functors, in particular the Lee TQFT. More generally, the Khovanov
and Lee TQFTs are specialisations of the tautological functor:

Definition 2.24. Let B be a set of points on a circle S1 and let O be an object in Cob3
/l(B). So

O is a smoothing with boundary B. The tautological functor FO : Cob3
/l → ZMod is defined on an

object O′ by FO(O′) = Hom(O,O′) and on a morphism F : O′ → O′′ by FO(F ) : Hom(O,O′)→
Hom(O,O′′) where FO(F ) (FO(O′)) = F (FO(O′)).

Example 2.25. Take B = ∅ and O = ∅. To make 2 invertible, tensor with Z[ 1
2 ], and quotient out

by all surfaces with genus g > 1, so

F1(O) := Z[
1

2
]⊗Z Hom(∅,O)/((g > 1) = 0).

Taking two twice punctured disks (or equivalently, pairs of pants), and since 2 is invertible, the
4Tu relation becomes the neck cutting relation in Bar-Natan’s dotted theory.

+ +=

•

•
+ += 2 2

•

•
+=

isotopy

This again returns the original Khovanov homology theory:
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Proposition 2.4. The functors F1(−) ∼= F(BN(−)) = CKh(−) are isomorphic.

Proof. Firstly we will see how this works on objects:

Hom(∅,©) ∼= Z〈 , 〉 ∼= Z〈v−, v+〉 = V = CKh(©),

where 7→ v− and 7→ v+ in the second isomorphism. Next, consider Hom(∅,© ©) ∼=

Z〈 , , , 〉. Then the pair of pants takes Hom(∅,©©)→ Hom(∅,©), by

7→
7→
7→
7→ 0

where the last map is because two dots are zero and neck cutting. With the above isomorphism
on objects, we see this is exactly the Khovanov homology m multiplication. A similar argument
shows the isomorphism on the comultiplication, unit, and counit maps. �

Example 2.26. (The Lee TQFT) Take the same as before, but instead of modding out by all
surfaces of genus greater than 1, quotient out by the relation that all genus 3 surfaces are equal to
8:

F2(O) := Z[
1

2
]⊗Z Hom(∅,O)/( = 8).

Then as a Z[ 1
2 ]-module, F2(O) = F1(O) on objects, but ∆ and m are modified:

m2 : V ⊗ V → V

v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ v+

and

∆2 : V → V ⊗ V
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v− + v+ ⊗ v+.

To see how these maps are derived, take for example, ∈ Hom(∅,©©), then

m2(v− ⊗ v−) = F2( )(F2( )⊗F2( )) = F2( ◦ ( )) = F2( ) = v+.

Remark 2.27. We could set the three-holed torus to be any invertible number (if we are in Q,
then any α ∈ Q∗) but we choose α = 8 so we can drop some constants. This was shown in Example
2.21.

Remark 2.28. Here, we make the important remark that the gradings of the maps have been
broken (they are no longer homogeneous) and thus F2 is not degree respecting. Thus, when we
apply the Lee TQFT to the complex in Kob, the spaces in the chain complex are graded vector
spaces (the same as the Khovanov TQFT spaces), but the induced differentials are not graded. In
fact, the differentials are filtered where the filtration is induced by the grading

· · ·
⊕
i>k+1

Vi ⊂
⊕
i>k

Vi ⊂ · · ·

and d
(⊕

i>k+1 Vi
)
⊂
⊕

i>k Vi giving us a filtered chain complex of graded vector spaces.
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Thus we have two isomorphic ways to think of Khovanov homology and Lee homology:

• For a tangle T , Khovanov homology can be obtained via taking Hom(∅, BN(T )) and by
quotienting out by all closed surfaces of genus greater than 1 (i.e. two dots on a surface is
zero), and Lee homology can be obtained by taking Hom(∅, BN(T )) and by quotienting out
by a genus 3 surface is equal to 8 (i.e. two dots can be pulled off a surface).

• This is the same as taking the Khovanov and Lee TQFTs ,CKh(−) and CKhLee(−), into
the free modules Z〈v−, v+〉 which do the same thing to objects, but the multiplication and
comultiplication maps between the objects differ according to Definition 2.22 and Example
2.26.

We will denote the graded chain complex of vector spaces obtained by the Khovanov TQFT applied
to a tangle T by CKh(T ) and its homology to be Kh(T ). Similarly, we will denote the filtered
chain complex of vector spaces obtained by the Lee TQFT by CKhLee(T ) and the Lee homology
by KhLee(T ). We have for each space CKhLee(T )r = CKh(T )r, so the chain spaces are the same
but the differentials for the Khovanov and Lee complexes are graded and filtered respectively.

A result by Lee in [Lee05] is that Lee homology is interestingly boring. To show this, she introduces
a new basis {a, b} for V where a = v−+v+ and b = v−−v+. The multiplication and comultiplication
maps become

m(a⊗ a) = 2a

m(a⊗ b) = m(b⊗ a) = 0

m(b⊗ b) = −2b

∆(a) = a⊗ a
∆(b) = b⊗ b

By using this basis, Lee proves that KhLee(L) has rank 2n, where n is the number of components
of L. Thus, working over Q, KhLee(K) ∼= Q⊕Q for any knot K.

As we will show in Theorem 4.1, our focus on these two homology theories is because Khovanov
homology can be naturally viewed as the second page of a spectral sequence (defined in the following
chapter) that converges to Lee homology which is a surprisingly simple object.

2.3 Tools and Computation

There are a couple of tools from homological algebra which are useful in simplifying the chain
complexes in Kob. The idea is that when we make these simplifications before we take the tensor
product of the chain complexes, we can reduce the number of computations.

Proposition 2.5. (Gaussian elimination) Suppose we have a segment of a chain complex in the
additive category Mat(C) of the form

· · · A B ⊕ C D ⊕ E F · · ·

ξ
β

 φ δ

γ ε

 (
µ ν

)

where φ is an isomorphism. Then the above segment of chain complex is isomorphic to the direct
sum of complexes:

B D

· · · A C E F · · ·

φ

⊕ ⊕

β ε−γφ−1δ ν

Both of the above complexes are then homotopy equivalent to
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· · · A C E F · · ·β ε−γφ−1δ ν

This is because the complex B
φ−→ D is contractible because φ is an isomorphism.

Proof. Consider the change of basis matrices

T1 =

(
1 φ−1δ
0 1

)
T2 =

(
1 0

−γφ−1 1

)
and denote

M =

(
φ δ
γ ε

)
.

Then we have the ‘row (and column) reduction’ of M ,

T2MT−1
1 =

(
φ 0
0 ε− γφ−1δ

)
as desired. Furthermore,

T1

(
ξ
β

)
=

(
ξ + φ−1δβ

β

)
(µ ν)T−1

2 = (µ+ νγφ−1 ν)

But since the original chain is a chain complex, d2 = 0, so(
φ δ
γ ε

)(
ξ
β

)
= 0

and thus φξ + δβ = 0, and

(µ ν)

(
φ δ
γ ε

)
= 0

and thus µφ+ νγ = 0. This gives ξ = −φ−1δβ and µ = −νγφ−1, so

T1

(
ξ
β

)
=

(
0
β

)
, and (µ ν)T2 = (0 ν).

�

Proposition 2.6. (Delooping) If an object S in Cob3
•/l contains a closed loop ©, then it is

isomorphic in Mat(Cob3
•/l) to the direct sum of copies S′{+1} and S′{−1} of S in which © is

removed, one taken with a degree shift of +1 and one with a degree shift of −1. Symbolically,
© ∼= ∅{+1} ⊕ ∅{−1}.

Recall that if an object O has a grading O{m}, we will write the gradings using a q instead, so
O{m} will be recorded as qmO.

Proof. The isomorphisms are as follows:

∅{−1}

∅{+1}

⊕

•

•
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To verify this is an isomorphism, this uses all of the relations in Cob3
•/l. The map ©→© is an

isomorphism since

©→© = ( )

( )
= + = = 1

where the third equality is the neck cutting relation. To see f : ∅{−1} ⊕ ∅{+1} → ∅{−1} ⊕ ∅{+1}
is an isomorphism,

f =

( )
( ) =

( )
=

(
1 0
0 1

)
.

�

Example 2.29. Let’s see these tools in action. In our previous example for finding the Khovanov
complex for the Hopf link, we could have simplified the complex using these tools. We will now
find the Khovanov complex for the right-handed trefoil 31. Importantly, we will also keep track of
the gradings in this example.

Consider the oriented planar arc diagram from Definition 2.11:

T1

T2

T3

and take T1 = T2 = T3 = so D(T1, T2, T3) = 31. Then

BN(31) = BN(D(T1, T2, T3)) = D(BN(T1), BN(T2), BN(T3)).

To compute this, we will build this up step by step using the properties of planar algebras,
simplifying as we go. Firstly, the concatenated positive crossings is computed by taking the tensor
product of the complex BN( ). Then to obtain the knot, we then take the trace: we join the
top right strand to the bottom right strand, and then join the top left to the bottom left. For
BN( )⊗3, we have the simplified expressions

BN( ) = q
s−→ q2

BN( )⊗2 ' q2 s−→ q3 −−−−−−−→ q5

BN( )⊗3 ' q3 s−→ q4 −−−−−−−→ q6 +−−−−−−→ q8 .

More generally, we have for a two strand tangle with n twists:

BN( )⊗n ' qn s−→ qn+1 −−−−−−−→ qn+3 +−−−−−−→ qn+5 → · · · → q3n−1
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where a = − and σ = + alternate (for example, see [Tho17]).

Joining the top right to the bottom right, take

BN( )⊗3

= q3 q4 q6 q8
2zero

∼=
q2

⊕
q4

q4 q6 q8
zero 2

' q2 • q6 q82

where the isomorphism is by delooping and the ' (homotopy equivalence) is by Gaussian elimination.
The above tangle is isotopic to the cut trefoil which we denote c(31). Thus

c(31) ' q2 → • → q6
2
−−−→ q8

And then lastly, we join the top left to the bottom left:

BN( )⊗3

= q2© • q6© q8©2

∼= q∅ ⊕ q3∅ •
q5∅

q7∅

q7∅

q9∅
⊕ ⊕

' q∅ ⊕ q3∅ • q5∅ q9∅
2

Again, the isomorphism is by delooping and the homotopy equivalence is by Gaussian elimination.
Since two dots on a cobordism is zero in Khovanov homology, we have the following if we work
over Q:

CKh(31) = HomQ(∅, BN(31))/( = 0) ' qQ⊕ q3Q→ • → q5Q zero−−→ q9Q,

and Poincaré polynomial
K(q, t) = q + q3 + t2q5 + t3q9.

In Lee homology, = α , where α ∈ Q∗, so the portion of chain complex q5Q → q9Q is
contractible, and thus

CKhLee(31) = HomQ(∅, BN(31))/( = α) ' qQ⊕ q3Q.

As we will show below, the Khovanov and Lee TQFTs are related by a spectral sequence. In order
to describe this, we will define spectral sequences for filtered chain complexes and investigate some
of their immediate properties in the next chapter.
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Chapter 3

Spectral Sequences of Filtered
Chain Complexes

3.1 Definitions and Basic Properties

Spectral sequences for filtered chain complexes are a tool for computing the homology of such
chain complexes by using the chain homology of the associated graded chain complex, which in
general is much simpler. From the associated graded chain complex we can form a sequence of
chain complexes that ‘converges’ to the homology of the original filtered chain complex. We will
make this precise below.

Spectral sequences are notoriously confusing with indices. For the most part, the indexing here
follows Weibel’s treatment [Wei94], and at the very least we will be consistent throughout this
paper. A lot of the discussion may seem confusing, and the best way to understand would be
for the reader to work out the introductory definitions and theorems for herself. Moreover, some
good introductory texts start with a heuristic treatment of spectral sequences before specifying the
precise definitions. We will attempt to do the same, and we hope this is not too difficult to follow.

Suppose we have a filtered chain complex

· · · ↪→ Fp−1C• ↪→ FpC• ↪→ Fp+1C• ↪→ · · · ,

where FpC• (also written as Cp,•) is the pth filtration of the chain complex C•. More explicitly,
this is a chain complex of filtered vector spaces Cn = Cp,n ⊇ Cp−1,n ⊇ · · · ⊇ C1,n ⊇ C0,n = 0,

· · · → Cn+1 → Cn → Cn−1 → · · ·

where the differentials respect the filtration:

d(FpCn) ⊆ FpCn−1.

Of course, since C• is a chain complex, d2 = 0.

From a filtered vector space, we can form the ‘associated graded’ vector space. For example, if
we have a vector space V and a subspace W of V , we can decompose V (non-canonically) into
V ∼= V/W ⊕W . If there were again a subspace U of W , we could iterate this process again so that
V ∼= V/W ⊕W/U ⊕ U .

Thus in the above situation for filtered vector spaces, for each space in the chain complex

Cn ∼=
Cp,n
Cp−1,n

⊕ Cp−1,n

Cp−2,n
⊕ · · · ⊕ C1,n

C0,n

35



3.1. DEFINITIONS AND BASIC PROPERTIES CHAPTER 3. SPECTRAL SEQUENCES

where, since C0,n = 0, we have for the last term C1,n/C0,n = C1,n. This is the associated graded
vector space for the filtered vector space, and denoted GpCn := Cp,n/Cp−1,n. The differentials d for
the filtered chain complex then induce differentials on the associated graded vectors spaces, giving
us a chain complex of graded vector spaces. Explicitly, take x ∈ GpCn. Then x = x′ + Cp−1,n for
some x′ ∈ Cp,n. So d(x) = d(x′ +Cp−1,n) = d(x′) + d(Cp−1,n), and since the differentials d respect
the filtration, d(x′) ∈ Cp,n−1 and d(Cp−1,n) ⊆ Cp−1,n−1. Thus d(x) ∈ GpCn−1. Moreover, it is
clear that again d2 = 0.

Let us make some preliminary definitions:

Definition 3.1. For a filtered chain complex F•C•, we define

• GpCp+q to be the the (p, q)- or (p+ q)-chains of filtering degree p (so p+ q is the homological
degree).

• Zrp,q = {x ∈ GpCp+q | dx = 0 mod Fp−rC•} = {x ∈ FpCp+q | dx ∈ Fp−rCp+q−1}/Fp−1Cp+q,
called the ‘r-almost (p, q)-cycles’,

• Brp,q = d(Fp+r−1Cp+q+1), called the ‘r-almost (p, q)-boundaries’.

Next, we set Z∞p,q to be the actual cycles of the associated graded pieces, Z∞p,q = Z(GpCp+q) and
we similarly define B∞p,q = d(Cp,p+q+1).

Proposition 3.1. The differentials of the original filtered complex C• restrict to differentials
dr : Zrp,q → Zrp−r,q+r−1 on the r-almost cycles.

Proof. The subquotient Zrp,q by definition contains elements in filtering degree p where the
differential d shifts the elements down by r degrees to p − r. Moreover, the differential d by
definition shifts the homological degree p + q down by one. Thus d restricted to Zrp,q lands in
Z•p−r,q+r−1. Now, the image d(Zrp,q) consists of actual boundaries, that is, d(Zrp,q) ⊂ Bs,t for some
s, t where s+ t = p+ q − 1. But since actual boundaries are in particular r-almost boundaries for
some r, we can take the codomain to be Zrp−r,q+r−1. �

Proposition 3.2. We have the sequence of inclusions

B0
p,q ↪→ B1

p,q ↪→ · · · ↪→ B∞p,q ↪→ Z∞p,q ↪→ · · · ↪→ Z1
p,q ↪→ Z0

p,q.

Proof. This is just by checking the definitions. �

Proposition 3.3. Zr+1
p,q = ker(dr : Zrp,q → Zrp−r,q+r−1).

Proof. Take an element x ∈ FpCp+q. Then x ∈ Zrp,q if dx ∈ Fp−rCp+q−1. For the same x, x ∈ Zr+1
p,q

if dx ∈ Fp−r−1Cp+q−1. But Fp−r−1Cp+q−1 ↪→ Fp−rCp+q−1, so x ∈ Zr+1
p,q if and only if dx = 0 in

the quotient Fp−rCp+q−1/Fp−r−1Cp+q−1, and Zrp−r,q+r−1 ⊂ Fp−rCp+q−1/Fp−r−1Cp+q−1, proving
the claim. �

Definition 3.2. We define the (p, q)th entry on the rth page of the spectral sequence to be the
quotient of the r-almost cycles by the r-almost boundaries.

Erp,q := Zrp,q/B
r
p,q.

Since the differentials on the filtered complex C• restrict to differentials dr : Zrp,q → Zrp−r,q+r−1,
the differentials also restrict on the r-almost homology groups dr : Erp,q → Erp−r,q+r−1. Also, by
the previous proposition, we have that Er+1

p,q is the dr-chain homology at Erp,q:

Er+1
p,q =

ker(dr : Erp,q → Erp−r,q+r−1)

im(dr : Erp+r,q−r+1 → Erp,q)
.

For low dimensional pages, we have the following:
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Proposition 3.4. The zeroth page is the associated graded complex

E0
p,q = GpCp+q = FpCp+q/Fp−1Cp+q

and the first page is the chain homology of the associated graded

E1
p,q = Hp+q(GpC•).

Proof. Setting r = 0 in the definition of Erp,q gives the first statement. For r = 1,

E1
p,q =

{x ∈ GpCp+q | dx = 0 ∈ GpCp+q}
d(FpCp+q)

= Hp+q(GpC•).

�

So the associated graded vector space is the zeroth page of the spectral sequence. We can think of
this page as a lattice of vector spaces E1

p,q = Gp,q and the morphisms between objects induced by
the filtration go horizontally d : E1

p,q → E1
p,q−1.

Remark 3.3. These definitions and propositions are the easy way out. What we do is define our
r-almost cycles and r-almost boundaries so that the differentials on the rth page that are induced
by the original filtered complex land in the appropriate space. The harder option would be to
define spectral sequences in the more intuitive way, that is, by taking successive quotients:

Er+1
p,q =

ker(dr : Erp,q → Erp−r,q+r−1)

im(dr : Erp+r,q−r+1 → Erp,q)
.

Then there is the task defining the induced differentials. For example, lets take [x] ∈ E2
p,q, and

define our pages as the successive quotients, so

[x] ∈ E1
p,q =

ker(d1 : E0
p,q → E0

p,q−1)

im(d1 : E0
p,q+1 → E0

p,q)
,

So what are our differentials d1 on the first page? For [x] ∈ E1
p,q, take a representative x1 of [x], where

x1 ∈ ker(d1 : E0
p,q → E0

p,q−1). So x1 ∈ E0
p,q = FpCp+q/Fp−1Cp+q, and so write x1 = x0+Fp−1Cp+q.

Applying the differential from the filtered vector spaces, d(x1) = d(x0 + Fp−1Cp+q) = d(x0) +
d(Fp−1Cp+q) and note that d(Fp−1Cp+q) ⊂ Fp−1Cp+q−1. Since x1 ∈ ker(d1 : E0

p,q → E0
p,q−1),

we also have d1(x1) ∈ Fp−1Cp+q−1. Thus d(x0) ∈ Fp−1Cp+q−1. So x0 ∈ {z ∈ FpCp+q | dz ∈
Fp−1Cp+q−1}/Fp−1Cp+q. So we see that indeed d1 : Z1

p,q → Z1
p−1,q. This is the idea behind

defining the r-almost cycles.

3.2 Convergence of Spectral Sequences

Next we make ‘convergence’ of spectral sequences:

Definition 3.4. Let {Erp,q}r,p,q be a spectral sequence, where, for all p, q, there is an r(p, q) such

that for all r ≥ r(p, q), Erp,q ∼= E
r(p,q)
p,q . Then we say that the bigraded object E∞ := {E∞p,q}p,q :=

{Er(p,q)p,q }p,q is the limit term (or ‘page’) of the spectral sequence.

If the limit page E∞ exists, then the spectral sequence is said to ‘converge’ or ‘collapse’ at E∞.

Definition 3.5. A spectral sequence {Erp,q} is said to be bounded if for all n, r ∈ Z, the diagonal
Erk,n−k has finitely many nonzero terms. For example, a first quadrant spectral sequence {Erp,q≥0}
is a bounded spectral sequence.
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Proposition 3.5. A bounded spectral sequence has a limit page.

Proof. Firstly, if a spectral sequence has at most N non-vanishing terms of total degree n on page
r, then the following page must have at most N non-vanishing terms again. Thus, for a bounded
spectral sequence and for each n, there are integers U(n), L(n) ∈ Z such that Erp,n−p = 0 for all
p ≤ L(n) and Ern−q,q = 0 for all q ≤ U(n). Then for

r > max{p− L(p+ q − 1), q + 1− U(p+ q + 1)},

the term Erp,q is the limit term of the bounded spectral sequence, since for such r:

• Erp−r,q+r−1 = 0, because p− r < L(p+ q − 1), and so ker(drp−r,q+r−1) = 0,

• Erp+r,q−r+1 = 0 because q − r + 1 < U(p+ q + 1), and so im(drp,q) = 0.

Thus Er+1
p,q = ker(drp−r,q+r−1)/im(drp,q)

∼= Erp,q. �

Definition 3.6. A filtration F•C• on a chain complex C• is called a bounded filtration if for all
n ∈ Z, there are integers U(n), L(n) ∈ Z such that Fp<L(n)Cn = 0 and Fp>U(n)Cn = Cn.

Proposition 3.6. The spectral sequence of a complex of bounded filtration has a limit page.

Proof. Since the filtration is bounded, the spectral sequence is bounded and thus converges by the
previous proposition. �

Proposition 3.7. If the spectral sequence of a filtered complex F•C• has a limit page, then that
page is isomorphic to the chain homology of the original filtered complex.

Proof. Since there is a limit page, there is for each p, q an r(p, q) such that for all r ≥ r(p, q), the
r-almost cycles and r-almost boundaries in FpCp+q are in fact the ordinary cycles and boundaries.
So for r ≥ r(p, q), we indeed have Erp,q

∼= GpHp+q(C•). �

Everything we do concerning Khovanov/Lee homology will involve finite chain complexes of finite
dimensional graded vector spaces with bounded filtration (with possibly filtered chain maps only),
so the relevant spectral sequences will converge.

3.3 Examples Using Spectral Sequences

Let C•,• be a double chain complex with horizontal differentials dh and vertical differentials dv.
Then the total chain complex Tot(C) is defined to be

Tot(C)n =
⊕
p+q=n

Cp,q

with differentials d = dh + (−1)pdv. Then we define the horizontal filtration Fh• Tot(C) on Tot(C)
to be the filtration

Fhp (Tot(C))n :=
⊕

n1+n2=n
n1≤p

Cn1,n2 .

Similarly, the vertical filtration is defined to be

F vq (Tot(C))n :=
⊕

n1+n2=n
n2≤q

Cn1,n2 .

Proposition 3.8. Let {Erp,q}r,p,q be a spectral sequence of the double complex C•,• with respect to
the horizontal filtration (this is exactly the same for vertical filtration). Then
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• E0
p,q
∼= Cp,q,

• E1
p,q
∼= Hq(Cp,•), i.e. the homology of the columns,

• E2
p,q
∼= Hp(H

v
q (C•,•)), i.e. homology of the rows of the previous page.

Moreover, if C•,• is a first quadrant double complex (0 ≤ p, q), then the spectral sequence converges
to the chain homology of the total complex:

E∞p,q
∼= GpHp+q(Tot(C)•).

Thus the chain homology of the total chain complex can be computed by either using a horizontal
or vertical filtration, and we will get the same answer on the limit page.

Proof.

E0
p,q : = GpTot(C)p+q

=
FpTot(C)p+q
Fp−1Tot(C)p+q

=

⊕
n1+n2=p+q

n1≤p
Cn1,n2⊕

n1+n2=p+q
n1≤p−1

Cn1,n2

∼= Cp,q.

E1
p,q
∼= Hp+q(GpTot(C)•)

∼= Hp+q(Cp,•)
∼= Hq(Cp,•)

For the next page, [x] ∈ E1
p,q = Hq(Cp,•), so pick a representative x ∈ ker(Cp,q → Cp,q−1). So

x ∈ {z ∈ Cp,q |dvx = 0}, i.e. the vertical maps are zero on x. So the differential d1 which is induced
by the original differential d = dh + dv is just the horizontal differential dh, so d1 : E1

p,q → Ep−1,q.
Thus,

E2
p,q =

ker(d1 : E1
p,q → E1

p−1,q)

im(d1 : E1
p+1,q → E1

p,q)
∼= Hp(H

v
q (C•,•)).

By the convergence properties stated earlier, this bounded filtration means that this sequence will
converge, and it will converge to the homology of the original filtered complex. �

Example 3.7. Special case when rows or columns are exact

Using the previous properties, it is clear that if a double complex has exact rows or columns, the
limit page E∞ will be zero. This can be very useful as we will see for an example easy proof of the
Five-lemma:

Lemma 3.1. Take the following diagram that has exact rows and α, β, δ and ε are isomorphisms:

A B C D E

A′ B′ C ′ D′ E′

α β γ δ εα β γ δ εα β γ δ εα β γ δ ε

Then γ is an isomorphism.
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Proof. Since the rows are exact by assumption, the spectral sequence converges on the first step in
the horizontal direction immediately, so that E∞p,q = 0. Now we compute the spectral sequence in
the vertical direction, so the first page is

0 0 ker γ 0 0

0 0 coker γ 0 0

Since the limit page is zero, and in the spectral sequence, there will be no point where we can
take homology to get rid of the final remaining terms, we must have ker(γ) = 0 and coker(γ) = 0,
and thus γ is an isomorphism. Looking at this page we can see that if we let ker(α) and coker(ε)
be nonzero, the result still holds. In other words, we only need β and δ to be isomorphisms and
coker(α) = 0 and ker(ε) = 0. This is the same as saying that we only need α to be surjective and ε
to be injective. �

Example 3.8. Homology of tensor product of chain complexes

We can compute the homology of the tensor product of chain complexes using spectral sequences.
More specifically, two chain complexes can be tensored together to give the tensor product double
complex, from which we get the total chain complex for the tensor product, which is an honest chain
complex (not a double complex). We will restrict the discussion to the case of chain complexes of
vector spaces. More generally for R-modules the universal coefficient theorem for homology tells
us we gets something a little more complicated than for vector spaces (see Remark 3.9). Consider
two chain complexes of vector spaces V• and W• where Vi and Wi denote the ith component of
the V and W complexes, respectively. Then the total chain complex Tot(V• ⊗W•), which we will
write as (V ⊗W )•, has as the nth component

(V ⊗W )n =
⊕
n=i+j

Vi ⊗Wj =
⊕
i≤k

Vi ⊗Wk−i.

We define the differential to be

dV⊗W (v ⊗ w) = dV v ⊗ w + (−1)deg(v)v ⊗ dWw.

This can be quickly verified to be a differential:

(dV⊗W )2 = dV⊗W
(
dV v ⊗ w + (−1)deg(v)v ⊗ dWw

)
= (dV )2v ⊗ w +

(
(−1)deg(dV v) + (−1)deg(v)

)
(dV v ⊗ dWw) + v ⊗ (dW )2w

= 0.

In order to use spectral sequences, we define a filtration as we did before on the total complex of
V• ⊗W• by

Fp(V ⊗W )k =
⊕
i≤p

Vi ⊗Wk−i.

So, for example,

F0(V ⊗W )k = V0 ⊗Wk

F1(V ⊗W )k = (V0 ⊗Wk)⊕ (V1 ⊗Wk−1)

and so on. The associated graded object is given by

Gp(V ⊗W )k = Vp ⊗Wk−p.
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In terms of our pages of spectral sequences,

E0
p,q = Gp(V ⊗W )p+q = Vp ⊗Wq.

The differential for this (the differential on the zeroth page) is given by d0 = (−1)pidV ⊗ dW , so
d0(E0

p,q) ⊆ E0
p,q+1. Thus for

· · · → E0
p,q−1 → E0

p,q → E0
p,q+1 → · · ·

we have

E1
p,q =

ker(d : E0
p,q−1 → E0

p,q)

im(d : E0
p,q → E0

p,q+1)
=
Vp ⊗ ker(dW : Wq−1 →Wq)

Vp ⊗ im(dW : Wq →Wq+1)
∼= Vp ⊗Hq(W ).

The differential d1 on the following page E1
p,q is given by d⊗ idW , so E2

p,q = Hp(V• ⊗Hq(W•)) =
Hp(V ) ⊗ Hq(W ). So each element of the the E2 page is the tensor product of V -cycles and
W -cycles and is thus a V ⊗W -cycle. Since the differentials of the spectral sequence come from the
differential on V ⊗W , all the higher differentials must vanish, so E2 = E∞. Thus,

Hk(V• ⊗W•) ∼=
⊕
i+j=k

Hi(V )⊗Hj(W ).

Remark 3.9. This differs from the more general case. The Künneth formula for complexes states
that if V and W are right and left R-module complexes, and Vn and d(Vn) are flat for each n, then
there is an exact sequence

0→
⊕
p+q=n

Hp(V )⊗Hq(W )→ Hn(V ⊗RW )→
⊕

p+q=n−1

TorR1 (Hp(V ), Hq(W ))→ 0

which is noncanonically split if R = Z and V is a complex of free abelian groups. But in the case
of vector spaces, we always have TorZ1 = 0 because there is always a length zero free resolution of
V , giving us the desired isomorphism by exactness. Further discussion can be found in [Wei94].
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Chapter 4

The Lee Spectral Sequence

4.1 Comparison of Khovanov’s and Lee’s differentials

The Khovanov complex CKh(L) of a link L is an object in the category GKom(GVeck) of finite length
graded complexes of graded vector spaces, and thus the differentials in CKh(L) are graded. On the
other hand, the Lee complex CKhLee(L) of a link L is an object in the category FilKom(GVeck) of
finite length filtered complexes of graded vector spaces — each space CKhLee(L)r in the complex
CKhLee(L) is a graded vector space, but the differentials do not preserve the q-grading:

dKh : CKh(L)q,n → CKh(L)q,n+1

dLee : CKh(L)q,n → CKh(L)q,n+1 ⊕ CKh(L)q+4,n+1

The differentials for CKhLee(L) are not even homogeneous, for example ∆Lee(v−) = v− ⊗ v− +
v+ ⊗ v+. However, given such filtered chain complex, its spectral sequence is closely related to
Khovanov homology:

Theorem 4.1. There is a spectral sequence with E1 page Kh(L) and E∞ page KhLee(L).

Proof. Define δ to be the differential so that dLee = dKh + δ. So dLee is a differential for a filtered
complex, where the dKh is the degree preserving part of the differential and δ shifts the degree up
by 4. Explicitly, dKh is defined as in Definition 2.22, dLee is defined as in Example 2.26, and δ is
defined via

δm(v+ ⊗ v+) = δm(v+ ⊗ v−) = δm(v− ⊗ v+) = 0,

δm(v− ⊗ v−) = v+,

δ∆(v+) = 0,

δ∆(v−) = v+ ⊗ v+.

From this, it is clear that δ2 = 0. Because we have a chain complex of filtered vector spaces, there
is an associated spectral sequence with E∞ its homology, i.e. E∞ ∼= KhLee(L). Moreover, since
the E1 page is always the homology with respect to the degree preserving part of the original
filtered complex, we conclude that the E1 page is the homology with respect to dKh, or in other
words, it is Kh(L). �

In fact, each page of the spectral sequence is also a link invariant. Following Rasmussen [Ras10],
we can prove this via the following Lemma that can be found in [McC01]:
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Lemma 4.1. Suppose F : C1 → C2 is a map of filtered complexes that respects the filtrations.
Then F induces a map of spectral sequences Fn : IEn → IIEn, and if Fn is an isomorphism, Fm
is an isomorphism for all m ≥ n.

In [Lee05], for link diagrams L and L̃ that differ by a Reidemeister move, Lee proves KhLee(L) ∼=
KhLee(L̃) by creating a chain map between CKhLee(L) and CKhLee(L̃). Thus to show that the
spectral sequence is a link invariant, we just need to check that these chain maps respect the
filtration, and that they induce isomorphisms on Khovanov homology Kh(L) ∼= Kh(L̃). For details,
see [Ras10] [Lee05].

It also follows that each page of the spectral sequence is a link invariant by Theorem 4.4 below.

4.2 Equivariant Khovanov Homology

Recall that we described the Khovanov TQFT by

Z[
1

2
]⊗Z Hom(∅,O)/( = 0),

and the Lee TQFT by

Z[
1

2
]⊗Z Hom(∅,O)/( = 8).

The above Hom spaces are Z-modules, and then tensored with Z[ 1
2 ] to make 2 invertible to allow

the local relations in Cob3
/l.

Now we choose to work over Q[α], and we set the genus 3 surface to be 8α:

Definition 4.2. We define the ‘universal Khovanov homology’ or ‘equivariant Khovanov homology’1

Khα(T ) of a tangle T to be the homology of the complex obtained via the TQFT

Q[α]⊗Z Hom(∅,O)/( = 8α).

The resulting complex by applying this TQFT to BN(T ) will be denoted CKhα(T ). Following
Example 2.21, a surface carrying two dots is then equal to α times that surface. It follows that the
formal Euler characteristic is deg(α) = −4. The Hom spaces are now Q[α]-modules, so we have
lost information by killing all integer torsion, but having the coefficients invertible allows us to use
a variant of Gaussian elimination that is essential in Theorem 4.10.

This can be considered in some ways as a generalisation of Khovanov and Lee homology, since those
homology theories can be recovered from CKhα: for a link L, the condition that = 0
implies α = 0 and = 8 implies α = 8. So if we do the calculation for the trefoil for
Khovanov homology as we did earlier in Example 2.29, but working over Q[α], we obtain the
complex

BN(31) ' q∅ ⊕ q3∅ → • → q5∅ α−→ q9∅.

Setting α = 0, the above complex is quasi-isomorphic to the Khovanov complex CKh(31), and
setting α− 8 = 0, the above complex is quasi-isomorphic to the Lee complex CKhLee(31) (since

Q 8−→ Q is contractible). Thus,

Kh(L)• ∼= H• (CKhα(L)⊗Q[α]/(α = 0))

KhLee(L)• ∼= H• (CKhα(L)⊗Q[α]/(α− 8 = 0)) .

1For comparison, Khovanov’s definition of equivariant Khovanov homology can be found in [Kho04]
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Note. We could alternatively recover Lee homology by tensoring with Q[α]/(α− 1 = 0) by the
homotopy equivalence

CKhα(L)⊗Q[α]/(α− 8 = 0) ' CKhα(L)⊗Q[α]/(α− 1 = 0).

Digression. There is a subtlety involved when working with Hom above. When we take Hom(∅,−),
we are not taking the set of chain complex homomorphisms, rather we are taking the ‘internal
Hom’ for the category of chain complexes. Explicitly, there are two categories under consideration:

• the category Kom whose objects are chain complexes, and whose morphisms are chain maps.
The set of morphisms between two complexes forms a vector space.

• the category K̂om whose objects are again chain complexes, but morphisms are linear maps

f :
⊕
C• →

⊕
D•, and these maps form a chain complex. That is, K̂om(C•, D•)i = {f :

Cj → Dj+i} with differential (df)(x) = d(f(x)) + (−1)deg ff(dx). Since Hom(C•, D•) is itself
a chain complex, i.e. it is an object in the category again, it is called ‘internal Hom’. This is
the same as taking the usual Hom cochain complex in homological algebra. Importantly, for
homotopic complexes D• ' D′•,

Hom
K̂om

(C•, D•) ' Hom
K̂om

(C•, D
′
•),

so taking homology will give us information about the original chain complexes.

Example 4.3. In Definition 4.10, we are taking the ‘internal Hom’ (think of ∅ as the chain complex
concentrated in degree zero). Hence, taking HomBN(∅,−) into this complex (which is a covariant
functor, that is only left exact, but that doesn’t matter), we get

CKhα(31) = HomBN(∅, BN(31)) ' qQ[α]⊕ q3Q[α]→ • → q5Q[α]
α−→ q9Q[α].

This is because HomBN(∅, ∅) ∼= Q[α] and

HomBN(∅, ∅ αn−−→ ∅) = HomBN(∅, ∅) d−→ HomBN(∅, ∅)
∼= Q[α]

αn−−→ Q[α]

where d is multiplication by αn, by the rule (df)(x) = d(f(x)) + (−1)deg ff(dx) which implies that
for any polynomial p(α) ∈ HomBN(∅, ∅), dp(α) = αnp(α).

To see that HomBN(∅, ∅) ∼= Q[α], we need to show that any Σ ∈ HomBN(∅, ∅) ∼= Q[α] can be
reduced, via local relations, to a polynomial function of a genus 3 surface (or a lower genus closed
surface, which will be equal to a scalar). Note that Σ is a closed surface. Since BN is an additive
category, HomBN is closed under addition and we can take linear combinations of elements in
HomBN. Thus we just need to show that we can reduce each surface Σ to a monomial in Q[α]. Let
Σ′ be a connected component of Σ and let g denote genus. Since all closed orientable surfaces are
classified up to genus, and cobordisms are orientable, it suffices to check this for different genera.
If g(Σ′) < 3, then Σ′ ∈ {0, 2} by the local relations in Cob3

•/l. If g(Σ′) = 3, then clearly Σ′ = 8α by
Definition 4.10. Now suppose g(Σ) = n > 3, and think of this as an genus n surface

· · ·

then iteratively use the neck cutting relation two holes down from the end (along dotted line) to
reduce Σ′ to some monomial in α. Multiplying the results of the connected components of Σ, we
obtain a monomial in α.
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Theorem 4.4. The homology Khα(L) of a link L is a link invariant.

The proof of this is exactly the same as in [BN07]: compute and simplify the complexes corresponding
to each side of the Reidemeister move, and one gets the same result for both sides of any given
Reidemeister move, and hence we have invariance.

The complex Khα(L) is an object in the category of graded complexes ofQ[α]-modules GKom(Q[α]−
Mod), for which we have the following Definition and Lemma which gives a version of ‘Gaussian
elimination’ (see Proposition 2.5) for Q[α]-modules, found in [HKLM15].

Definition 4.5. Let C be an additive category. Then C is a Krull-Schmidt category if it is
semisimple (i.e. can be written as a finite sum of indecomposable objects) and for any two
decompositions into simple objects

M1 ⊕M2 ⊕ · · · ⊕Mn = N1 ⊕N2 ⊕ · · · ⊕Nn,

there exists a permutation σ of {1, . . . , n} such that Ni ∼= Mσ(i).

Lemma 4.2. The homotopy category GKom(Q[α] − Mod) of finite length graded complexes of
Q[α]-modules is Krull-Schmidt.

Proof. Take a complex C• whose objects are direct sums of Q[α]{r}, i.e. a polynomial ring over the
formal variable α with q-grading shifts, and whose differentials have degree zero. Since the maps
are degree zero, the differentials must be matrices of monomials. Explicitly, a degree zero map⊕

j∈J
Q[α]{rj} →

⊕
k∈K

Q[α]{r′k}

is a matrix whose (j, k) entry is a degree zero map Q[α]{rj} → Q[α]{r′k}. That is, multiplication

by zαrj−r
′
k for some z ∈ Q.

We will first show that we can break down C• into a direct sum of copies of

0→ Q[α]→ 0

and

0→ Q[α]
αr−−→ Q[α]→ 0

for r ≥ 0 at various homological and q-gradings.

If the differentials of C• are zero, then we are done. Suppose the differential dn is nonzero (has a
nonzero entry). Take the nonzero entry with lowest degree monomial. By permuting direct sums,
we may assume that this entry is the top left entry,

dn =

(
zαrj−r

′
k δ

γ ε

)
,

where zαrj−r
′
k divides each other entry. Because zαrj−r

′
k divides each other entry, we can do a

version of Gaussian elimination described in Proposition 2.5. Hence, the following portion of chain
complex

· · · A Q[α]{r} ⊕B Q[α]{s} ⊕ C D · · ·

ξ
ζ

 φ δ

γ ε

 (
µ ν

)

is isomorphic to the direct sum of complexes:
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Q[α]{r} Q[α]{s}

· · · A B C D · · ·

zβr−s

⊕ ⊕

ζ ε−γ(z−1αs−r)δ ν

Thus we get the desired decomposition. Moreover, the resulting complex is homotopy equivalent
to grading shifted copies of

0→ Q[α]→ 0

and
0→ Q[α]

αr−−→ Q[α]→ 0

for r > 0, since

0→ Q[α]
α0

−→ Q[α]→ 0

is contractible because α0 is invertible.

Lastly, to show that the homotopy category of GKom(Q[α] − Mod) is Krull-Schmidt, we need
to show that each decomposition is unique up to homotopy. Suppose we have two homotopic
complexes

C• = C0 ⊗ (0→ Q[α]→ 0)⊕
⊕
i≥1

Ci ⊗
(

0→ Q[α]
βi−→ Q[α]→ 0

)

C ′• = C ′0 ⊗ (0→ Q[α]→ 0)⊕
⊕
i≥1

C ′i ⊗
(

0→ Q[α]
αi−→ Q[α]→ 0

)

where Ci and C ′i are doubly graded vector spaces. Tensoring with Q[α]/(α− 1), we have

C0
∼= H(C ⊗Q[α]/(α− 1)) ∼= H(C ′ ⊗Q[α]/(α− 1)) ∼= C ′0.

Next consider tensoring with Q[α]/(αr). We firstly compute

H

((
0→ Q[α]

αi−→ Q[α]→ 0

)
⊗Q[α]/(αr)

)
= H

(
0→ Q[α](αr)

αi−→ Q[α]/(αr)→ 0

)
=

{
Qr ⊕ tQr i ≥ r
Qr−i ⊕ tQr−i i < r

Thus,

H(C• ⊗Q[α]/(αr)) = C0 ⊗Qr ⊕
⊕
i≥r

Ci ⊗ (1 + t)Qr ⊕
⊕
r>i≥1

Ci ⊗ (1 + t)Qr−i

by using the result of Example 3.8. Hence, formally, we have

H(C• ⊗Q[α]/(αr+1))−H(C• ⊗Q[α]/(αr)) = C0 ⊕ (1 + t)
⊕
i≥r

Ci,

and thus

−H(C• ⊗Q[α]/(αr+2)) + 2H(C• ⊗Q[α]/(αr+1))−H(C• ⊗Q[α]/(αr)) = (1 + t)Cr

which allows us to compute the graded dimensions of the Ci and this is independent of homotopy,
thus Ci ∼= C ′i. �

Remark 4.6. Note that in the above proof, we need z to be invertible, which is why we chose
earlier to work over Q.

47



4.3. COMPARING WITH Khα CHAPTER 4. LEE SPECTRAL SEQUENCE

4.3 Comparing Khα with the Lee Spectral sequence

Given CKhα(L) for a link L, we have seen this specialises to the Khovanov and Lee complexes by
tensoring with certain rings. So we may ask how Khα(L) is related to the Lee spectral sequence.
In the case of the Lee chain complex, where the objects are graded but the differentials are only
filtered, instead of using this to define a spectral sequence as we did before, we can correct the
grading first by working over a polynomial ring where the formal variable has the desired degree to
correct the grading.

4.3.1 Tensoring with a Polynomial Ring

Following Chapter 3, we denote filtrations by FpCq in this section, but there is a slight difference
here: we will be starting with a graded vector space (rather than a filtered one) and then defining
a filtration induced by this grading. That is, for a graded vector space Cq =

⊕
i Ci,q, it is filtered

according to FpCq :=
⊕

i≤p Ci,q.

Suppose (C•, d•) is a complex of filtered vector spaces, i.e. the differential d• preserves the filtration:

dq(FpCq) ⊆ FpCq−1.

From this, we can produce a spectral sequence Erp,q, and of course we have the E0
p,q page

Cp,q =
FpCq
Fp−1Cq

.

Another thing we can do is tensor the vector spaces Cq with a polynomial ring k[α] (where k is a
field — we will use Q later on) and then, using this α, we correct the grading of the maps between
the graded objects so they are not only filtered but graded. To do this, we define a new differential
which is a map of k[α]-modules,

dαq : Cq ⊗ k[α]→ Cq−1 ⊗ k[α].

Whether or not Cq was a graded vector space, Cq ⊗ k[α] is now a graded vector space. Choose α
to have degree 1 (for what we will do with Lee homology, we will choose the degree of α to be −4).
For example, if xp ∈ FpCq, then x⊗ αk ∈ Fp+k (Cq ⊗ k[α]). Then we define dα by the following.
For xp ∈ FpCq, where dq(x) =

∑
i≤p yp−i for yi ∈ FiCq−1 (so dq(xp) ∈ FpCq−1) =

⊕
i≤p Ci,q−1),

then

dα(x⊗ 1) :=
∑
i≤p

yp−i ⊗ αi.

Indeed, dα preserves the gradings: for yp−i ∈ Fp−iCq−1,

deg(yq−i ⊗ αi) = deg(yq−i) + deg(αi) = q − i+ i = q.

It is also a differential: suppose dq(xp) =
∑
i≤p yp−i and dq−1(yp−i) =

∑
j≤p−i zp−i−j , so

∑
i≤p

∑
j≤p−i

zp−i−j = 0.
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Then

(dα)2(x⊗ 1) = dα

∑
i≤p

yp−i ⊗ αi


=
∑
i≤p

dα(yp−i ⊗ αi)

=
∑
i≤p

∑
j≤p−i

zp−i−j ⊗ αi+j

= 0.

The last equality is by dq−1dq = 0 of the original differentials, because the composition of maps is
the same, but we have just changed the gradings.

If we want α to have a different degree, say deg(α) = s for some s ∈ Z, then deg(x⊗αi) = deg(x)+is.

Example 4.7. Suppose we have the following map d : C0 → C−1 of graded vector spaces that
does not preserve the grading,

Q Q

Q q−1Q

1

⊕ ⊕
1

where C0 = Q⊕Q and C−1 = Q⊕ q−1Q where qi means the vector space is in degree i. So we
have the following:

F0C0 = Q⊕Q F0C−1 = Q⊕Q
F−1C0 = 0, F−1C−1 = Q

Indeed, d really is a differential on F•Cq, since d(F−1C0) ⊆ F−1C−1 and d(F0C0) ⊆ F0C−1. Now
take dα : C0 ⊗Q[α]→ C−1 ⊗Q[α], and let deg(α) = 1. So, when C0 and C−1 are decomposed by
degrees as below, dα preserves the gradings:

C0 ⊗Q[α] C−1 ⊗Q[α]

degree -1 0 Q

degree 0 Q⊕Q Q⊕Q〈α〉

degree 1 Q〈α〉 ⊕Q〈α〉 Q〈α〉 ⊕Q〈α2〉

degree 2 Q〈α2〉 ⊕Q〈α2〉 Q〈α2〉 ⊕Q〈α3〉

...
...

...

=

dα

=

⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕ ⊕

Take (x, y) in the degree 0 piece Q⊕Q of C0 ⊗Q[α] and (1x, 1y) that sits in the degree 0 piece of
C−1 ⊗Q[α]. So dα(x) = x1x and dα(y) = y1yα. Thus,

dα =

(
1 0
0 α

)
.

In general, after ordering the bases with respect to the grading, a filtered complex of graded spaces
will be a differential that is upper (or lower) triangular, and dα will be a block diagonal matrix.
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4.3.2 Correcting the Grading of the Lee Complex

Following Theorem 4.1, since dLee = dKh + δ, where δ has degree +4, we correct the grading with
α, where deg(α) = −4, so dα = dKh + αδ. As usual, by setting α = 0 we obtain the Khovanov
differential and hence the Khovanov complex CKh, and by setting α = 1 we obtain the Lee
differential and hence the Lee complex CKhLee.

By the same argument as Lemma 4.2, whenever we have a complex in CKhα(L), it will be a direct
sum of Eαs and Cαn s, where

Eα = 0→ Q[α]→ 0,

and
Cαn = 0→ Q[α]

αn−−→ q4nQ[α]→ 0.

We can consider these summands of chain complexes as originally being a filtered chain complex
and having had their grading corrected by α. So for

Cαn = 0→ Q[α]
αn−−→ q4nQ[α]→ 0

tensoring with Q[α]/(α− 1) = 0 gives the summand of the Lee complex

0→ Q 1−→ q4nQ→ 0

which is not graded, but it is filtered

0 0

degree 4n 0 Q

...
...

0 Q

degree 0 Q Q

Q Q

...
...

⊂

0

⊂

0

⊂ ⊂

⊂ ⊂

⊂

0

⊂

1

⊂ ⊂

1

⊂ ⊂

For this filtered complex, the associated graded page E0 and subsequent pages are of the form

E0 :

0 0

degree 4n 0 Q

...
...

0 0

degree 0 Q 0

0 0

...
...

E1 :

0 0

degree 4n 0 Q

...
...

0 0

degree 0 Q 0

0 0

...
...

The first nonzero differential appears on the E4n page and it is of the form

0→ Q→ Q→ 0,
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and since the Cns vanish in Lee homology (because they are null-homotopic) the above complex
must be exact and E4n+1 = E∞ = 0. In fact, by tracing our way through the definitions of
spectral sequences, this must be the identity map because the differentials on the 4nth page are
induced by the restriction of the differentials of the original filtered complex to the 4n-almost
cycles. That is, d4n : Z4n

p,q → Z4n
p−4n,q+4n−1 is induced by d on the original complex, so for

[x] ∈ E4n
p,q, d

4n([x]) = [dx] = [x].

Proposition 4.1. There is an equivalence of categories between the category C of graded complexes
over Q with only filtered differentials and the category Cα of graded complexes of free Q[α]-modules.

Proof. Denote the functors (−)α : C → Cα and it’s inverse (−)α
−1

: Cα → C. The (−)α functor is
going to be the process of correcting the gradings using a formal variable α, and for the inverse
functor (−)α

−1

= −⊗Q[α]/α = 1. The map (−)α is functorial because (dα)2 = 0. To see that this
gives an equivalence of categories, take a complex (V•, d•) in C. Then (V•, d•)

α = (V• ⊗Q Q[α], dα• ),
where

dα• =
∑

dα•,i,j : V•,i ⊗Q[α]→ V•+1,j ⊗Q[α]

v ⊗ p 7→
∑

(d•,i,jv)⊗ αj−ip.

Applying (−)α
−1

,

(V• ⊗Q Q[α], dα• )α
−1

= (V• ⊗Q Q[α]⊗Q[α] Q[α]/α = 1, (dα• )α
−1

) ∼= (V•, (d
α
• )α

−1

)

where

(dα• )α
−1

: v ⊗ p⊗ q 7→ dα• (v ⊗ p)⊗ q =
∑

d•,i,jv ⊗ αj−ip⊗ q = d•,i,jv ⊗ p⊗ q.

The last equality is since we are tensoring over Q[α], so αj−ip⊗Q[α] q = p⊗Q[α] α
j−iq = p⊗Q[α] q

because the last factor of the tensor product is in the ring Q[α]/(α− 1 = 0). So (dα• )α
−1

as a map
from V• → V•+1 is

v 7→ v ⊗ 1⊗ 1 7→ d•,i,jv ⊗ 1⊗ 1 7→ 1.d•,i,jv.

Thus ((−)α)α
−1 ∼= IdC . A similar argument shows ((−)α

−1

)α ∼= IdCα , and hence the functors (−)α

and (−)α
−1

are inverse to one another. �

Proposition 4.2. The category C is Krull-Schmidt, with summands Ẽ and C̃n where Ẽ = Q and

C̃n is the filtered complex Vj,0
id−→ Vj,1, where

Vj,0 =

{
Q if j ≤ 0

0 otherwise

and

Vj,1 =

{
Q if j ≤ n
0 otherwise

Proof. Clearly, (C̃n)α = Cαn . Do Gaussian elimination from Lemma 4.2 in Cα, and then apply

(−)α
−1

. �

Thus, as we can decompose (V•, d•)
α into a direct sum of Eαs and Cαn s, the original complex (V•, d•)

is homotopic to the corresponding direct sum of Ẽ and C̃n. Since CKhLee ∈ C and CKα ∈ Cα the
correspondence between CKhLee and CKhα is very close. In fact, we can stay in the category Cα
and read off the Lee spectral sequence, which is the content of the next section.
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4.3.3 The Comparison

As we observed earlier CKhα(L) ⊗Q[α] Q[α]/(α = 0) is the Khovanov complex CKh(L), and
CKh(L)α ⊗Q[α] Q[α]/(α− 1 = 0) is the Lee complex CKhLee(L), so

H•
(
CKhα(L)⊗Q[α] Q[α]/(α = 0)

) ∼= Kh(L) = E1

H•
(
CKhα(L)⊗Q[α] Q[α]/(α− 1 = 0)

) ∼= KhLee(L) = E∞

Theorem 4.8. Let Rk denote the truncated polynomial ring Q[α]/(αk = 0). Then the sequence
H•
(
CKhα(L)⊗Q[α] Rk

)
k≥0

completely encodes the Lee spectral sequence.

Proof. Take an arbitrary complex

CKhα(L) ' pE(t, q)Eα ⊕
⊕
i

pi(t, q)C
α
i .

Then,

CKhα(L)⊗Q[α] Rk ' pE(t, q)Rk ⊕
⊕
i

pi(t, q)R
i
k,

for the complex Rik := Rk
αi−→ Rk, since the tensor product distributes over the direct summands.

To compute homology of CKhα(L)⊗Q[α] Rk, we firstly compute

H•(Rk) ∼= Rk

H•(Rk
αi−→ q4iRk) ∼=

{
q4(k−i)Ri ⊕ q4iRi for i < k

Rk ⊕ q4iRk for i ≥ k

Thus, with grading shifts,

H•(CKh
α(L)⊗Q[α] Rk) ∼= pE(t, q)Rk ⊕

⊕
i<k

pi(t, q)(q
4(k−i)Ri ⊕ q4iRi)⊕

⊕
i≥k

pi(t, q)(Rk ⊕ q4iRk).

This is not as terrible as it looks. For example, suppose CKhα(L) = pEE
α ⊕ p1C

α
1 ⊕ p2C

α
2 . Then

for k = 1, 2, . . . , H•(CKh
α(L)⊗Q[α] Rk) is isomorphic to

k = 1 : pER1 ⊕ p1(R1 ⊕ q4R1) ⊕ p2(R1 ⊕ q8R1)
k = 2 : pER2 ⊕ p1(q4R1 ⊕ q4R1) ⊕ p2(R2 ⊕ q8R2)
k = 3 : pER3 ⊕ p1(q8R1 ⊕ q4R1) ⊕ p2(q4R2 ⊕ q8R2)
k = 4 : pER4 ⊕ p1(q12R1 ⊕ q4R1) ⊕ p2(q8R2 ⊕ q8R2)

...
...

...
...

By looking at the above example, we notice that for Cαn ⊗Q[α] Rk the q-gradings remain constant
for k ≤ n, and for k > n, the q-grading of the first summand starts increasing by 4(k−n) (we have
drawn a red line that separates k = n and k = n+ 1 in each column).

This corresponds directly to the spectral sequence as described in Section 4.3.2. Take a summand
of the Lee complex

0→ Q 1−→ q4nQ→ 0,

then the Ekth page of the spectral sequence is a bigraded Q[α]-module with nonzero entries Q
in bidegree (1, 4n) for n < k. For k = 4n, there is a differential between the two Qs that is an
isomorphism, and on the k > 4n+ 1st page these Qs disappear. Tensoring each page of the spectral
sequence by Rk (over Q[α]), we instead have a Rk in each entry where there was a Q. For k ≤ 4n,
the Rk on the kth page of the spectral sequence are precisely in the homological and q-grading
specified by H•(C

α
n ⊗Q[α]Rk), and for k > 4n, the Rk disappear. The point where the Rk disappear
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corresponds to the point where the q-gradings in the first summand starts increasing — that is, at
H•(C

α
n ⊗Q[α] Rn+1).

To summarise, let D be the ‘stable’ part of the triply graded module, i.e. the part before the
q-gradings start increasing (everything above and to the left of the red line). Then

H•(CKh
α(L)⊗Q[α] Rk) ∩D ∼= Ek ⊗Q[α] Rk

So the sequence (
H•(CKh

α(L)⊗Q[α] Rk)
)
k≥0

completely encodes the pages of the Lee spectral sequence. �

Thus, we can stay in the category of graded complexes of free Q[α]-modules and read off the spectral
sequence. We already know that CKhα(L) is a link invariant (up to homotopy) by Theorem 4.4,
and since CKhα(L) encodes the Lee spectral sequence, the isomorphism class of the pages of
spectral sequence are link invariants, too. While it is not immediately obvious that something
in GKom(Q[α] −Mod) is a useful invariant, Theorem 4.8 shows that the equivalence classes of
two links [L1] and [L2], the equality [L1] = [L2] is decidable by doing finitely much linear algebra,
because finitely many of the H•([L]⊗Rk) determine the homotopy type of [L].

4.4 Slice Genus and obtaining genus bounds from the s-
invariant

An important result obtained from the Lee spectral sequence, first proved by Rasmussen [Ras10],
is that the Lee spectral sequence allows us to compute the s-invariant, which gives lower bounds
on the slice genus of knots. This will be the subject of the remainder of this thesis.

4.4.1 Some Notation

We briefly introduce some notation to be used heavily in the remainder of this thesis. We define E
and Cn to be the complexes of Q[α]-modules obtained from BN(T ) for a (1,1)-tangle T

E = • → → •,

Cn = • →

n

−−−−→ q2n → •

and E′ and C ′n to be the complexes of Q[α]-modules

E′ = • → ∅ → •,

C ′n = • → ∅ αn−−→ q4n∅ → •.

Thus the computation in Example 2.29 for BN(31) shows that before we take the final trace, the
cut open trefoil c(31) has BN(c(31)) ' q2t0E ⊕ q6t2C1, where t keeps track of the homological
height. If we take the trace, BN(31) ' qE′ ⊕ q3E′ ⊕ t2q5C ′1.

The complexes E,Cn and E′, C ′n are related by taking the trace and delooping:

tr(E) =© ∼= q−1∅ ⊕ q∅ ∼= q−1E′ ⊕ qE′,

tr(Cn) =© cn−→© ∼= q−1∅ ⊕ q∅

 sn sn−1

sn+1 sn


−−−−−−−−−−−→ q2n−1∅ ⊕ q2n+1∅,
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where cn is a cylinder with n dots on it, and sn is a 2-sphere with n dots on it. Since s2m+1 = αm

(i.e. the sphere has an odd number of dots on it) and s2m = 0 (i.e. even number of dots), we
conclude that

sn =

{
α
n−1
2 if n odd,

0 if n even.

Thus,

tr(Cn) ∼=

q
−1C ′n−1

2

⊕ qC ′n−1
2

if n odd,

q−1C ′n
2
⊕ qC ′n−2

2

if n even.

Remark 4.9. The E′s are called ‘pawn moves’ (they always come in pairs and have a q-grading 2
apart) and C ′1 is called a ‘knight’s move’ (it is homological height +1 and q-grading +4 apart, so
it has bidegree (1,4)). It was until earlier this year that it was conjectured (the ‘Knight’s Move
Conjecture’) that the complex C ′n for n ≥ 2 never appears in the complexes for tangles. However a
C ′2 was found by Manolescu and Marengon earlier this year in [MM18] for a 38 crossing knot.

4.4.2 Defining the s-invariant

Theorem 4.10. For a (1,1)-tangle T , the complex BN(T ) is isomorphic to a direct sum of
complexes E and Cn.

Proof. From a (1,1)-tangle T , we obtain a complex which will have at each vertex of the cube
of resolutions a complete smoothing of T which will be a disjoint union of a single strand and
circles. After delooping, we obtain a complex which for different homological heights in the complex
will have a direct sum of single strands in different gradings. That is, BN(T ) is isomorphic to a
complex such as

qb

• qa qc qe qg •

qd qf

⊕

⊕ ⊕

By Theorem 2.20, each of the differentials in BN(T ) must have degree zero, so each differential is
a matrix whose entries are scalars and monomials in • (otherwise the image of the differentials
would be inhomogeneous). Explicitly, the degree zero maps are given by the following. Take a

map qr → qs . Such a cobordism will contain a sheet with possibly zero dots on it and a possibly

empty set of unconnected components of closed surfaces. Thus,

Hom(qr → qs ) ∼= Q[α]{ , } = Q{ , α , α2 , . . . , , α , α2 , . . . }.

The degree of the map is then given by

deg(αp ) = s− r − 4p

deg(αp ) = s− r − 2− 4p

for some p ∈ Z≥0.

To find the degree zero map, we need s− r − 4p = 0 or s− r − 4p− 2 = 0. So,

54



CHAPTER 4. LEE SPECTRAL SEQUENCE 4.4. THE S-INVARIANT

• if s 6= r mod 2, then the map with degree zero can only be the zero map (multiplication by
zero);

• if s < r, then s− r − 4p < 0, so the map with degree zero is again the zero map;

• if s > r and s− k = 0 mod 4, then deg(Q{α s−r
4 }) = 0;

• if s > r and s− k = 2 mod 4, then deg(Q{α s−r−2
4 }) = 0.

So each differential has entries that are zero or are monomials in • in the above form. Now, by
repeatedly using the Gaussian elimination of Lemma 4.2, we keep bubbling off Cn’s until we are
only left with E’s at various homological heights. �

Lemma 4.3. The decomposition into a direct sum of E’s and Cn’s is unique.

Proof. This is just a corollary of Lemma 4.2. �

Fortunately, we know how many resulting E’s appear in BN(T ) for a (1,1)-tangle by the following
theorem first proved by Lee [Lee05] and proved ‘locally’ by Bar-Natan and Morrison [BNM06].

Theorem 4.11. The number of E’s is 2n−1 where n is the number of components of the 1-1 tangle.

Thus, for a cut open knot, which is a connected two point tangle, there is a unique copy of E.

Definition 4.12. The s-invariant s(K) of a knot K is the grading of the unique E of BN(c(K)),
where c(−) ‘cuts open’ a knot into a two point tangle.

Lemma 4.4. The complex BN(c(K)) doesn’t depend on where you cut.

Proof. To see this, pick a basepoint t on the knot K (so we can think of K parametrised by time
t, and give the knot orientation corresponding to time increasing) and denote the tangle cut at
this point ct(K). Clearly, BN(ct±ε(K)) will not change for small enough ε, but it could change
for a certain t = t′ where there is a crossing in the diagram for K. So we need to check that
BN(ct′+ε(K)) ∼= B(ct′−ε(K)). Cutting before the crossing gives

T

whereas cutting after the crossing gives

T
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But BN(−) is invariant under the Reidemeister moves by sweeping the strand over T , and finally
performing two Reidemeister one moves, so BN(−) of these two diagrams is homotopic equivalent
(and have isomorphic homology). �

The above definition agrees with Rasmussen’s definition of the s-invariant, which he defines as the
average of the gradings of the Eα for Lee homology. Recall that Lee homology is given by

H• (CKhα(L)⊗Q[α]/(α− 1 = 0)) .

So for qs(K)E, taking the trace tr(qs(K)E) = qs(K)−1E′ ⊕ qs(K)+1E′, and thus

CKhα(K) = HomBN(∅, tr(qs(K)E ⊕
⊕
i

qiCni))

= qs(K)−1Q[α]⊕ qs(K)+1Q[α]⊕
⊕
j

qjCαn .

Thus, by tensoring with Q[α]/(α− 1 = 0) and taking homology,

KhLee(K) ∼= qs(K)−1Q⊕ qs(K)+1Q,

since each Cαn ⊗Q[α]/(α− 1 = 0) is contractible. Rasmussen defines s(K) to be a+b
2 where a and

b are the gradings of the copies of Q in Lee homology, i.e. qaQ⊕ qbQ. Here, we clearly have

s(K)− 1 + s(K) + 1

2
= s(K).

4.4.3 Slice Genus

This section follows Cromwell’s discussion in [Cro04].

Definition 4.13. The (smooth) slice genus or 4-ball genus of a link L is the minimum genus taken
over all properly smoothly embedded orientable surfaces bounding L in the four-dimensional ball.

The properly embedded property means we think of L, which is the boundary of the surface
bounding it, as a subset of the boundary of the four-ball, i.e. L ⊂ ∂B4 = S3. The slice genus of a
link L is denoted by gs(L) or g4(L).

To understand this, consider an example one dimension lower. Suppose two lines in S2 = ∂B3

intersect transversely at a point. If part of one of the lines in a neighbourhood of the intersection
is pushed into the interior of the ball B3, then the intersection can be removed. Similarly, if two
surfaces in S3 = ∂B4 intersect transversely as in the figure below, then a neighbourhood of the
intersection can be pushed into the 4-ball to remove the intersection.

Intersections of the form in the diagram are called ribbon singularities. An immersed surface in S3

where all the intersections are ribbon singularities is called a ribbon surface. If we push all the
intersections of a ribbon surface into a 4-ball, the surface can be made into a nonsingular embedded
surface in R4.
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For example consider two instances pictured below of the band sum of two unknots:

These knots can be spanned by disks connected by a band, and this strip must have ribbon
singularities as it intersects each disk, thus giving us immersed disks bounding the knots. The
ribbon surface is topologically a disk, so each knot bounds a disk properly embedded in B4 and
hence gs = 0. We could construct more examples of ribbon surfaces of higher genus by adding
more bands. Knots that are spanned by a disk with bands attached with ribbon singularities (i.e.
knots bounded by a ribbon disk) in S3 are called ribbon knots, and knots for which gs = 0 are
called slice knots. Indeed, every ribbon knot is slice.

Already it is clear that finding the slice genus of a knot is difficult, and we still do not know much
about computing slice genus. For example, it is still unknown if every slice knot is actually ribbon.
However, Rasmussen skilfully used the Lee spectral sequence to give us a lower bound on the slice
genus of a knot. Moreover, finding a lower bound is the difficult inequality, and upper bounds are
given by constructing explicit examples of surfaces.

4.4.4 Genus Bounds

The following result was proved by Rasmussen [Ras10].

Theorem 4.14. We have the following inequality

|s(K)| ≤ 2g4(K),

where s(K) is the s-invariant for the knot K, and g4(K) is the slice (4-ball) genus for the knot K.

Proof. Take a surface Σ in B4 bounding the knot K ⊂ ∂B4 = S3. Pick a basepoint x ∈ K and
parametrise B4 as B3 × I as follows:

•x B3 × {0}
∂B3 × I
B3 × {1}

which is homeomorphic to
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•x

B3 × {1}

∂B3 × I

B3 × {0}

where we compute the boundaries by the ‘Leibniz rule’:

∂B4 = ∂(B3 × I)

= ((∂B3)× I) ∪ (B3 × ∂I)

= (S2 × I) ∪ (B3 × {0}) ∪ (B3 × {1}).

As before, let c(−) denote ‘cut’, so c(U) is the cut unknot and c(31) is the cut trefoil (which are in
B3 × {0} and B3 × {1} in the above diagram, respectively). These are both (1, 1)-tangles. The
surface Σ induces a chain map BN(c(U))→ BN(c(31)). By Theorem 4.10, BN(c(K)) is a direct
sum of (grading shifted) Es and Cns and there is exactly one copy of E, in grading qs(K).

Now, if Σ is a connected cobordism between two connected two point tangles c(U) to c(K), then
the induced map BN(Σ) : E → qs(K)E is nonzero. The proof for this is outside the scope of this
thesis, but can be proved easily with the ‘colour technology’ introduced in [BNM06].

Recall that the degree of BN(Σ) is given by the relative Euler characteristic. So in this case, since
c(U) and c(K) are two point tangles, deg(BN(Σ)) = χ(Σ)− 1

2 |B| = χ(Σ)− 1. The E for c(U) is
in q-grading 0, and by definition, the q-grading for the E for c(K) is s(K). So BN(Σ) is some
nonzero map

BN(Σ) : E → qs(K)E

of degree χ(Σ)− 1. Since any map E → qs(K)E is a (scalar multiple of a) sheet with k ≥ 0 dots on
it, and • has degree −2, χ(Σ)− 1 = s(K)− 2k. Thus χ(Σ) = s(K)− 2k + 1, and because k ≥ 0,

χ(Σ) ≤ s(K) + 1.

Doing a similar computation for BN(Σ) : qs(K)E → E, we have

χ(Σ) ≤ −s(K) + 1.

Moreover, the Euler characteristic is given by χ(Σ) = −2g(Σ) (since χ = 2− 2g − b where b is the
the number of boundary components), so combining the previous bounds, we have

−2g4(Σ) ≤ −|s(K)|

and thus
2g4(Σ) ≥ |s(K)|.
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and hence the s-invariant gives a lower bound for the slice genus. �

For example, the s-invariant for the trefoil 31 is 2, and the slice genus g4(31) = 1 (which can be
found by looking at the Seifert surface of 31), so it does indeed satisfy |s(31)| ≤ 2g4(K).

With a little more work, Theorem 4.14 then provides the following important corollaries, both
found in [Ras10].

Corollary 4.1. If K is a positive knot (that is, it admits a planar diagram with only positive
crossings), s(K) gives an equality s(K) = 2g4(K) = 2g(K), where g is the ordinary genus of the
knot K.

Another corollary is a combinatorial proof of the Milnor Conjecture, originally proved by Kronheimer
and Mrowka using gauge theory in [KM93]:

Corollary 4.2. (Milnor conjecture) The slice genus of the (p, q) torus knot is (p− 1)(q − 1)/2.

4.4.5 Concluding Remarks

The Lee spectral sequence is a powerful tool: it contains the information of Khovanov homology, and
also says something about 4-dimensional topology via the s-invariant. After some familiarisation,
the equivariant Khovanov homology Khα is actually quite easy to work with, and finding the
s-invariant from a knot is not so difficult by hand for knots with fewer crossings. Moreover, the
pages of the Lee spectral sequence are encoded in this theory, which provides a way to bypass
discussion of spectral sequences that are notoriously difficult. However, the comparison of Khα

with the spectral sequence provides almost nothing new, and is perhaps a little underwhelming.
This begs the questions:

• Is there a better way to view the Lee spectral sequence?

• How could we use this gadget to find more general versions of the s-invariant for arbitrary
4-manifolds?
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