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Interactive and Automated Theorem Proving

Automated Theorem Proving

Curry-Howard-Lambek Correspondence:
I Proofs as Programs
I Propositions as Types

Figure: Haskell Curry Figure: Joachim Lambek
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Interactive and Automated Theorem Proving

Automated Theorem Proving

By “proving” we usually just mean proof verification.

An automated theorem prover won’t necessarily do any of the work
for us.
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Interactive and Automated Theorem Proving

Interactive Theorem Proving

Tools to help us
understand and
write our proofs

Does a bit of
the grunt work
for us, makes
writing proofs
feel more natural
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Lean 3

What is Lean?

I First launched by Microsoft Research in 2013

I Current version is Lean 3

I Mathematics component library (‘mathlib’) developed
primarily at Carnegie Mellon (CMU).

I Metaprogramming of tactics occurs within Lean itself

I Dependently typed (with Sigma- and Pi-types you might be
familiar with from Coq)

I Equipped with Calculus of Inductive Constructions (CIC)
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Lean 3

Calculus of Inductive Constructions (CIC)

An inductive type consists of a name and a list of constructors.

A surprising amount of mathematical (or computational) objects
can be defined using only inductive types.

Figure: Logical ‘or’ defined inductively

Figure: Binary tree defined inductively
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Lean 3

Calculus of Inductive Constructions (CIC)

As I come to discover, a clever use of inductive types is incredibly
helpful (if not essential) for proving theorems about algorithms.

Still a lot of choice in how exactly we implement them, though,
with non-trivial consequences.
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Row Equivalence

Let’s build something.

Spent most of Term 2 working on an implementation of Gaussian
Elimination for the math library.

OK, spent very little time implementing Gaussian Elimination, but
spent most of Term 2 trying to prove anything at all about it.
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Row Equivalence

Where to start?

Row Equivalence, of course.

What does row equivalence between M and N look like?

I A list of row operations (matrices)

I Multiplying all of these row operations in succession by M
should yield N.

I Each row operation either:
I scales a row;
I swaps two rows; or,
I adds a linear multiple of one row to another.

Jack Crawford ANU

Interactive & Automated Theorem Proving



Introduction Case Study: Gaussian Elimination

Row Equivalence

A first attempt

This checks all the boxes, what could go wrong?

Figure: I actually lost the code to my very first iteration, so this is a rough recreation. I think this is actually somehow slightly better
than the original.

Jack Crawford ANU

Interactive & Automated Theorem Proving



Introduction Case Study: Gaussian Elimination

Row Equivalence

It should be pretty easy to prove this is row equivalent, right?

Wrong.
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Row Equivalence

What went wrong?

Recall from earlier, we thought:
What does row equivalence between M and N look like?

I A list of row operations (matrices)

Because row equivalence is ‘list-like’, we tried implementing it with
a list.

Key observation: Don’t implement ‘list-like’ things with a list.
Implement them ‘like’ a list: with an inductive type!
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Row Equivalence

A (slightly) better use of inductive types

Define a single row equivalence step as an inductive type, and a
full row equivalence by chaining steps together.

Figure: This code has also been pretty heavily adapted for the presentation and looks a lot cleaner than it originally did. The
functions scale, swap, and linear add did not exist and I had implemented them explicitly in elementary.
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Row Equivalence

We now require the fact that multiplication by an elementary
matrix is equivalent to applying the row operation that the
elementary matrix comes from. This is OK, because we were going
to have to show this eventually, anyway.

The rest of the proof is little bit easier this time, but still not ideal.
In particular, invoking elementary implements is a bit annoying.
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Row Equivalence

Re-write the algorithm in terms of row reduction steps

This cuts the proof in half, but now makes our ‘algorithm’ more
complicated than it needs to be.

Shouldn’t need to construct a row equivalent step first if we just
want an elementary matrix. How do we improve this?
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Row Equivalence

Final implementation of row equivalence

Boil down the ‘essence’ of a row operation in a neutral way with
elementary.
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Row Equivalence

Any simple ‘algorithm’ as from earlier can now be proved just
using ...of elementary or ...of elementary apply.
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Row Equivalence

Interlude: How do we prove multiplication by elementary
matrix is equal to ‘applying’ the row operation, anyway?

It took about 15 lemmas.
These were tedious, but relatively straightforward:

Unfortunately, they required a couple deceptively simple-looking
lemmas that took an adventure of their own to solve.
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Row Equivalence

Figure: In case you forgot just how much more tedious automated theorem proving can be than just convincing a human.

The closest thing to this statement in mathlib was the statement
that:

I The sum of a single finitely-supported function over its
(singleton) support is the function evaluated at the point.

Not much to work with.
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Row Equivalence

Had to prove:

1. There is a function which is finitely-supported over a singleton set
which does the same thing as the ite.

2. Hence, this is a single finitely-supported function.

3. The sum by a finitely-supported function over a set which contains
its support is equal to summing the the same function over its
support.

4. Restate finset.sum as finsupp.sum

5. The sum of a single finitely-supported function over its
(single-point) support is the function evaluated at the point.
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Row Equivalence

This one was much worse.

Another bunch of (much larger) lemmas later, we eventually arrive
at our destination.

An unfortunate reminder that automated theorem provers perhaps
aren’t quite ready for a lot of practical applications, yet.
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Gaussian Elimination

End of detour: Back to Gaussian Elimination

Let’s refresh – how does the algorithm go again?

1. Look down the column until we find a nonzero item and:

i. move it to the top, or;
ii. repeat the algorithm on the submatrix given by excluding the

first column, if we can’t find one.

2. Divide the pivot row by the value of the pivot, making it 1.

3. Iterate down the column from the pivot, subtracting multiples
of the pivot row to set each value to zero.
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Gaussian Elimination

How do we implement this in Lean?

We have two choices. We could either:

I implement a function that performs row reduction around just
the first column, calls itself on the submatrix, and then
combines them all together somehow; or,

I perform the algorithm ‘in-place’, never actually breaking the
matrix up into submatrices, and instead just doing recursion
over the location of the pivot.

The latter seemed to be a bit faster, and honestly, a bit easier.
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Gaussian Elimination

For well-foundedness, we want to have a natural number which
strictly decreases in size on every recursion of the algorithm.

What’s the best candidate for this?
The number of columns to the right of (and including) the pivot.

We consider the position of the pivot relative to the bottom-right
corner of the matrix.
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Gaussian Elimination

Don’t want to have to subtract position from the size of the matrix
every time we need to read an element, though.

We choose to implement steps 1) and 3) of the algorithm in terms
of the actual row and column index in the matrix.

We still have well-foundedness, and now we only need to perform
the subtraction once and pass it into those steps, rather than
having to do it individually within the steps.
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Gaussian Elimination

Slightly modify our algorithm

To solve the problems with well-foundedness described above, we
tweak our algorithm as follows:

1. Look up the column until we hit the pivot. Swap the first
non-zero element we see with the pivot and continue.

2. If the pivot element is nonzero, divide the pivot row by the
value of the pivot.

3. If the pivot element is zero, call the algorithm again but with
the pivot position from the right decremented by one.
Otherwise, clear the column from the bottom up and then call
the algorithm again with the pivot position from both the
bottom and the right each decremented by one.
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Gaussian Elimination
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Gaussian Elimination
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Gaussian Elimination

Our nice inductive types are robust enough to handle all of these
proofs with ease.

These proofs look a lot worse otherwise (I tried.)
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Gaussian Elimination

...Probably easier to switch out of the presentation and look at the
code directly at this point.
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Gaussian Elimination

Bonus: Also proved that row equivalences are invertible over
division rings.
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Gaussian Elimination

Great! But now what?

It took all of that to finally prove that for any matrix, there is an
invertible matrix that you can multiply by to perform the action of
Gaussian elimination, which yields a result that is equal to
‘applying’ Gaussian elimination. Phew! But what about...

I proofs about the rank of the matrix?

I extending to Gauss-Jordan?
I proving that the result of Gaussian elimination is in row

echelon form (???)

I or defining row echelon form at all (?!?!?)
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Gaussian Elimination

I’m working on it.

It may very well require tearing up everything I’ve done and
reimplimenting it all from scratch (again). Let’s hope not.
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Gaussian Elimination

This project is on GitHub:
https://github.com/jjcrawford/lean-gaussian-elimination
jack.crawford@anu.edu.au
u6409041

Attributions:
Photograph of Haskell Curry by Gleb Svechnikov, distributed under
a CC BY-SA 4.0 license.
Photograph of Joachim Lambek by Andrej Bauer, distributed
under a CC BY-SA 2.5 si license.
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