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Abstract

In this thesis we study a tower of biadjunctions coming from a pivotal tensor
category with a self dual object. In order to do this, we present some relevant
parts of the standard theory of monoidal categories, tensor categories, and
pivotal tensor categories. We recall a method for constructing matrix units
for the algebras End(X⊗n) for any object X in a semisimple linear monoidal
category.

Using these matrix units, we then prove our main result, Theorem 4.2.14.
In a linear monoidal category, endomorphism algebras for tensor powers of a
distinguished object X can be used to build a tower of algebras. We prove
that when the category is a pivotal tensor category and the object X is self
dual, the induction and restriction functors associated to this tower form
biadjoint pairs.

Inspired by [Kho14], we use the data of these biadjunctions to construct
a graphical category GX . The morphisms in this category are various planar
diagrams, modulo some local relations. For instance, one such relation is

= .

The construction in [Kho14] has been a rich source of interesting mathemat-
ics. The hope is that our category might prove to be similarly interesting.
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Chapter 0

Background and motivation

0.1 What is categorification?

The term ‘categorification’ was first introduced by Crane and Frenkel in their
joint work [CF94]. Categorification aims to take familiar concepts, phrased
in the language of sets and functions, and shift everything one rung up the
categorical ladder. The hope is that by passing from a simpler object to a
more complex one, we gain some additional structure or insight that can be
used to study the original object. These newly constructed objects are often
interesting in their own right as well.

Before we go into any further details, it is easier to first discuss the oppo-
site process of decategorification. If C is a category, then we can ‘decategorify’
C by looking at the set of isomorphism classes of its objects. As an example,
let’s think about the category FinVeck of finite dimensional k-vector spaces.
Since two finite dimensional vector spaces are isomorphic if and only if they
have the same dimension, there is one isomorphism class of objects for each
natural number n ∈ N.

This might not seem particularly interesting, and at this stage it’s not.
However, N is far more than just a set – to start with there are algebraic op-
erations and a natural ordering. The interesting thing is that this additional
structure is reflected in the category FinVeck. Given two finite dimensional
vector spaces V and W , we can form their direct sum V ⊕ W , and their
tensor product V ⊗W . If V is m-dimensional and W is n-dimensional, then
V ⊕W and V ⊗W have dimensions m+n and m ·n respectively. In this way,
the addition an multiplication in N are reflected in FinVeck. One can also
show that the familiar rules for arithmetic in N have categorical analogues
in FinVeck. For example, the isomorphism

(U ⊕ V )⊗W ∼= (U ⊗W )⊕ (V ⊗W )

1



0.1. What is categorification? 2

is analogous to the distributive rule (`+m) · n = (` · n) + (m · n).
We can push this even further though! We could note that the dimen-

sion of V is less than or equal to the size of W if and only if there is a
monomorphism (injection) from V to W . Thus, the natural order on N can
be expressed in FinVeck too. Again, we can show that basic rules of this
order, like ` ≤ m =⇒ `+ n ≤ m+ n, are reflected in the category.

Decategorification is relatively simple to perform, but we inevitably lose
information in the process. Categorification is an attempt to reverse this
process and recover the lost information. When attempting to categorify a
set-theoretic object, we must produce a categorical object which decategori-
fies to the original object. Since this process involves the creation of entirely
new objects, it is inherently harder than decategorification. The relationship
between the two is akin to the relationship between differentiation and inte-
gration – the former is a systematic process, while the latter is more of an
art, requiring insight into particular situations.

From our above discussion, we could say that the category FinVeck is
a categorification of the natural numbers N. This is really a toy example
though, and it is reasonable to ask whether there are deeper, more interesting
examples. The answer is a resounding yes. To list just two:

• Khovanov homology [Kho00] is a categorification of the Jones polyno-
mial. It still assigns an invariant to each knot, but is also functorial
in that it assigns an invariant to each cobordsim between knots. This
makes Khovanov homology a richer and more interesting invariant than
the Jones polynomial. It is known that Khovanov homology detects the
unknot, whereas this is still an open question for the Jones polynomial.

• Khovanov and Lauda [KL09], and independently Rouquier [Rou08],
categorified the quantum Kac-Moody algebras. This leads to the con-
struction of canonical bases for these algebras that have convenient
positive integrality properties.

There are many further examples – see the discussion in [Tub13] or [CY98].

Often, categorification is achieved by means of the following analogy be-
tween set theory and category theory:

set-theoretic concept category-theoretic concept
sets categories

elements of sets objects of categories
functions between sets functors between categories

equalities between elements isomorphisms between objects
equalities between functions natural isomorphisms between functors

.
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We attempt to replace the set-theoretic concepts on the left with the cor-
responding category-theoretic concept on the right. We note that equalities
are replaced with isomorphisms rather than strict equalities between objects
or functors. This is because in practice requiring equality between objects
or functors turns out to be far too rigid a requirement. For example, in the
above discussion, the algebraic structure of N was reflected in FinVeck by
isomorphisms of vector spaces, not equalities.

To demonstrate this idea we’ll categorify the definition of a monoid to
arrive at the definition of a monoidal category, a structure of central impor-
tance in everything that follows.

Recall that a monoid is a set M with a binary operation M ×M → M
written (a, b) 7→ a · b. We require that this operation is associative, i.e.,

(a · b) · c = a · (b · c) (1)

for all a, b, c ∈M . There is also a distinguished element, denoted 1, satisfying
the equations

a · 1 = a and 1 · a = a (2)

for all a ∈M .
The philosophy of categorification dictates that we should replace the set

M with a category C, the function M ×M →M with a functor C × C → C,
and the distinguished element 1 with a distinguished object 1. We’ll denote
this functor by ⊗ (read ‘tensor’) and write the image of (X, Y ) as X ⊗ Y .

Since we ask that (1) and (2) hold for all elements of M , these are really
equations between functions. This means that we should replace them with
natural isomorphisms (written in components)

aX,Y,Z : (X ⊗ Y )⊗ Z
∼=−−−→ X ⊗ (Y ⊗ Z),

and

rX : X ⊗ 1
∼=−−−→ X and `X : 1⊗X

∼=−−−→ X.

This gets us most of the way to the definition of a monoidal category.

Definition 0.1.1. A monoidal category is a sextuple (C,⊗,1, a, `, r). Here
C is a category, ⊗ : C × C → C is a functor called the ‘tensor product’
functor, and 1 is a distinguished object of C called the ‘tensor unit’. The
remaining pieces of data are three natural isomorphisms – the associator
a : (−⊗−)⊗− → −⊗ (−⊗−), the left unitor ` : 1⊗− → −, and the right
unitor r : −⊗ 1→ −. In components, these are isomorphisms

aX,Y,Z : (X ⊗ Y )⊗ Z
∼=−−−→ X ⊗ (Y ⊗ Z)
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for all X, Y, Z ∈ C, as well as

`X : 1⊗X
∼=−−−→ X and rX : X ⊗ 1

∼=−−−→ X

for all X ∈ C. We require that this data satisfies the following two axioms.

1. The pentagon axiom. The diagram

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW⊗X,Y,ZaW,X,Y ⊗ idZ

aW,X⊗Y,Z aW,X,Y⊗Z

idW ⊗aX,Y,Z

commutes for all W,X, Y, Z ∈ C.

2. The triangle axiom. The diagram

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

aX,1,Y

rX ⊗ idY idX ⊗`Y

commutes for all X, Y ∈ C.

These two axioms are somewhat mysterious – there are no analogous
axioms in the definition of a monoid. The need to add these axioms arises
when we relax the equalities in the monoid definition to mere isomorphisms
in the categorified definition.

In a monoid, equation (1) guarantees that all the ways of bracketing an
expression a1 · a2 · . . . · an of arbitrary length give the same result. In a
monoidal category, the associativity isomorphisms ensure that all the ways
of bracketing an expression of the form X1 ⊗X2 ⊗ . . .⊗Xn are isomorphic,
however there could conceivably be several different isomorphisms between
two different bracketed expressions.

Similar issues arise with the isomorphisms coming from the left and right
unitor. We would really like to not worry too much about the bracketing
of expressions or the presence of the tensor unit, but in order to safely do
this we need canonical isomorphisms between these various expressions. For
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expressions involving 4 objects, the pentagon axiom says that the two possible
isomorphisms are the same, but we could still run in to issues for expression
involving 5 or more objects.

Happily, there is a solution – the famous Coherence Theorem of Mac
Lane.

Theorem 0.1.2 (Mac Lane’s Coherence Theorem). Let X1, . . . , Xn be objects
in a monoidal category C. Let P1 and P2 be any two bracketed tensor products
of X1, . . . , Xn (in this order) with arbitrary insertions of the tensor unit 1.
Let f, g : P1 → P2 be any two isomorphisms obtained by composing the
associativity and unit isomorphisms and their inverses, possibly tensored with
identity morphisms. Then f = g.

Proof. See either [EGNO15] or [ML98] for the proof of this.

This means that any two bracketed tensor products of X1, . . . , Xn with
the tensor unit inserted arbitrarily are canonically isomorphic. Because of
this, we can safely identify all these various expressions and ignore bracket-
ings and the tensor unit in most of our work. We will do this from now on,
suppressing the various isomorphisms unless confusion is likely.

The preceding discussion illustrates the most subtle aspect of this ap-
proach to categorification. We don’t just have to replace equalities with
isomorphisms, but we have to add additional ‘coherence laws’ amongst the
various isomorphisms. These don’t directly arise from the structure of the ob-
ject being categorified, so finding the correct coherence laws can be a difficult
task. For further discussion of this aspect of categorification, see [BD98].

0.2 String diagrams

Many successful attempts at categorification (for example, see [Kho14, LS13,
KL09]) have proceeded by constructing interesting graphical categories. By
this, we mean a category whose hom-spaces consist of various types of dia-
grams, with some set of local relations that allow us to manipulate diagrams.
In order to describe this approach in more detail, we first need to introduce
string diagrams for categories, functors and natural transformations. The
treatment of this is based on [Kho10].

Suppose we have categories C and D, functors F : C → D and G : C → D,
and a natural transformation α : F → G. Normally, we might represent this



0.2. String diagrams 6

situation with the diagrams

C D

G

��

F

??

KS
α or D C

F

__

G

�� KS
α .

Here we think of categories as labelling points, the functors labelling 1-
dimensional strings between these point, and natural transformations la-
belling 2-dimensional regions between strings. We will find it more conve-
nient to work with diagrams of the second type, with functors pointing from
right to left. This ensures that the algebraic and diagrammatic notations for
composition of functors match up.

We can now consider taking the so called ‘Poincaré dual’ of this diagram.
To do this, we instead label regions with categories, strings dividing regions
by functors between categories, and points on strings by natural transforma-
tions. The right hand diagram above becomes

G

F

• αD C .

Similar considerations lead us to depict a natural transformation between
composite functors by multiple labelled strands meeting in a point. For
example, if we have functors F : C → D, G : D → E and H : C → E , then a
natural transformation α : GF → H can be depicted by

G F

H

•

D

αE C .

There are some common conventions regarding identity functors and iden-
tity natural transformations. Strands labelled by the identity functor are
generally omitted from our diagrams. For example, if in the above C = E
and H is the identity functor on C, then the situation is depicted by

G F

•

D

α
C .
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In a similar way, nodes labelled by identity natural transformations are not
drawn. For example, If 1F is the identity natural transformation on a functor
F : C → D, then

F

F

•1FD C =

F

F

D C

The two different ways of composing natural transformations also have
convenient graphical descriptions. If there are natural transformations rep-
resented diagrammatically by

G

F

• αD C and

H

G

• βD C ,

then the composite natural transformation β ◦ α : F → H (the vertical
composite) is represented by stacking the diagrams:

H

F

• β ◦ αD C = G

F

H

•

•

α

β

D C

Similarly, if we have natural transformations represented diagrammati-
cally by

G

F

• αD C and

G′

F ′

• βC B ,

then the composite natural transformation α∗β : FF ′ → GG′ (the horizontal
composite) is represented by juxtaposing the diagrams:

GG′

FF ′

• α ∗ βD C =

G

F

• αD B

G′

F ′

• βC .
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We start to see the real power of these diagrammatic representations in
the context of adjoint functors. Recall [ML98] that a functor F : D → C is
left adjoint to a functor G : C → D if there are natural transformations

η : 1D → GF

and
ε : FG→ 1C,

such that the two composite natural transformations

F
1F ∗η−−−→ FGF

ε∗1F−−−→ F (3)

and

G
η∗1G−−−→ GFG

1G∗ε−−−→ G (4)

are equal to 1F and 1G respectively.
We can represent η and ε by the diagrams

G F

•
C

η D
and

F G

•

D

ε C .

Rather than labelling our strands in this situation, we might assign them
a positive orientation near F and a negative orientation near G instead. For
example, with this convention the identity natural transformation on F is
depicted by an arrow pointing up the page, with the region on the right
labelled by D and the region on the left labelled by C. Similarly, we can
represent the unit and counit for the adjunction by an oriented cap and an
oriented cup:

C

D
and

D

C .

Then equations (3) and (4) become the diagrammatic identities:

D

C
= C D and

C

D

= D C .

These can be interpreted as two of the four possible isotopies of oriented arcs
in the plane (with labelled regions). To have complete isotopy invariance we
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need to assume that F is also a right adjoint of G (or equivalently, that G is
a left adjoint of F ). If this is the case, then there are natural transformations
represented by the two other oriented caps and cups:

D

C
and

C

D ,

satisfying the diagrammatic identities

C

D
= D C and

D

C

= C D .

These give us the other two isotopies of oriented arcs in the plane.

0.3 An approach to graphical categorification

We can now begin to describe how biadjoint functors can be used to produce
graphical categorifications. Suppose we have a (possibly infinite) collection
of categories C1, C2, . . ., and biadjoint functor pairs (Fn, Gn) going between
consecutive categories:

C1 C2 C3 · · ·
F1

��

G1

__

F2

��

G2

__

F3

  

G3

bb

We refer to this general set-up as a ‘tower of biadjunctions’.
Since the functor Fn goes from Cn to Cn+1, it make sense to assign the

Fn in each pair a positive orientation and the Gn in each pair a negative
orientation. If we fix biadjointness natural transformations for each pair,
then we can use the graphical calculus described above to build various ori-
ented planar diagrams using the four possible (Fn, Gn)-caps and cups for
each biadjoint pair, plus the identity strands on the functors. Within these
diagrams, strands and loops will by labelled by functors, and regions will be
labelled by categories. Since our categories are indexed by positive integers,
we can simplify the notation by labelling regions with positive integers only.
To draw more intricate pictures, we might choose to represent additional
natural transformations by the various crossings

, , and .
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Here the different natural transformations correspond to different ways of
labelling the strings and regions in these pictures. With these, we can then
draw oriented planar diagrams where the strands are now allowed to cross
each other.

Note that once we label the rightmost region of one of our diagrams by
a positive integer n, the labelling of all the other regions and all the strands
is uniquely determined. Reading from right to left, numbers should increase
by 1 across an upwards oriented strand and decrease by 1 across a down-
wards oriented strand. An upwards oriented strand with n on the right and
n + 1 on the left must be labelled by Fn : Cn → Cn+1, and a downwards
oriented strand with n+ 1 on the right and n on the left must be labelled by
Gn : Cn+1 → Cn. As such, we only need to label the rightmost region of our
diagrams and will do so from now on.

Define a category S as follows. The objects of S are compositions of the
assorted functors F1, G1, F2, G2, . . .. The morphisms between two such com-
posites are those natural transformations that can be built (by the two types
of composition) using the fixed biadjointness natural transformations, the
natural transformations representing the crossings, and the identity natural
transformations for the functors. The discussion above describes a graphical
calculus for the morphisms in this category.

Let Sn be the full subcategory of S whose objects are those composites
starting at Cn. For instance, G4F4F3 is an object in S3, but F2 is not.
Then S decomposes as

⊕∞
n=1 Sn. In many situations, we are interested in

understanding the uniform behaviour of the category S. More precisely, we
want to understand which relationships between the objects and morphisms
of this category are independent of the piece Sn they live in. For example,
since all the functors come in biadjoint pairs, the graphical relation

n

n+ 1

= n+ 1 n

holds for any positive integer n. This means that there is some uniform
equality of morphisms in S that does not depend on n.

One way that we can explore the uniform behaviour of S is by finding a
single category governing the behaviour of S. By this, we mean a category
C with some collection of functors Fα : C → S. For this to be useful in
studying S, we also require that everything in S is in the image of one of
these functors.
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There is a clear candidate for such a category. Ignoring the labels in our
pictures leaves oriented diagrams in the plane where strands are allowed to
cross each other. For example, one such diagram looks like

.

We will define things more formally later on, but for now consider a category
C whose hom-spaces consist of diagrams like that depicted above. There are
obvious functors Fn : C → Sn for each n, each of which takes such a diagram,
labels the rightmost region by n, and interprets the resulting diagram as a
morphism in Sn.

As yet, we haven’t allowed any local relations (not even isotopy of arcs)
in C. This makes the hom-spaces in C incredibly large, which in turn makes
C a difficult category to work with. To fix this we want to add various local
relations in our category, but how do we know which relations to impose?

Above, we saw that certain diagrammatic identities hold in S regardless
of the labellings of the diagrams. This means that we can forget the labels
on such an identity, and use the resulting equality of diagrams as a local
relation in C. The fact that the relation holds for any labelling means that
the functors Fn are still well defined (this is something like quotienting by
elements in the kernel of a group homomorphism). Thus, the goal is to find
various relations in S that hold regardless of labellings, and then use these
to define local relations in C.

This explains our initial interest in working with biadjoint functors. The
fact that all the functors came in biadjoint pairs means that the four basic
isotopies of oriented arcs in the plane hold in S for any labelling by positive
integers. Thus, we end up allowing local isotopy of arcs in C. Such isotopies
are very convenient in a graphical category, so it is desirable to work with
biadjoint functor pairs.

In several papers [Kho14, LS13, KL09], constructing a category with such
a collection of functors is a source of interesting mathematics. For example,
in [Kho14] Khovanov studies the tower of group algebras for the symmetric
groups:

k[S1] ⊂ k[S2] ⊂ k[S3] ⊂ · · ·
There are functors associated to this tower

Indn+1
n : k[Sn]-mod −−−→ k[Sn+1]-mod
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and

Resn+1
n : k[Sn+1]-mod −−−→ k[Sn]-mod,

called induction and restriction respectively. It is a standard result from
the representation theory of finite groups that these functors form biadjoint
pairs (Indn+1

n ,Resn+1
n ). Following the procedure outlined above, Khovanov

produces a graphical monoidal category which conjecturally categorifies the
Heisenberg algebra.

In this thesis we will examine another tower of algebras which have not
been studied in this context before. Inspired by the tower of Temperley-Lieb
algebras, we will show that the induction and restriction functors associated
to certain towers of endomorphism algebras in pivotal tensor categories come
in biadjoint pairs. We can then begin to build a graphical monoidal category
and a collection of functors using the techniques described above.

0.4 The structure of this thesis

In Chapter 1 we will introduce the Temperley-Lieb and Temperley-Lieb-Jones
categories. The latter will be used as an extended example throughout the
thesis to supplement the more abstract material developed. The material in
this chapter is well known, our main sources being [Wan10] and [Che14].

In Chapter 2 we will work though a construction of matrix units for cer-
tain endomorphism algebras in semisimple linear monoidal categories. This
culminates in the proof of Theorem 2.4.7 These matrix units will underpin the
work of Chapter 4. The matrix unit construction we describe is well known
to experts and dates back to early work on monoidal categories. However,
we have not found a good source for this material in the literature. We hope
that the work described here can begin to fill this gap.

In Chapter 3 we will take a brief detour and discuss the representation
theory of the Temperley-Lieb algebras using the matrix units from Chapter 2.
In Propositions 3.1.1, 3.1.2 and 3.1.3 we give a classification of the irreducible
representations. Then we introduce the induction and restriction functors for
the tower of Temperley-Lieb algebras, and in Proposition 3.3.1 and Corol-
lary 3.4.2 describe how induced or restricted representations decompose into
irreducibles. The material in this chapter is not strictly necessary for the re-
mainder of the thesis, but the theory is interesting on its own and illustrates
a useful application of the material of Chapter 2. Again, this material is well
known. Our main sources here are [RSA14] and [GdlHJ89].

In Chapter 4 we will prove Theorem 4.2.14, the central result of this
thesis. In a linear monoidal category, the endomorphism algebras for tensor
powers of a distinguished object X form a tower of algebras. When the
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category is a pivotal tensor category and X is self dual, we prove that the
induction and restriction functors associated to this tower form biadjoint
pairs. Although experts in the field may be aware of this theorem, it does
not appear anywhere in the literature. The background material in this
chapter is primarily sourced from [EGNO15] and [TV17].

In Chapter 5 we define a graphical category GX using this biadjunction.
In Theorem 5.2.2 we prove that there is a collection of functors out of GX
into another category of interest. To do this, we check that various relations
hold between certain natural transformations. The work in this chapter is
original.



0.4. The structure of this thesis 14



Chapter 1

The Temperley-Lieb categories

1.1 Quantum numbers

Let F be a field, and consider the field F(q) of rational polynomials in a
formal variable q. Within this field, the n-th quantum number [n]q is defined
by

[n]q =
qn − q−n

q − q−1

= qn−1 + qn−3 + . . .+ q−(n−3) + q−(n−1) (when n 6= 0).

It is common to suppress the subscript q in [n]q and just write [n] when this
is unlikely to cause confusion. There are some very basic properties of the
quantum numbers that will be used extensively in what follows.

Lemma 1.1.1. For all n ∈ N, the following are true:

(i) [0] = 0;

(ii) [1] = 1; and

(iii) [2] [n] = [n+ 1] + [n− 1].

Proof. The first two properties follow trivially from the definition. The last
property follows from the simple calculation

[2] [n] = (q + q−1) · q
n − q−n

q − q−1
=
qn+1 − q−n+1 + qn−1 − q−n−1

q − q−1

=
qn+1 − q−(n+1)

q − q−1
+
qn−1 − q−(n−1)

q + q−1
= [n+ 1] + [n− 1] .

15
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1.2 The Temperley-Lieb category

Definition 1.2.1. Letm and n be natural numbers. A simple (m,n) Temperley-
Lieb diagram is a rectangle with m points on its bottom edge and n points
on its top edge. The interior of the diagram consists of uncrossing strands
pairing the points on the boundary. For example, the following is a simple
(3, 5) Temperley-Lieb diagram:

.

We think of two simple diagrams as equivalent if one can be deformed into
the other via a planar isotopy that fixes the boundary points. That is, two
diagrams are equivalent if they induce the same pairing on the n+m boundary
points.

From now on, we identify all equivalent simple Temeperley-Lieb diagrams.
Technically, this means that we’re working with equivalence classes of dia-
grams, but in practice there is little risk in thinking only in terms of rep-
resentatives of these equivalence classes. Having made these identifications,
there are then only finitely many simple (m,n) Temperley-Lieb diagrams for
any choices of m and n.

Definition 1.2.2. The Temperley-Lieb category T L has as objects the nat-
ural numbers N. The hom-space HomT L(q)(m,n) is defined to be the C(q)-
vector space with basis the simple (m,n) Temperley-Lieb diagrams. Com-
position

◦ : HomT L(m,n)× HomT L(`,m)→ HomT L(`, n)

is given for simple diagrams by stacking the left hand diagram on top of the
right hand diagram and removing any closed loop formed for a factor of [2]q.
For example,

◦ = = [2]q .

This is extended bilinearly to define the composition of two arbitrary mor-
phisms.

The phrase ‘Temperley-Lieb diagram’ will usually refer to a formal linear
combination of simple Temperley-Lieb diagrams. When we want to talk
about simple diagrams specifically we will make sure to include the adjective
‘simple’.
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Proposition 1.2.3. The Temperley-Lieb category T L is strict monoidal cat-
egory. The tensor product ⊗ of objects n and n′ is the sum n + n′, and the
tensor product of diagrams f : m → n and g : m′ → n′ is the diagram
f ⊗g : m+m′ → n+n′ obtained by juxtaposing simple diagrams and extend-
ing bilinearly.

Proof. This is all straightforward to check. The tensor product of two in-
tegers is their sum, so the tensor product is strictly associative with tensor
identity 0. The associator, left unitor and right unitor have all components
the identity, so the pentagon and triangle axioms are satisfied trivially.

Definition 1.2.4. For n ∈ N, the n-th Temperley-Lieb algebra, TLn, is
defined to be the vector space HomT L(n, n). The algebra multiplication is
given by composition of diagrams.

Notation 1.2.5. Given this algebra structure on T L(n → n), we will fre-
quently be writing the composition of two morphisms f, g ∈ T L(n → n) as
fg instead of f ◦ g. As such, it makes sense to extend this convention to
composition of morphisms in any category. We will do this without further
comment for the remainder of this thesis.

Within the Temperley-Lieb algebras there are some important distin-
guished elements. In TLn there are the n− 1 Jones projections e1, . . . , en−1
defined by

ei = . . . . . . ,

with the cap-cup pair starting at the i-th position. It is a standard fact
[RSA14] that TLn is generated as a unital algebra by the Jones projections.
In fact, TLn can be (and frequently is) described abstractly as the unital
algebra with generators e1, . . . , en−1, subject to the relations

e2i = [2]q ei, eiei±1ei = ei, and eiej = ejei if |i− j| > 1.

These relations are obviously satisfied by the Jones projections, but demon-
strating that no other relations are required is more involved. We will not
make use of this presentation here, preferring to work with the more intuitive
diagrammatic description.

For each natural number n there is useful map trn : TLn → C(q) defined
diagrammatically by

x 7→
. . .

. . .
. . .x .
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The way this diagram (and other similar diagrams) should be interpreted is
by ‘pasting’ simple Temperley-Lieb diagrams into the box and then extending
linearly. As an example, suppose n = 3 and x is the element

5 + i .

Then

trn(x) = 5 + i = (5 [2]q + i [2]q).

We should point out that we really get some multiple of the empty diagram
in TL0. However, TL0 is 1 dimensional and is canonically isomorphic to C(q)
by extracting this scalar, so we can think of this as a map TLn → C(q).

1.3 Jones-Wenzl idempotents

Having introduced the Temperley-Lieb algebras, we are now in a position
to discuss an important collection of central idempotents – the Jones-Wenzl
idempotents (JWI). These were first studied by Jones in [Jon83], however
what follows more closely resembles the treatment in [Wen87]. These idem-
potents will be of critical importance in a lot of what follows. For example,
they will be used to define important families of representations and to con-
struct matrix units for the various Temperley-Lieb algebras.

Proposition 1.3.1 (Uniqueness of JWI). In the algebra TLn there is at most
one element f (n) characterised by the following properties:

(1) f (n) 6= 0;

(2) f (n)f (n) = f (n); and

(3) eif
(n) = f (n)ei = 0 for each i ∈ {1, . . . , n− 1}.

When it exists, this element is known as the n-th Jones-Wenzl idempotent.

Proof. Suppose f (n) satisfies these three properties, and write f (n) = a1 + x
where x is some linear combination of the standard basis vectors that are not
the identity. Then we can compute

f (n) = f (n)f (n) = f (n)(a1 + x) = af (n) + f (n)x.
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Now, if y is any standard basis vector that is not the identity, then there
is a cup appearing somewhere at the top of y. If this cup starts at the i-
th position, then we have eiy = [2] y, hence y = 1

[2]
eiy. This means that

f (n)y = 0 by the third property above, and as a result of this we have

f (n)x = 0. This yields f (n) = af (n), hence a = 1. Now, if f̃ (n) also satisfies

the above properties we can write f (n) = 1 + x and f̃ (n) = 1 + x̃, where
x̃ is also some linear combination of the standard basis vectors except the
identity. Taking the product of these two elements and expanding from both
sides gives

f̃ (n) = f̃ (n) + xf̃ (n) = (1 + x)f̃ (n)

= f (n)f̃ (n)

= f (n)(1 + x̃) = f (n) + f (n)x̃ = f (n),

where xf̃ (n) = 0 = f (n)x̃ follows from the same logic as f (n)x = 0 above.

Proposition 1.3.2 (Existence and basic properties of the JWI). Let f (0)

be the empty diagram in TL0, let f (1) be the strand in TL1, and recursively
define f (n) by Wenzl’s recursion formula [Wen87]:

f (n) = f (n−1)

. . .

. . .
− [n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

. (1.1)

Then for all n, the following are true:

(i) f (n)f (n) = f (n);

(ii) capping any two adjacent strands on top of f (n) or cupping any two
adjacent strands on the bottom of f (n) gives zero, e.g.,

f (5) = f (5) = 0;

(iii) f (n+1)

. . .

. . .
= [n+2]

[n+1]
f (n);

(iv) tr(f (n)) = [n+ 1]; and
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(v)
f (n+1)

f (n)

. . .

. . .

. . .

= f (n+1) =
f (n)

f (n+1)

. . .

. . .

. . .

.

Note that we can express eif
(n) as the composition of a capped f (n) with

an appropriate morphism in T L(n − 2 → n), so (ii) yields eif
(n) = 0 for

each i. Similarly, f (n)ei = 0 for each i. Additionally, since [n+ 1] 6= 0, (iv)
shows that f (n) 6= 0, so by Proposition 1.3.1 this recursively defined f (n) is
the unique n-th Jones-Wenzl idempotent.

Proof. The proof proceeds by induction on n. Using the formula we find that

f (2) = − 1

[2]
.

Then it is straightforward to check that (i)-(v) hold in the cases n = 0 and
n = 1, noting that (ii) holds vacuously in both cases. Now, assume n ≥ 2
and that (i)-(v) hold for all k < n (we refer to these as IH(i)-(v) for the rest
of the proof). To prove (i) at the level n we calculate

f (n)f (n) =
f (n−1)

f (n−1)

. . .

. . .

. . .

− [n− 1]

[n]
f (n−1)

f (n−1)

f (n−1)

. . .

. . .

. . .

. . .

− [n− 1]

[n]
f (n−1)

f (n−1)

f (n−1)

. . .

. . .

. . .

. . .

+
[n− 1]2

[n]2

f (n−1)

f (n−1)

f (n−1)

f (n−1)

. . .

. . .

. . .

. . .

. . .

= f (n−1)

. . .

. . .
− 2

[n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

+
[n− 1]2

[n]2
[n]

[n− 1]
f (n−2)

f (n−1)

f (n−1)

. . .

. . .

. . .

. . .
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= f (n−1)

. . .

. . .
− 2

[n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

+
[n− 1]

[n]

f (n−2)

f (n−1)

f (n−1)

. . .

. . .

. . .

. . .

= f(n−1)

= f (n−1)

. . .

. . .
− 2

[n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

+
[n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

= f (n),

where the second equality uses IH(i) and IH(iii), and the third equality uses
IH(v).

For (ii), note that the formula for f (n) immediately shows that capping
(respectively cupping) f (n) anywhere but on the far right gives zero (since
f (n−1) is both uncappable and uncuppable by hypothesis). When the cap is
on the far right we get

f (n)

. . .

. . .
= f (n−1)

. . .

. . .
− [n− 1]

[n]

f (n−1)

f (n−1)

. . .

. . .

. . .

= f (n−1)

. . .

. . .
−

f (n−2)

f (n−1)

. . .

. . .

. . .

= 0,

using IH(iii) and the boxed part of the previous calculation. A similar cal-
culation shows that cupping f (n) at the far right also gives zero.

To prove (iii) we make use of the fact (just proved) that f (n) = f (n)f (n).
We have

f (n+1)

. . .

. . .
= f (n)

. . .

. . .
− [n]

[n+ 1]

f (n)

f (n)

. . .

. . .

. . .

= [2] f (n) − [n]

[n+ 1]
f (n)f (n)

=
[2] [n+ 1]− [n]

[n+ 1]
f (n)

=
[n+ 2]

[n+ 1]
f (n),

as desired.
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For (iv) we use IH(iii) to write

tr(f (n)) =
. . .

. . .
. . .f (n) = tr


f (n)

. . .

. . .

 =
[n+ 1]

[n]
tr
(
f (n−1)) .

Then the inductive hypothesis yields tr(f (n)) = [n+1]
[n]

[n] = [n+ 1].

Finally, for (v) we again use f (n) = f (n)f (n) to calculate

f (n+1)

f (n)

. . .

. . .

. . .

=
f (n)

f (n)

. . .

. . .

. . .

− [n]

[n+ 1]
f (n)

f (n)

f (n)

. . .

. . .

. . .

. . .

= f (n)

. . .

. . .
− [n]

[n+ 1]

f (n)

f (n)

. . .

. . .

. . .

= f (n+1),

and a similar calculation proves the other equality.

1.4 The generic Temperley-Lieb-Jones cate-

gory

We now wish to promote the Jones-Wenzl idempotents to be objects in a
new category. This category will have a nicer structure and more interesting
objects than the Temperley-Lieb category.

Definition 1.4.1. If C is a category, then the Karoubi envelope, or idempo-
tent completion, of C is a new category which we denote by Kar(C). The
objects of this category are pairs (X, p) where X is an object of C and
p is a morphism X → X with p ◦ p = p (an idempotent). A morphism
(X, p)→ (X ′, p′) is a morphism f : X → X ′ in C such that f ◦p = f = p′ ◦f .
Composition of morphisms uses the composition in C, and it is easy to check
that composing in this way always gives another morphism in Kar(C).

There is a functor F : C → Kar(C) that sends an object X to the pair
(X, idX) and a map f : X → Y to itself, but now thought of as a map
(X, idX) → (Y, idY ). This functor is both full and faithful, so we can think
of C as embedded in Kar(C). For this reason, there is essentially no loss of
information when passing to the Karoubi envelope.
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It is common to drop the domain X from the notation (X, p) and simply
write p for an object in the Karoubi envelope. The domain will generally be
clear from the context, so there is little danger in doing this.

Since T L is strict monoidal category, it isn’t too hard to lift its monoidal
structure to the Karoubi envelope Kar(T L). If p : n → n and p′ : n′ → n′

are idempotents in T L, then so is the tensor product p⊗ p : n+n′ → n+n′.
Thus, we define the tensor product of (n, p) and (n′, p′) to be (n+n′, p⊗ p′).
The empty diagram is an idempotent, so we have a tensor unit in Kar(C).
This defines the structure of a strict monoidal category since T L is a strict
monoidal category.

Definition 1.4.2. Let C be an Ab-enriched category (meaning that the
hom-spaces are abelian groups and that composition is bilinear). Then the
additive envelope of C is an additive category which we denote by Mat(C).
The objects of this category are formal finite direct sums

⊕
iXi of objects

from C. A morphism
⊕m

i=1Xi →
⊕n

j=1 Yj is an n×m matrix of morphisms
in C, where the (j, i)-th entry is a morphism fji : Xi → Yj. The identity map
on
⊕n

i=1Xi is the diagonal matrix with entries idXi . Composition of maps is
given by matrix multiplication. In order for this to make sense, we need to
be able to add morphisms, so this justifies the Ab-enriched assumption.

Once again, we can lift the strict monoidal structure of Kar(T L) to a
strict monoidal structure on Mat(Kar(T L)). The tensor product is defined by
extending the tensor product of Kar(T L) bilinearly across

⊕
, and the tensor

product of two matrices of morphisms is given by the Kronecker product of
matrices. Again, this gives a strict monoidal category since Kar(T L) is a
strict monoidal category.

Definition 1.4.3. The generic Temperley-Lieb-Jones category is the full
subcategory of Mat(Kar(T L)) whose objects are those that can be created
from the Jones-Wenzl idempotents by finitely many applications of ⊕ and
⊗. We use the notation T LJ for this category.

To demonstrate how things work in this category, we will prove the fol-
lowing useful fact.

Proposition 1.4.4. In T LJ , f (n) ⊗ f (1) ∼= f (n+1) ⊕ f (n−1) for any n ≥ 1.

Proof. Consider the map f (n) ⊗ f (1) → f (n+1) ⊕ f (n−1) given by the matrix
f (n+1)

. . .

. . .

[n]
[n+1] f (n)

. . .

. . .

 ,
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and the map f (n+1) ⊕ f (n−1) → f (n) ⊗ f (1) given by the matrix(
f (n+1)

. . .

. . .
f (n)

. . .

. . .

)
.

Then the composition

f (n) ⊗ f (1) −−−→ f (n+1) ⊕ f (n−1) −−−→ f (n) ⊗ f (1)

is given by the 1× 1 matrix

(
f (n+1)

. . .

. . .
f (n)

. . .

. . .

)
f (n+1)

. . .

. . .

[n]
[n+1] f (n)

. . .

. . .

 =

 f (n+1)

. . .

. . .
+ [n]

[n+1]

f (n)

f (n)

. . .

. . .

. . .

 .

By Wenzl’s recursion formula, the entry of this matrix is f (n)

. . .

. . .
, which is

the identity morphism on f (n) ⊗ f (1).
The other composite

f (n+1) ⊕ f (n−1) −−−→ f (n) ⊗ f (1) −−−→ f (n+1) ⊕ f (n−1)

is given by the 2× 2 matrix


f (n+1)

. . .

. . .

[n]
[n+1] f (n)

. . .

. . .


(
f (n+1)

. . .

. . .
f (n)

. . .

. . .

)
=



f (n+1)

f (n+1)

. . .

. . .

. . .

f (n+1)

f (n)

. . .

. . .

. . .

[n]
[n+1]

f (n)

f (n+1)

. . .

. . .

. . .

[n]
[n+1]

f (n)

f (n)

. . .

. . .

. . .


The top left entry simplifies to f (n+1). The off-diagonal entries become zero
because after applying Proposition 1.3.2(v) f (n+1) is either being capped or
cupped. The bottom right entry simplifies to f (n−1) by property Proposition
1.3.2(iii). This means that the matrix is the identity on f (n+1) ⊕ f (n−1),
completing the proof.



Chapter 2

Matrix units in a semisimple
linear monoidal category

Consider the algebra Mn(k) of n × n matrices over a field k. There is a
particularly convenient basis for this algebra given by the matrices ei,j (for
1 ≤ i, j ≤ n) with a 1 in the (i, j)-position and zeros everywhere else. For
any 1 ≤ i, j, k, ` ≤ n, these matrices satisfy the useful equation

ei,jek,` = δj,kei,`, (2.1)

where δ is the Kronecker delta. We call this basis the basis of matrix units
for Mn(k).

Now, consider the multimatrix algebra M =
⊕

αMnα(k) obtained by
taking a finite direct sum of matrix algebras. Within each summand we have
a basis of matrix units as above – for each α there is an index set Iα of size nα,
and elements ei,j ∈ M for i, j ∈ Iα satisfying equation (2.1). By definition,
matrices in different summands multiply to zero. Thus, taking I = ∪αIα and
setting ei,j = 0 when i and j come from different indexing sets, we obtain
the equation

ei,jek,` = δj,kei,`, (2.2)

which now holds for all i, j, k, ` ∈ I. If A is an algebra that is isomorphic to a
multimatrix algebra, then there will always be elements satisfying equation
(2.2). We call such a collection ‘matrix units for A’.

In this chapter we will define the concept of a semisimple linear category.
In Lemma 2.1.10 we show that the endomorphism spaces in such a category
are multimatrix algebras. After this, the rest of the chapter is devoted to
describing an explicit construction that yields a basis of matrix units for
the algebras End(X⊗n) in a semisimple monoidal category. This is finally
achieved in Theorem 2.4.7.

25
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2.1 Categorical preliminaries

Definition 2.1.1. An additive category is a category C satisfying the fol-
lowing three axioms:

(1) Every hom-set HomC(X, Y ) has the structure of an (additive) abelian
group such that the composition of morphisms is biadditive with re-
spect to these group structures.

(2) There is a zero object 0 ∈ C with HomC(0, 0) = 0, the trivial group.

(3) For any objects X1, X2 ∈ C there is another object Y ∈ C with mor-
phisms p1 : Y → X1, p2 : Y → X2,i1 : X1 → Y and i2 : X2 → Y such
that p1i1 = idX1 , p2i2 = idX2 and i1p1 + i2p2 = idY .

It is straightforward to show that the object Y in (3) is unique up to unique
isomorphism (see [ML98] for the details). We generally denote this object
by X1 ⊕X2 and call it the direct sum or biproduct of X1 and X2.

The existence of biproducts for pairs of objects in C implies the existence
of arbitrary finite direct sums of objects in C. For objects X1, . . . , Xn, their
direct sum

⊕n
j=1Xi is characterised by the existence of morphisms ij : Xj →⊕n

j=1Xi and pj :
⊕n

j=1Xi → Xj satisfying the obvious generalisations of the
equations in (3). For the full details, we again refer the reader to [ML98].
We also often write mZ to mean the direct sum of m copies of the object Z.

The standard example of an additive category is the category Ab of
abelian groups. The zero object is the trivial group and the biproduct of X1

and X2 is the direct sum of abelian groups. In this situation, the maps p1
and p2 are projection onto X1 and X2 respectively, while the maps i1 and i2
are the inclusions of X1 and X2 into X1⊕X2. Because of this, we often refer
to these maps in an arbitrary additive category as projections and inclusions.

Lemma 2.1.2. Let ij : Xj →
⊕n

j=1Xi and pj :
⊕n

j=1Xi → Xj be the
inclusion and projection maps for the direct sum Y =

⊕n
j=1Xi. Then pjik =

0 when j 6= k.

Proof. We prove this for the case n = 2. We have

p1i2 = p1(i1p1 + i2p2)i2 = idX1 p1i2 + p1i2 idX2 = p1i2 + p1i2,

hence i1p2 = 0. Symmetrically, p2i1 = 0. The general case follows using the
same idea and induction.
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Definition 2.1.3. Let k be an arbitrary field. We say that an additive cate-
gory C is k-linear if for any objects X, Y ∈ C, the abelian groups HomC(X, Y )
are actually finite dimensional vector spaces over k, such that composition
of morphisms is k-bilinear.

We now state and prove a collection of lemmas describing isomorphisms
between various hom-spaces in k-linear categories. We describe these iso-
morphisms explicitly since we will make use of them in some proofs later in
this chapter.

Lemma 2.1.4. Let C be a k-linear category. If f : X → Y is an isomor-
phism, then the map Hom(Y, Z) → Hom(X,Z) given by g 7→ g ◦ f is an
isomorphism of vector spaces.

Proof. Composition in C is bilinear, so this is a linear map. If f−1 : Y → X
is the inverse of f , then the same construction yields another linear map that
is an inverse to this map.

Lemma 2.1.5. Suppose C is a k-linear category and that
⊕n

j=1 Zj is a direct
sum of finitely many objects of C. Then there are vector space isomorphisms

Hom(
⊕n

j=1 Zj, X) ∼=
⊕n

j=1 Hom(Zj, X)

and
Hom(X,

⊕n
j=1 Zj)

∼=
⊕n

j=1 Hom(X,Zj),

where the direct sum on the right hand side is the usual direct sum of vector
spaces.

Proof. Consider the map Hom(
⊕n

j=1 Zj, X) →
⊕n

j=1 Hom(Zj, X) defined
by sending a morphism f :

⊕n
j=1 Zj → X to the n-tuple (fi1, . . . , f in),

where the ik are the inclusions ik : Zk →
⊕n

j=1 Zj. We can also construct
a map

⊕n
j=1 Hom(Zj, X) → Hom(

⊕n
j=1 Zj, X) in the other direction by

sending a n-tuple of morphisms (g1, . . . , gn) to
∑n

j=1 gjpj, where the pj are the
projections for the direct sum. Both maps are clearly linear transformations
since composition of morphisms is bilinear. The composite

Hom(
⊕n

j=1 Zj, X) −−−→
⊕n

j=1 Hom(Zj, X) −−−→ Hom(
⊕n

j=1 Zj, X)

sends a morphism f to
∑n

j=1 fijpj = f , and the composite⊕n
j=1 Hom(Zj, X) −−−→ Hom(

⊕n
j=1 Zj, X) −−−→

⊕n
j=1 Hom(Zj, X)

sends an n-tuple of morphisms (g1, . . . , gn) to(
n∑
j=1

gjpji1, . . . ,
n∑
j=1

gjpjin

)
= (g1, . . . , gn) .
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For this last equality we make use of Lemma 2.1.2. It follows from these
calculations that the maps are mutual inverses, completing the proof of the
first statement. The second statement is proved in a very similar way. In
this case though, the maps are

Hom(X,
⊕n

j=1 Zj)→
⊕n

j=1 Hom(X,Zj), f 7→ (p1f, . . . , pnf)

and⊕n
j=1 Hom(X,Zj)→ Hom(X,

⊕n
j=1 Zj), (g1, . . . , gn) 7→

∑n
j=1 ijgj.

Remark 2.1.6. It follows from Lemma 2.1.5, that

Hom

(
m⊕
j=1

Xj,
n⊕
k=1

Yk

)
∼=

m⊕
j=1

n⊕
k=1

Hom(Xj, Yk).

This implies that each morphism f :
⊕m

j=1Xj →
⊕n

k=1 Yk can be thought
of as an n ×m matrix of components fkj = pkfij : Xj → Yk. Composition
of morphisms is then given by the usual multiplication of these matrices of
components. See [ML98] for further discussion.

Definition 2.1.7. Let C be a k-linear category. We say an object X ∈ C
is simple if Hom(X,X) ∼= k, i.e., every morphism X → X is some scalar
multiple of idX . Two simple objects X and Y are said to be disjoint if
Hom(X, Y ) ∼= 0. A collection of disjoint simple objects of C is a collection of
simple objects that are pairwise disjoint.

Definition 2.1.8. A k-linear category C is said to be semisimple if there
is a collection S of disjoint simple objects, such that every object of C is
isomorphic to a finite direct sum

⊕n
i=1miZi for distinct objects Zi ∈ S.

When the category is monoidal, we require the tensor unit 1 belong to S. By
an abuse of language, we sometimes refer to the collection S as the simple
objects of C.

Note that we can determine the coefficients mi of this decomposition more
explicitly. For any j, we have

dim Hom

(
Zj,

n⊕
i=1

miZi

)
= dim

n⊕
i=1

mi Hom(Zj, Zi)

= dimmj Hom(Zj, Zj) = mj,
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since we’re working with disjoint simple objects.
The standard example of a semisimple category is the category Rep(G)

of complex representations of a finite group G. It is a standard fact from
representation theory that every representation of such a group can be writ-
ten as a direct sum of irreducible representations, and that these irreducible
representations make up a collection of disjoint simple objects.

Lemma 2.1.9. Let Z be a simple object in a semisimple k-linear category
C. Then Hom(mZ, nZ) is isomorphic to Mn×m, the space of n×m matrices
over k.

Proof. Recall the discussion of Remark 2.1.6. A morphism f : mZ → nZ
is determined by the n × m matrix of its component maps Z → Z. Since
Hom(Z,Z) ∼= k, the result follows.

Lemma 2.1.10. Let X be an object in a semisimple k-linear category C. The
endomorphism algebra End(X) = Hom(X,X) of X is a multimatrix algebra.

Proof. We can write X ∼=
⊕

imiZi for finitely many disjoint simple objects
Zi of C. Then using Lemma 2.1.5, we have isomorphisms

End(X) ∼= Hom

(⊕
i

miZi,
⊕
j

mjZj

)
∼=
⊕
i,j

Hom(miZi,mjZj).

Since the simple objects are disjoint, the only summands that do not vanish
are those where i = j. Thus, we have

End(X) ∼=
⊕
i

Hom(miZi,miZi) ∼=
⊕
i

Mmi(k)

by the previous lemma. This shows that End(X) isomorphic to a finite direct
sum of matrix algebras, as claimed.

Definition 2.1.11. A k-linear monoidal category is a category that is both
k-linear and monoidal, and such that ⊗ is bilinear on morphisms.

This compatibility between the monoidal and k-linear structures yields
the following important fact.

Lemma 2.1.12. In a k-linear monoidal category, ⊗ distributes over ⊕.

Proof. We prove the isomorphism (X1 ⊕ X2) ⊗ Y ∼= (X1 ⊗ Y ) ⊕ (X2 ⊗ Y ).
The generalisation to arbitrary finite direct sums in either entry will be clear.
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Let i1, i2, p1 and p2 be the inclusions and projections for the direct sum.
Define

i′j = ij ⊗ idY : Xj ⊗ Y → (X1 ⊕X2)⊗ Y

and
p′j = pj ⊗ idY : (X1 ⊕X2)⊗ Y → Xj ⊗ Y

for j = 1, 2. Then p′ji
′
j = idXj ⊗ idY = idXj⊗Y and

i′1p
′
1 + i′2p

′
2 = idX1⊕X2 ⊗ idY = id(X1⊕X2)⊗Y .

The isomorphism follows from the uniqueness of direct sums.

Theorem 2.1.13. The generic Temperley-Lieb-Jones category is a semisim-
ple C(q)-linear monoidal category – the Jones-Wenzl idempotents form a
collection of disjoint simple objects and every object is a direct sum of Jones-
Wenzl idempotents.

Proof. We have already seen that this category is monoidal. It is addi-
tive since the additive envelope construction produces an additive category.
Clearly T LJ is C(q)-linear with ⊗ bilinear on morphisms. The only thing
we really need to check is semisimplicity. The proof of this fact is reasonably
involved. It makes use of some complicated skein theory for Temperley-Lieb
diagrams. As such, we refer the reader to the excellent treatment in [Che14]
for a full proof of this.

We finish this section with an important lemma.

Lemma 2.1.14. Let C be a semisimple k-linear category with disjoint simple
objects Zi indexed by a set I. Then for any objects X and Y of C, the map⊕

i∈I

Hom(Zi, Y )⊗k Hom(X,Zi)→ Hom(X, Y )

induced by composition is an isomorphism.

Proof. There are finite subsets J ⊂ I and L ⊂ I such that X ∼=
⊕

j∈J mjZj
and Y ∼=

⊕
`∈L n`Z`. Then for each i ∈ I the summand

Hom(Zi, Y )⊗ Hom(X,Zi)

on the left vanishes unless i ∈ J ∩ L. If i ∈ J ∩ L, we have

Hom(X,Zi) ∼=
⊕
j∈J

Hom(mjZj, Zi) ∼= Hom(miZi, Zi) ∼= M1×mi(k)
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and similarly,

Hom(Zi, Y ) ∼= Mni×1(k).

For the space on the right hand side, we have

Hom(X, Y ) ∼=
⊕
j∈J

⊕
`∈L

Hom(mjZj, n`Z`)

∼=
⊕
i∈J∩L

Hom(miZi, niZi) ∼=
⊕
i∈J∩L

Mni×mi(k).

This means that corresponding to the map in the statement, we have a
map ⊕

i∈J∩L

Mni×1(k)⊗k M1×mi →
⊕
i∈J∩L

Mni×mi(k),

which is the direct sum of maps Mni×1(k) ⊗k M1×mi → Mni×mi(k) given by
composition of matrices. One can check that these maps are injective, and
a dimension comparison shows that they are isomorphisms. This completes
the proof.

2.2 Dual bases in a semisimple category

Definition 2.2.1. Let V and W be vector spaces over a field k. We say that
a bilinear pairing 〈·, ·〉 : V ×W → k is nondegenerate if the maps

v 7→ 〈v, w〉 and w 7→ 〈v, w〉

are injective for all v ∈ V,w ∈ W .

Suppose that V and W are finite dimensional. If v1, . . . , vn is a basis for
V , then a dual basis with respect to the pairing 〈·, ·〉 is a basis w1, . . . , wn
for W such that 〈vi, wj〉 = δij. Symmetrically, we also say that the basis
v1, . . . , vn is dual to the basis w1, . . . , wn. We note that the existence of a
dual basis implies that V and W have the same dimension. In the presence
of a nondegenerate pairing, dual bases always exist. This is a very useful
fact.

The construction is fairly straightforward. We begin by considering the
map Φ : W → V ∗ defined by w 7→ 〈·, w〉. Since the pairing is bilinear,
this is a linear map, and by nondegeneracy it must be injective. This shows
that dimW ≤ dimV ∗ = dimV , and by considering a similarly defined map
V → W ∗ we can conclude that dimW = dimV and that Φ is an isomorphism.
Then we can consider the dual basis v1, . . . , vn in V ∗, characterised by the
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equations vi(vj) = δij. Pulling this basis back along the isomorphism yields
a basis w1, . . . , wn for W with

〈vi, wj〉 = Φ(wj)(vi) = vj(vi) = δij,

as desired. If instead we started with a basis for W , then a very similar
argument is used to construct a dual basis of V .

Proposition 2.2.2. Suppose that C is a semisimple, k-linear, additive cat-
egory. If X is a simple object, then for any object Y , the natural bilinear
pairing

〈·, ·〉 : Hom(Y,X)× Hom(X, Y )→ Hom(X,X) ∼= k

given by composition of morphisms is nondegenerate.

Proof. We can write Y ∼=
⊕

imiZi for finitely many simple objects Zi. Then

Hom(Y,X) ∼=
⊕
i

Hom(miZi, X) and Hom(X, Y ) ∼=
⊕
i

Hom(X,miZi).

If X is not isomorphic to any of the Zi, then both spaces are zero and
the pairing is trivially nondegenerate. If X is isomorphic to one of the Zi,
then Hom(Y,X) ∼= kmi ∼= Hom(X, Y ). Then under these isomorphisms,
the pairing 〈·, ·〉 corresponds to the usual inner product on kmi . This is
nondegenerate, so the result follows.

Thus, if X is simple and we’re given a basis for either Hom(X, Y ) or
Hom(Y,X), then we can produce a dual basis with respect to the natural
pairing. This will prove to be very important when we construct matrix units
in the coming sections.

2.3 String diagrams for monoidal categories

A 2-category axiomatises the structure present in the category of all cat-
egories. Roughly speaking, a 2-category consists of a collection of objects
(or 0-morphisms), a collection of 1-morphisms between these objects, and
a collection of 2-morphisms between these 1-morphisms. There is one way
to compose 1-morphisms and there are two ways to compose 2-morphisms –
normally referred to as ‘horizontal’ and ‘vertical’ composition. These obey
an interchange law like that for composition of natural transformations. The
canonical example is the 2-category of categories, functors and natural trans-
formations.
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Our graphical calculus for the 2-category of categories works in general
for any 2-category. We label regions by objects, strands by 1-morphisms
and dots on strands by 2-morphisms. Now, in much the same way that a
monoid can be thought of as a category with a single object, a monoidal
category C can be thought of as a 2-category with a single object. The
1-morphisms are the objects of C, and these are composed by taking the
tensor product of objects. The 2-morphisms are the morphisms of C, which
are composed vertically using the normal composition in C, and which are
composed horizontally using the tensor product on morphisms in C. The
interchange law comes from the functoriality of ⊗.

This means that we have a natural graphical calculus for morphisms in a
monoidal category C. A morphism f : X → Y is depicted diagrammatically
by

f

X

Y

.

In the work to come, the string diagrams we draw will be fairly complex.
As a result, we’ll have many labels floating around at once. To alleviate
the confusion this could cause, we have made a small concession here and
enlarged our dots on strands to boxes on strands, in which we place the
appropriate label.

Recall our conventions from Chapter 0 about identities – strands labelled
by the identity functor are not drawn, and the identity natural transformation
on a functor F is depicted as a strand with no box, labelled by F . In the
monoidal category setting, these correspond to omitting strands labelled by
the tensor unit 1, and depicting idX as strand labelled by X. For example

idX

X

X

=

X

X

and f

X

= f

X

1

,

for a morphism f : X → 1.

If f : X → Y and g : Y → Z are morphisms, then the composition g ◦ f
is given by stacking diagrams:

g ◦ f

X

Z

=
f

g

X

Y

Z

.
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If f : W → X and g : Y → Z, then their tensor product is the horizontal
composition and is therefore depicted by

f

W

X

g

Y

Z

= f ⊗ g

W ⊗ Y

X ⊗ Z

= f ⊗ g

W Y

X Z

Here the equation

f ⊗ g = (f ◦ idW )⊗ (idZ ◦g) = (idX ◦f)⊗ (g ◦ idY )

allows us to push boxes past each other vertically, as if they were beads on a
string. For a complete treatment of the details of this graphical calculus see
the comprehensive survey [Sel11].

2.4 Matrix units for End(X⊗n)

Definition 2.4.1. Let C be a semisimple k-linear monoidal category. Let’s
fix our favourite (i.e., any) object X in this category. The principal graph
Γ(C, X) for the pair (C, X) is a directed graph defined as follows. The vertices
are labelled by the disjoint simple objects of C and for each pair of simple
objects Y and Z, there are

NZ
Y,X := dim Hom(Y ⊗X,Z)

directed edges from the vertex labelled by Y to the vertex labelled by Z.

We illustrate this idea with a simple example. Recall that the category
Rep(S3) has 3 simple objects, the trivial representation C+, the sign rep-
resentation C−, and the two dimensional irreducible representation which is
usually denoted C2. Some character theory (see [EGH+11]) can be used to
show that

C+ ⊗ C− ∼= C−,
C− ⊗ C− ∼= C+,

C2 ⊗ C− ∼= C2.

By Schur’s lemma (again, see [EGH+11]), this means that the principal graph
for the pair (Rep(S3),C−) is

C+ C− C2
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For the remainder of this section we will fix bases for the various hom-
spaces Hom(Y ⊗ X,Z) as Y and Z range over all the simple objects of C.
We will use the notation {γY,Z,i}i∈IY,Z for these sets, where IY,Z is some index
set of cardinality NZ

X,Y . Note that the act of choosing actual basis elements
means that the matrix unit construction that follows is not canonical.

Definition 2.4.2. A walk a on the principal graph Γ(C, X) consists of a
sequence of simple objects (vertices) A0, A1, . . . , An and a sequence of ba-
sis elements (edges) γA0,A1,a1 , γA1,A2,a2 , . . . , γAn−1,An,an connecting them (here
ak ∈ IAk−1,Ak). We will use the notation

a = (A0, γA0,A1,a1 , A1, γA1,A2,a2 , A2, . . . , An−1, γAn−1,An,an , An),

with the various edges interspersed between the vertices. Note that we use
an upper case letter for the sequence of vertices and the associated lower
case letter to name the walk and index the edges. We might also suppress
the object labels for the specified basis elements. When this is the case, γak
means the morphism γAk−1,Ak,ak .

The length of such a walk a is the number of edges n, the starting vertex
is A0, and the ending vertex is An.

We will now use length n walks on the principal graph starting at 1 to
construct matrix units for the algebra End(X⊗n). Let PZ,n denote the set of
all such walks that end at the simple object Z. Then we can define a map
tZ,n : PZ,n → Hom(X⊗n, Z) by assigning to a walk

a = (1 = A0, γA0,A1,a1 , A1, γA1,A2,a2 , A2, . . . , An−1, γAn−1,An,an , An = Z)

the morphism represented by the string diagram

γa1

γa2

A0 = 1 X

A1

X

A2

..
.

An−1

γan

X· · ·

An = Z

Remark 2.4.3. The morphism depicted actually belongs to Hom(1⊗X⊗n, Z).
However, this space is canonically isomorphic to Hom(X⊗n, Z), so this is not
an issue.
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If we now define Pn :=
⋃
Z PZ,n by taking the union over all simple objects

Z, then Pn consists of all length n walks on the principal graph starting at 1.
Then by combining the various maps tZ,n : PZ,n → Hom(X⊗n, Z) together,
we get another map

t :
⋃
n≥1 Pn −−−→

⋃
n≥1
⋃
Z Hom(X⊗n, Z),

where the union is again taken over all simple objects Z.

As it stands, we have a collection of bases {γY,Z,i}i∈IY,Z for the spaces
Hom(Y ⊗ X,Z). Since Z is always simple, the results of Section 2.2 allow
us to pick dual bases for the spaces Hom(Z, Y ⊗ X), which we denote by
{γiY,Z}i∈IY,Z . Having done this, we can define another map t̂Z,n : PZ,n →
Hom(Z,X⊗n) by instead assigning the morphism represented by

γa1

γa2

A0 = 1 X

A1

X

A2 ...

An−1

γan

X· · ·

An = Z

to a. Then in exactly the same way as before, we get a map

t̂ :
⋃
n≥1 Pn −−−→

⋃
n≥1
⋃
Z Hom(Z,X⊗n),

where the union is again over all simple objects Z.

We note that a simple recursive formula is evident from this diagrammatic
description of t and t̂. For any walk a ∈ Pn, let a′ denote the walk in Pn−1
obtained by deleting the last vertex and edge from a. Then

t(a) = γAn−1,An,an ◦ (t(a′)⊗ idX) (2.3)

and
t̂(a) = (t̂(a′)⊗ idX) ◦ γanAn−1,An

. (2.4)

In fact, we could have defined these maps recursively by these formulae.
However, the structure would be much less clear had we done this.
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Lemma 2.4.4. If a ∈ PZ,n and b ∈ PZ′,n, then

t(a)t̂(b) =

{
idZ′ = idZ if a = b,

0 ∈ Hom(Z ′, Z) otherwise.

Proof. Consider the following string diagram representing t(a)t̂(b):

γa1

γa2

A0 = B0 = 1 X

A1

X

A2

..
.

An−1

γan

X· · ·

An = Z

γb1

γb2

B1

B2 ...

Bn−1

γbn

Bn = Z′

If any of the vertices Ak and Bk are different from each other, then Ak and
Bk are disjoint simple objects, so the piece of the diagram representing a
morphism Bk → Ak vanishes. This means that the whole diagram is zero
unless Ak = Bk for all k. If this is the case, then we work from the innermost
composite (γa1 ◦ γb1) on the left outwards. That the whole diagram is the
identity on An = Z = Z ′ = Bn if and only if ak = bk for each k follows from
the fact that the bases were chosen to be dual to each other.

Lemma 2.4.5. For any simple object Z of C, the set {t(a) | a ∈ PZ,n} is
a basis for Hom(X⊗n, Z). Similarly, the set {t̂(a) | a ∈ PZ,n} is a basis for
Hom(Z,X⊗n).

Proof. We prove the first statement only. The proof of the second statement
is similar. Linear independence is straightforward to establish. If we have
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coefficients ra such that ∑
a∈PZ,n

rat(a) = 0,

then multiplying on the right by t̂(b) for any b ∈ PZ,n yields

0 =
∑
a∈PZ,n

rat(a)t̂(b) = rb idZ ,

by the previous lemma. Thus rb = 0, proving linear independence.
Showing that the set also spans is more involved. To do this, we proceed

by induction on n. If n = 1, then each t(a) is a different distinguished
basis element of Hom(1 ⊗ X,Z). These certainly span, so the base case is
immediate. Now, suppose that the statement holds for walks of length n−1.
Length n walks from 1 to Z are in bijection with pairs consisting of an edge
from Zi to Z and a length n − 1 walk from 1 to Zi, where the Zi run over
all simple objects. Thus,

|PZ,n| =
∑
i∈I

NZ
Zi,X
· |PZi,n−1| =

∑
i∈I

NZ
Zi,X
· dim Hom(X⊗n−1, Zi),

where the last equality comes from the induction hypothesis.
On the other hand, using semisimplicity, we can writeX⊗n−1 ∼=

⊕
i∈I miZi

for mi = dim Hom(X⊗n−1, Zi). Then X⊗n ∼=
⊕

i∈I mi(Zi⊗X), which means
that

dim Hom(X⊗n, Z) =
∑
i∈I

mi · dim Hom(Zi ⊗X,Z)

=
∑
i∈I

dim Hom(X⊗n−1, Zi) ·NZ
Zi,X

.

This completes the proof.

Definition 2.4.6. We say that two length n walks a and b on the principal
graph Γ(C, X) are compatible if they have the same end vertex An = Bn.

If a, b ∈ Pn are compatible paths, set ea,b = t̂(a)t(b). Then the previous
lemma shows that the various ea,b satisfy the equations for matrix units. If,
on the other hand, a and b are not compatible, then we extend our definition
by setting ea,b = 0. Then the equations

ea,bec,d = δb,cea,d

hold for any paths a, b, c, d ∈ Pn. Then we can finally prove the following.
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Theorem 2.4.7. The ea,b for pairs of compatible walks a, b ∈ Pn form a basis
of matrix units for End(X⊗n).

Proof. Most of the work has been done already – we just need to apply
Lemma 2.1.14. We have bases for each Hom(X⊗n, Z) and Hom(Z,X⊗n),
hence we have bases for the tensor products appearing on the left hand side
of Lemma 2.1.14. These bases look like t̂(a) ⊗ t(b) for a, b ∈ PZ,n, and
composing yields the result.

For compatible walks a and b, the matrix unit ea,b is depicted diagram-
matically by

ea,b =

γb1

γb2

B0 = 1 X

B1

X

B2

..
.

Bn−1

γbn

X· · ·

γa1

γa2

A0 = 1 X

A1

X

A2 ...

An−1

γan

X· · ·

An = Bn
. (2.5)

Often the basis of matrix units is referred to as the ‘tree basis’ because of
this diagram’s close resemblance to a tree.

2.5 Example – generic Temperley-Lieb-Jones

We’ll now work through the construction given above in detail for the generic
T LJ category. Here, the simple object we use is f (1). Since this is just a
single strand, the n-th tensor power is simply the identity in the algebra TLn.
This means that the space End(f (1)⊗n) is actually the n-th Temperley-Lieb
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algebra TLn. As such, what follows will describe explicit matrix units for
the generic Temperley-Lieb algebras.

As mentioned before, in the generic TLJ category the simple objects are
the Jones-Wenzl idempotents. Recalling that f (n) ⊗ f (1) ∼= f (n+1) ⊕ f (n−1),
we find that

Hom(f (n) ⊗ f (1), f (m)) ∼= Hom(f (n+1) ⊕ f (n−1), f (m)) ∼=

{
C(q) if n = m± 1

0 otherwise.

This means that the principal graph Γ(T LJ , f (1)) has a vertex for each
natural number, and exactly one directed edge going each way between nu-
merically adjacent vertices:

f (0) f (1) f (2) f (3) f (4)

. . .

This makes the matrix unit construction reasonably simple to work through
in this case. We begin by recalling that an element of Hom(f (n)⊗f (1), f (n+1))
is an element x ∈ TLn+1 such that

x(f (n) ⊗ f (1)) = x = f (n+1)x.

An obvious TLn+1-diagram satisfying these equations is f (n+1), and since the
hom-space is 1-dimensional this actually gives us a basis:

Hom(f (n) ⊗ f (1), f (n+1)) = C(q)
{
f (n+1)

}
.

Similarly, there are obvious diagrams with

Hom(f (n) ⊗ f (1), f (n−1)) = C(q)

 f (n)

. . .

. . .

 ,

Hom(f (n+1), f (n) ⊗ f (1)) = C(q)
{
f (n+1)

}
,

Hom(f (n−1), f (n) ⊗ f (1)) = C(q)

 f (n)

. . .

. . .

 .

The chosen basis elements for Hom(f (n)⊗f (1), f (n+1)) and Hom(f (n+1), f (n)⊗
f (1)) are already dual to each other. The basis elements for Hom(f (n) ⊗
f (1), f (n−1)) and Hom(f (n−1), f (n) ⊗ f (1)) don’t quite work though – they’re
off by a constant since

f (n)

f (n)

. . .

. . .

. . .

=
[n+ 1]

[n]
f (n−1).
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To solve this, we just scale each of these basis elements by
√

[n]
[n+1]

. Having

done that, these bases are then fixed for the remainder of the construction.
Normally, a walk on the principal graph consists of a sequence of vertices

(simple objects) and specified edges (basis vectors) connecting them. Since
all the hom-spaces are 1-dimensional in this example, once we have fixed
bases there is no danger in thinking of a walk a on the principal graph as
simply a sequence of vertices a = (A0, A1, . . . , An). Then the sets Pf (m),n used
above can be identified with the sets Pm,n of length n walks in N starting at
0 and ending at m. Note that these sets Pm,n are empty when m and n have
different parity, or when m > n.

The map t then has a reasonably simple description. If we have a walk

a = (0 = A0, A1, . . . , An = m),

then we build t(a) as follows. We follow the walk through N, adding a
diagram each time we move from one vertex to another. Every time a diagram
is placed, all but the rightmost strands attach to the top of the previous
diagram, and the rightmost strand is pulled down to the bottom. If the walk
increases as it goes from Ak to Ak+1, then the diagram we use should be the
chosen basis element of Hom(f (Ak) ⊗ f (1), f (Ak+1)), and if the walk decreases
as it goes from Ak to Ak+1, then the diagram we use should be the chosen
basis element of Hom(f (Ak) ⊗ f (1), f (Ak−1)).

For example, when n = 3, one possible walk is a = (0, 1, 2, 1). Following
this prescription, we produce the diagram

√
[2]

[3]
·

f (1)

f (2)

f (2)

.

The basic properties of Jones-Wenzl idempotents mean that this simplifies
to √

[2]

[3]
· f (2) .

The map t̂ has a similar description, except we work from the top down and
use the dual bases instead.
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Chapter 3

Representations of
Temperley-Lieb algebras

In Lemma 2.1.10 of Chapter 2, we showed that the endomorphism algebras
in a semisimple k-linear monoidal category are isomorphic to multimatrix
algebras over k. Algebras of this type are more commonly referred to as
semisimple algebras. We recall from basic representation theory [EGH+11]
that every representation of a semisimple algebra decomposes as a direct sum
of irreducible subrepresentations. Thus, we can say a great deal about the
representation theory of a semisimple algebra if we can just understand its
irreducible representations.

In Propositions 3.1.1, 3.1.2 and 3.1.3 we give a classification of the irre-
ducible representations of End(X⊗n) using the matrix units constructed in
the previous chapter. In particular, this classifies the irreducible representa-
tions of the Temperley-Lieb algebras.

Before proceeding, we remind the reader that (left) modules over an alge-
bra are the same thing as representations of that algebra. Because of this, we
use the terms ‘module’ and ‘representation’ interchangeably in what follows.
Furthermore, all modules are left modules unless otherwise specified.

3.1 Standard representations for End(X⊗n)

The tree basis construction of the previous chapter provides a convenient way
to explore the representation theory of End(X⊗n). For any simple object Z,
define

W n
Z := Hom(Z,X⊗n).

ThenW n
Z is a representation of End(X⊗n), with the action of End(X⊗n) given

by composition on the left. Lemma 2.4.5 shows that these representations
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have as a basis the t̂(a) for a ∈ PZ,n. This will prove to be a very convenient
basis to work with in what follows.

Amazingly, the representations just constructed are exactly the irreducible
representations of End(X⊗n). This is the content of the next three proposi-
tions.

Proposition 3.1.1. If W n
Z is nonzero, then it is an irreducible representa-

tion.

Proof. Let W ⊂ W n
Z be a nonzero subrepresentation. Take any nonzero

x ∈ W and write x =
∑

a∈PZ,n rat̂(a). At least one of these coefficients, say

rb, must be nonzero. Then for any c ∈ PZ,n we can act by r−1b ec,b to give

1

rb
ec,bx =

∑
a∈PZ,n

ra
rb
t̂(c)t(b)t̂(a) = t̂(c) idZ = t̂(c).

As a result, we have W = W n
Z , showing that W n

Z is irreducible.

Proposition 3.1.2. If Z and Z ′ are disjoint simple objects, then the repre-
sentations W n

Z and W n
Z′ are not isomorphic as End(X⊗n) representations.

Proof. Suppose f : W n
Z → W n

Z′ is an intertwining map. Take any a ∈ PZ,n.
Then t̂(a) is a basis vector for W n

Z . Write f(t̂(a)) =
∑

b∈PZ′,n
rbt̂(b). Then we

can compute

f(t̂(a)) = f(ea,at̂(a)) = ea,a ·
∑

b∈PZ′,n

rbt̂(b) = 0,

since a is not in PZ′,n. Since the t̂(a) give a basis for W n
Z , this completes the

proof.

Proposition 3.1.3. Every irreducible representation is isomorphic to one of
these irreducible representations.

Proof. It is a standard result [EGH+11] about representations of finite di-
mensional semisimple algebras that the sum of the squared dimensions of the
irreducible representations gives the dimension of the algebra. Here this sum
is taken over all simple objects Z and is∑

Z

(dimW n
Z )2 =

∑
Z

|PZ,n|2.

The tree basis constructed for End(X⊗n) in Chapter 2 has exactly as many
elements as the right hand sum, so the proposition follows from this.
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3.2 Dimension counting

In general, computing the size of the sets PZ,n (or equivalently, the dimensions
of the irreducible representations) is difficult. In the Temperley-Lieb case,
however, things are simpler. Although it still takes a bit of work to achieve,
we can give explicit formulae for these dimensions.

We can apply the construction of Section 3.1 to the T LJ category with
X = f (1). The simple objects of this category are the Jones-Wenzl idempo-
tents, so we find that the representations are

W n
m := W n

f (m) = Hom(f (m), f (1)⊗n).

Since f (1) is just the strand, its n-th tensor power is the identity in TLn.
Thus, we can characterise W n

m as those (m,n)-Temperley-Lieb diagrams x
with x = xf (m). We will make use of this characterisation in the next section.
As we mentioned before, when n and m have different parity, or when m > n,
the set Pm,n is empty. This means that the irreducible representations are
the W n

m for m ∈ {0, . . . , n} with the same parity as n.

Proposition 3.2.1. For m ∈ {0, . . . , n} with the same parity as n, we have

dimW n
m =

(
n

n−m
2

)
−
(

n
n−m
2
− 1

)
.

Proof. We can compute the dimension of W n
m by counting the number of

elements of Pm,n. In order to do this, we’ll exhibit a bijection between another
set that is easier to count. Given a length n walk in N starting at 0 and ending
at m, we can construct a monotonic increasing walk in Z2. The walk starts
at (0, 0) and moves one unit to the right every time the original walk moves
to the right, or it moves one unit up every time the original walk moves to
the left. The original walk in N moves to the left at most as many times
as it moves to the right. As a result, the constructed walk in Z2 cannot go
above (but may touch) the main diagonal in Z2. The walk in N must reach
m after n steps. Thus, if (x, y) is the final vertex of the constructed walk, we
must have x + y = n and x − y = m. Solving these equations, we find that
x = n+m

2
and y = n−m

2
. This means that the constructed walk is a monotonic

increasing walk in Z2 from (0, 0) to (n+m
2
, n−m

2
) that does not go above the

diagonal. It is straightforward to see that these sets are actually in bijection,
since every such walk can be constructed this way.

In order to count the elements of this new set, we begin by counting
monotonic increasing walks in Z2 from (a, b) to (c, d). (From now on, ‘walk’
should be read as ‘monotonic increasing walk’). If a > c or b > d, then there
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are no walks, so we assume that a ≤ c and b ≤ d. Then a walk from (a, b) to
(c, d) consists of a sequence of c− a+ d− b edges, where c− a are horizontal
and d−b are vertical. To describe a walk of this type, we only need to specify
which edges are horizontal, so these walks are counted by

N
(c,d)
(a,b) :=

(
c− a+ d− b

d− b

)
.

Now we make the additional assumptions that a > b and c > d. Suppose
we have a walk that touches the diagonal at some point. If (i, i) is the
coordinate where the walk first touches the diagonal, then we can construct
a new monotonic walk from (b, a) to (c, d) by leaving the walk unchanged
past (i, i), but reflecting the segment before (i, i) across the main diagonal.
For example, for the pictured walk from (1, 0) to (5, 4) we do the following

7→ ,

producing a walk from (0, 1) to (5, 4). Since a > b, the point (b, a) is above the
main diagonal, and since c > d, the point (c, d) is below the main diagonal.
This means that a walk from (b, a) to (c, d) must cross the main diagonal.
Thus, the same process produces an inverse map, establishing a bijection
between the set of walks from (a, b) to (c, d) that touch the diagonal, and the

set of all walks from (b, a) to (c, d). The latter set is counted by N
(c,d)
(b,a) , so we

conclude that the number of walks from (a, b) to (c, d) that do not touch the
diagonal is

N
(c,d)
(a,b) −N

(c,d)
(b,a) =

(
c− a+ d− b

d− b

)
−
(
c− a+ d− b

d− a

)
.

Returning to the original problem, we actually want to count walks from
(0, 0) to (n+m

2
, n−m

2
) which do not go above the main diagonal (but can touch

the main diagonal). Shifting such a walk 1 unit to the right, we obtain a
bijection between these walks and those walks from (1, 0) to (n+m

2
+ 1, n−m

2
)

that do not touch the diagonal. Then the previous formula shows that the
total number of these walks is(n+m

2
+ n−m

2
n−m
2

)
−
(n+m

2
+ n−m

2
n−m
2
− 1

)
=

(
n

n−m
2

)
−
(

n
n−m
2
− 1

)
.

This proves the given formula for dimW n
m.
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We can use these results to calculate the dimension of TLn:

Proposition 3.2.2. The generic Temperley-Lieb algebras have dimensions
given by the equation

dimTLn = dimW 2n
0 =

(
2n

n

)
−
(

2n

n− 1

)
.

Proof. Since f (0) is the empty diagram, we find that W 2n
0 is exactly the

space HomT L(0, 2n). Then there is a straightforward bijection between the
standard basis of TLn and simple diagrams in HomT L(0, 2n). Given a basis
element of TLn take the bottom n dots and pull them up to the right as
pictured in the following example

7→

For the inverse map, take a simple diagram in HomT L(0, 2n) and pull the n
rightmost dots on the top down to the right.

Remark 3.2.3. The numbers Cn =
(
2n
n

)
−
(

2n
n−1

)
are known as the Catalan

numbers and appear all over the place in combinatorics. For example, an
exercise in [Sta99] asks the reader to show that the Catalan numbers count
the number of elements of 66 different families of objects.

Remark 3.2.4. We should also note that there are far more direct ways to
calculate the dimension of TLn (see for example [RSA14]). The approach
described here is just the quickest in the framework that’s already been set
up.

3.3 Restriction

There is a natural inclusion of TLn into TLn+1 given by adding a single
strand on the right of a simple diagram and extending linearly. This means
that we can view any TLn+1-module as a TLn-module, yielding a functor

Resn+1
n : TLn+1-mod→ TLn-mod,

which is the identity on TLn+1-module maps.
Consider an irreducible representation W n

m of TLn. We can restrict to
TLn−1, obtaining the TLn−1-representation Resnn−1(W

n
m). It is natural to

try to understand how this restricted representation decomposes as a direct
sum of irreducible TLn−1-representations. Pleasantly, there is a very simple
formula answering this question.
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Proposition 3.3.1. Let W n
m be an irreducible TLn-representation for n ≥ 1.

Then if m ≥ 1,
Resnn−1(W

n
m) = W n−1

m+1 ⊕W n−1
m−1,

and if m = 0,
Resnn−1(W

n
0 ) = W n−1

1 .

Proof. When m = 0 it is easy to verify that

x 7→
. . .
x and y 7→

. . .
y

are mutually inverse TLn−1-module maps, so Resnn−1(W
n
0 ) ∼= W n−1

1 . For
m ≥ 1, define a map W n

m → W n−1
m+1 ⊕W n−1

m−1 by

x 7→


x

f (m+1)

. . .

. . .

. . .

,
[m]

[m+ 1] x
. . .

. . .

 ,

noting that the right hand entry is an element of W n−1
m−1 since x = xf (m−1)

(here we are including f (m−1) into TLm in the usual way). Because the n− 1
leftmost strands on top of x are left untouched, it is immediate that this is
a map of TLn−1-modules. Next, define a map W n−1

m+1 ⊕W n−1
m−1 → W n

m by

(y, z) 7→
. . .

. . .
y +

. . .

. . .

. . .

z

f (m)

.

Once again this is clearly a TLn−1-module map, and the output lies in W n
m

since y = yf (m−1).
The claim now is that these two maps are mutual inverses. To verify this,

we observe that the composition

W n
m −−−→ W n−1

m+1 ⊕W n−1
m−1 −−−→ W n

m

takes an element x ∈ W n
m to

x

f (m+1)

. . .

. . .

. . .

+
[m]

[m+ 1]

x

f (m)

. . .

. . .

. . .
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Applying Wenzl’s recursion formula (1.1) to the f (m+1) in the first term yields

x

f (m)

. . .

. . .

. . .

− [m]

[m+ 1] f (m)

x

f (m)

. . .

. . .

. . .

. . .

+
[m]

[m+ 1]

x

f (m)

. . .

. . .

. . .

which evaluates to x since xf (m) = x.
For the other composition

W n−1
m+1 ⊕W n−1

m−1 −−−→ W n
m −−−→ W n−1

m+1 ⊕W n−1
m−1

a pair (y, z) ∈ W n−1
m+1 ⊕W n−1

m−1 is sent to
y

f (m+1)

. . .

. . .

. . .

+

z

f (m)

f (m+1)

. . .

. . .

. . .

. . .

,
[m]

[m+ 1]

 . . .

. . .
y +

. . .

. . .

. . .

z

f (m)




Then since y = yf (m+1), the first summand in the left term simplifies to y
and the first summand in the right term vanishes (JWI are uncuppable). In
the second summand of the left term the f (m) pulls back into the f (m+1),
which is then being capped, so the summand vanishes. Finally, the second
summand in the right term evaluates to z using zf (m−1) = z and the partial
trace relation for the JWI. Thus, the map is the identity on W n−1

m+1 ⊕W n−1
m−1,

so the proof is complete.

3.4 Induction

Having discussed the process of restricting a representation of TLn+1 to a rep-
resentation of TLn, it is only natural to ask whether the reverse is possible.
That is, given a representation of TLn, is there a way to produce a repre-
sentation of TLn+1? The answer is yes, but the story is more complicated.
This process of taking a representation of a smaller object and producing a
representation of a bigger object is known as induction, and in our context
is achieved using the tensor product of bimodules.
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Induction works as follows. Note that we can view the algebra TLn+1

as a (TLn+1, TLn)-bimodule, with the action on the right coming from the
inclusion of TLn into TLn+1. Thus, if V is a TLn-module, then the tensor
product

TLn+1 ⊗TLn V
is a TLn+1-module. To reduce notational clutter, we can abbreviate the
tensor product symbol ⊗TLn to ⊗n. If L : V → W is a map of TLn-modules,
then

idTLn+1 ⊗n L : TLn+1 ⊗n V → TLn+1 ⊗W
is a map of TLn+1-modules, so we have a functor

Indn+1
n : TLn-mod→ TLn+1-mod.

Whereas the dimension of a restricted module was immediately obvious,
the dimension of an induced module is much less clear. Given a basis for
W , it is not at all obvious what a basis for Indn+1

n (W ) would be. We know
that the dimension is bounded above by (dimTLn+1) · (dimW ), but we will
soon see that this number is far too large. Thankfully, we can characterise
induction for the standard modules in terms of restriction for other standard
modules. This is the content of the following proposition.

Proposition 3.4.1. For an irreducible TLn-representation W n
m, we have

Indn+1
n (W n

m) = Resn+2
n+1(W

n+2
m ).

In particular,

dim Indn+1
n (W n

m) =

(
n+ 2

n−m
2

+ 1

)
−
(
n+ 2
n−m
2

)
.

Proof. Define a map TLn+1 ⊗nW n
m → W n+2

m by

x⊗n w 7→
x

w

. . .

. . .

. . .

and extending linearly. To ensure that this is well defined we need to check
that x⊗n yw and xy⊗n w map to the same thing when y ∈ TLn, but this is
immediate from the way that TLn includes into TLn+1. That this is a map
of TLn+1-modules is also immediate – TLn+1 acts on the first tensor factor
on the left, which corresponds to acting on the leftmost n+ 1 strands of the
right hand diagram. To establish that this map is an isomorphism we will
proceed as follows:
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(1) Construct a spanning set for TLn+1⊗nW n
m containing at most dimW n+2

m

vectors.

(2) Show that each basis vector of W n+2
m is hit by one of the elements in

this set under the map.

(3) Part (1) shows that dim Indn+1
n (W n

m) ≤ dimW n+2
m and (2) allows us to

deduce the reverse inequality. Then it follows that the spanning set is a
basis and the surjective map is an isomorphism, completing the proof.

For (1), we fix some arbitrary walk d ∈ Pm,n and consider the set

S = {ea,(d,An+1) ⊗n t(d) | a ∈ Pm±1,n+1} ⊂ TLn+1 ⊗nW n
m.

Here (d,An+1) denotes the walk constructed by appending the vertex An+1 to
the end of d. In order for this to actually define a walk we need An+1 = m±1,
hence the condition on a in the above definition.

By moving elements of TLn through the tensor product, we could theo-
retically transform one element of this set into another, so it’s hard to say
exactly how many distinct elements S contains. However, we can say that
there are at most |Pm−1,n+1| + |Pm+1,n+1| = |Pm,n+2| = dimW n+2

m elements.
This first equality comes from the simple bijection between Pm±1,n+1 and
Pm,n+2 obtained by deleting the last entry from a walk in Pm,n+2. Alter-
natively, we could also see this by some simple manipulation of binomial
coefficients.

We know that TLn+1⊗nW n
m is spanned by elements of the form ea,b⊗nt(c),

for pairs of compatible walks a, b ∈ Pn+1 and c ∈ Pm,n. Therefore, to show
that S spans, it suffices to show that every element of this kind is either zero,
or actually lies in S. To do this, note that since c, d ∈ Pm,n, we can write
t̂(c) = ec,dt̂(d). Then we can calculate

ea,b ⊗n t̂(c) = ea,b ⊗n ec,dt̂(d) = ea,bec,d ⊗n t̂(d).

In the left hand factor, the ec,d is being included into TLn+1, so this factor
looks like

ea,b

ec,d

. . .

. . .

. . .

.

It is straightforward to check that this element is equal to δb′,c ea,(d,Bn+1)

(recall that b′ is the walk obtained by deleting the last vertex of b) – either
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by drawing the tree basis out explicitly, or by using the recursive formulas
(2.3) and (2.4). Thus, we have

ea,b ⊗n t̂(c) = δb′,c ea,(d,Bn+1) ⊗n t̂(d).

Since a and b are compatible, we have An+1 = Bn+1. As a result, the right
hand side is either zero, or a member of S, as claimed. This completes the
proof.

Applying Proposition 3.3.1 in conjunction with Proposition 3.4.1 imme-
diately yields the following corollary.

Corollary 3.4.2. Let W n
m be a standard TLn-module for n ≥ 0. Then if

m ≥ 1,
Indn+1

n (W n
m) = W n+1

m+1 ⊕W n+1
m−1,

and if m = 0,
Indn+1

n (W n
0 ) = W n+1

1 .



Chapter 4

The biadjunction

In this chapter we prove the main result of this thesis, Theorem 4.2.14. To
prove this theorem, we need to establish two seperate adjunctions. We treat
one of these in a very general context in Section 4.1. The adjunction proved
here is very straightforward. In Section 4.2 we develop some general theory
about pivotal tensor categories, including an expansion of our graphical cal-
culus for monoidal categories. This provides us with enough background to
state and prove the other adjunction of Theorem 4.2.14. This part is harder,
and the proof takes the entirety of Section 4.3.

4.1 An easy adjunction

The concepts of induction and restriction make sense in a more general con-
text than that discussed so far. Whenever there is an inclusion of unital
algebras A ⊂ B we can restrict a B-module to obtain an A-module as in the
Temperley-Lieb case. In the other direction, we can take an A-module and
produce a B-module using the bimodule construction explained previously.
This gives functors

IndBA : A-mod→ B-mod

and
ResBA : B-mod→ A-mod.

Conveniently, IndBA is left adjoint to ResBA even at this level of generality.
We will demonstrate this by explicitly describing a unit

η : 1A-mod → ResBA IndBA

and a counit
ε : IndBA ResBA → 1B-mod

53
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for the adjunction. Knowing about these natural transformations will be
important later on.

If V is an A-module, then define ηV : V → B ⊗A V by v 7→ 1 ⊗A v.
This is obviously a map of A-modules since any element of A can be pulled
through the tensor product. On the other hand, if W is a B-module, then
define a B-module map εW : B ⊗AW → W by b⊗A w 7→ bw and extending
linearly. (That this is well defined comes from the definition of a B-module
where we require that (ba)w = b(aw).) Checking that these maps assemble
into natural transformations is straightforward and is omitted.

We must verify that these maps actually give rise to an adjunction. The
first map to consider is the composition

IndBA(V )
IndBA(ηV )−−−−−→ IndBA ResBA IndBA(V )

ε
IndB

A
(V )

−−−−−→ IndBA(V )

for any A-module V . This is the map

B ⊗A V
idB ⊗AηV−−−−−−→ B ⊗A (B ⊗A V )

εB⊗AV−−−−→ B ⊗A V

taking b⊗A v to b⊗A (1⊗A v) and this to b(1⊗A v) = b⊗A v. This is simply
the identity on B ⊗A V , so everything works for this map.

The second map to consider is the composition

ResBA(W )
η
ResB

A
(W )

−−−−−→ ResBA IndBA ResBA(W )
ResBA(εW )
−−−−−−→ ResBA(W )

for any B-module W . This is the map

W
ηW−−−→ B ⊗AW

εW−−−→ W

sending w to 1 ⊗A w, which is sent to 1w = w. Thus, both maps behave as
desired, establishing the adjunction.

4.2 Pivotal tensor categories with a self dual

object

Let C be a k-linear monoidal category. Given any object X in this category,
we can consider the k-algebra Rn := End(X⊗n) of endomorphisms of the
n-th tensor power of X. There is an obvious injective map Rn → Rn+1

given by tensoring a morphism f : X⊗n → X⊗n with the identity morphism
idX : X → X. When C is the generic T LJ category and X is the strand
f (1), we find that Rn = TLn and the map TLn → TLn+1 is the familiar
inclusion. Consequently, this generalises a situation we have studied before.
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Ideally, the induction and restriction functors associated with this tower
of algebras would form biadjoint pairs. It turns out that if we assume that
our category has a little bit of additional structure and pick a sufficiently
nice object X, then this does actually hold.

Definition 4.2.1. Let C be a monoidal category and X be an object of C. An
object X∗ of C is a left dual of X if there are morphisms evX : X∗ ⊗X → 1
and coevX : 1→ X ⊗X∗ (called evaluation and coevaluation) such that the
two composites

X
coevX ⊗ idX−−−−−−−→ X ⊗X∗ ⊗X idX ⊗ evX−−−−−−→ X, (4.1)

and

X∗
idX∗ ⊗ coevX−−−−−−−→ X∗ ⊗X ⊗X∗ evX ⊗ idX∗−−−−−−→ X∗ (4.2)

are the identity on their respective domains. Recall that here we are sup-
pressing the associativity and unit isomorphisms.

As a simple example, consider the category FinVeck of finite dimensional
vector spaces over k. The dual of a vector space V is the dual vector space
V ∗ (as you would hope). The evaluation map V ∗ ⊗ V → k comes from the
canonical pairing between V ∗ and V . The coevaluation map k → V ⊗ V ∗ is
defined by picking a basis {vi} for V and sending 1 ∈ k to

∑
i vi ⊗ vi, where

{vi} is the dual basis to {vi}. Checking that these maps satisfy the required
equations is a straightforward exercise.

There is also an analogous definition of an object having a right dual.

Definition 4.2.2. Let C be a monoidal category and X be an object of C. An
object ∗X of C is a right dual of X if there are morphisms ẽvX : X⊗ ∗X → 1
and c̃oevX : 1→ ∗X ⊗X such that the two composites

X
idX ⊗c̃oevX−−−−−−−→ X ⊗ ∗X ⊗X ẽvX⊗idX−−−−−→ X (4.3)

and
∗X

c̃oevX⊗id∗X−−−−−−−→ ∗X ⊗X ⊗ ∗X
id∗X ⊗ẽvX−−−−−−→ ∗X (4.4)

are the identity of their respective domains.

There are graphical interpretations for equations (4.1) through (4.4). If
we depict evX and coevX by

evX

X∗ X

and
coevX

X X∗
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respectively (recall that we always leave out strands labelled by the tensor
unit), then equations (4.1) and (4.2) say that we can pull ‘zigzags’ in our
diagrams straight:

coevX

X

X∗

evX

X

= X and

coevX

X

X∗

evX

X∗

= X∗ .

The situation for right duals is very similar. Because of this graphical in-
terpretation, equations (4.1) through (4.4) are generally referred to as the
‘zigzag equations’.

For the remainder of this section we will focus on results concerning left
duals, remembering that there is always an analogous statement for right
duals.

Proposition 4.2.3. If an object X has a left dual X∗, then this dual is
unique up to unique isomorphism. More precisely, if X∗1 is a left dual with
evaluation and coevaluation maps e1 and c1 respectively, and if X∗2 is another
left dual with evaluation and coevaluation maps e2 and c2 respectively, then
there is a unique isomorphism α : X∗1 → X∗2 preserving the evaluation and
coevaluation maps:

e2 ◦ (α⊗ idX) = e1 and (idX ⊗α−1) ◦ c2 = c1.

Proof. Define α : X∗1 → X∗2 and β : X∗2 → X∗1 by the diagrams

α =

c2

X

X∗2

e1

X∗1

and β =

c1

X

X∗1

e2

X∗2

.

Then

α ◦ β =

c1

X

X∗1

e2

X∗2

c2

X

X∗2

e1

=
c1

X

X∗1

e1

X

e2

c2

X∗2

X∗1

=

c2

X

X∗2

e2

X∗2

= X∗2
,
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where we use the interchange law and the zigzag equations twice. A similar
diagrammatic calculation shows that β ◦ α = idX∗1 , establishing the isomor-
phism. Likewise, it is easy to see that

e2

X∗2

X

α

X∗1

= e1

X∗1 X

and

c2

X

X∗2

β

X∗1

=
c1

X X∗1
.

For uniqueness, suppose we have an isomorphism α with inverse β, satisfying
these two relations. Then we must have

α = c2

X

X∗1

e2

X∗2

α

X∗1

=

c2

X

X∗1

e1

X∗1

,

using the first equation. A similar argument, using the second equation,
shows that β must be the isomorphism defined above. This completes the
proof.

Proposition 4.2.4. Let C be a k-linear monoidal category. If an object X
of C has a left dual X∗, then for any objects Y and Z in C we have vector
space isomorphisms

Hom(Y ⊗X,Z) ∼= Hom(Y, Z ⊗X∗)

and

Hom(X∗ ⊗ Y, Z) ∼= Hom(Y,X ⊗ Z).

Proof. Define a map Hom(Y ⊗X,Z)→ Hom(Y, Z ⊗X∗) by sending a mor-
phism f : Y ⊗X → Z to the morphism represented by the diagram

coevX

X

X∗

f

Y

Z

.
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Similarly, define a map Hom(Y, Z ⊗ X∗) → Hom(Y ⊗ X,Z) by sending a
morphism g : Y → Z ⊗X∗ to the morphism represented by the diagram

g

Z

X∗

evX

XY

.

The linearity of both maps follows from the bilinearity of both the compo-
sition and the tensor product in a k-linear monoidal category. That these
maps are mutual inverses follows from an application of the zigzag equations.

The second isomorphism is much the same.

Definition 4.2.5. A monoidal category C is rigid if every object of C has
both left and right duals. A tensor category is a semisimple k-linear rigid
monoidal category.

Proposition 4.2.6. Let X and Y be objects in a rigid monoidal category.
Then (Y ⊗X)∗ ∼= X∗ ⊗ Y ∗.
Proof. Consider the map (X∗ ⊗ Y ∗)⊗ (Y ⊗X)→ 1 defined by the diagram

evX

evY

Y ∗ YX∗ X

,

and the map 1→ (Y ⊗X)⊗ (X∗ ⊗ Y ∗) defined by the diagram

coevY

coevX

X X∗ Y ∗Y

.

The zigzag identities for evX , coevX , evY and coevY show that these mor-
phisms define evaluation and coevaluation maps for a dual of Y ⊗X. Thus,
by the uniqueness of duals, we must have (Y ⊗X)∗ ∼= X∗ ⊗ Y ∗.

Remark 4.2.7. The uniqueness statement of Proposition 4.2.3 actually tells us
more. Namely, that for any objects X and Y , there is a unique isomorphism
αY,X : (Y ⊗X)∗ → X∗ ⊗ Y ∗ such that

evX

evY

Y ∗ YX∗ X

=
α−1
Y,X

evY⊗X

X∗ Y ∗

(Y ⊗X)∗

Y ⊗X

(4.5)
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and

coevY

coevX

X X∗ Y ∗Y

=
αY,X

coevY⊗X

Y ∗X∗Y ⊗X

(Y ⊗X)∗
(4.6)

If f : X → Y is a morphism in a rigid monoidal category, and X∗ is a
left dual of X, and Y ∗ is a left dual of Y , then there is a dual morphism
f ∗ : Y ∗ → X∗ defined diagrammatically by

f ∗ := f

X

Y

Y ∗

X∗

coevX

evY

.

If g : Y → Z is another morphism and Z∗ is a left dual of Z, then as an easy
consequence of the zigzag equations we have (g ◦ f)∗ = f ∗ ◦ g∗. It is also
straightforward to see that id∗X = idX∗ . We would like to say that taking
duals is a contravariant functor, but there are some subtleties here. Since
duals are only unique up to isomorphism, defining a duality functor requires
us to pick specific duals for each object in our category. It is also reasonable
to insist that functors between monoidal categories respect the additional
monoidal structure in some way. This leads one to define ‘monoidal functors’,
and in this setting we would say that duality is a monoidal functor C →
Cop,mop. Here Cop,mop is the opposite and ‘monoidal opposite’ category of
C, obtained by reversing the arrows in C and switching the order of tensor
products. We won’t go into any further detail about monoidal functors or
this monoidal opposite construction here. The reader is referred to the books
[EGNO15, TV17] for further discussion.

Another immediate consequence of the zigzag equations are the following
two useful identities:

evX

X∗

X

f∗

Y ∗

=

evY

Y

X

f

Y ∗

and

coevX

Y

X

f

X∗

=

coevY

Y

Y ∗

f∗

X∗

. (4.7)

These equations say that we can pull f ‘through’ an evaluation or coevalu-
ation map, replacing f with its dual f ∗, and the evaluation or coevaluation
map for the domain with the same map for the codomain, or vice versa.
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Definition 4.2.8. Let C be a rigid monoidal category. A pivotal structure on
C is a collection of isomorphisms φX : X → X∗∗ for each object X in C. We
require these isomorphisms to be natural in X – meaning that if f : X → Y
is a morphism, then the following diagram commutes

X
f−−−→ Y

φX

y yφY
X∗∗

f∗∗−−−→ Y ∗∗

.

We also require that the diagram

X ⊗ Y

(X ⊗ Y )∗∗ X∗∗ ⊗ Y ∗∗
φX⊗Y

φX ⊗ φY

∼=

commutes for any objects X and Y . Here the isomorphism (X ⊗ Y )∗∗ →
X∗∗ ⊗ Y ∗∗ is the canonical isomorphism constructed as the composite

(Y ⊗X)∗∗
(α∗Y,X)−1

−−−−−→ (X∗ ⊗ Y ∗)∗
αX∗,Y ∗−−−−→ Y ∗∗ ⊗X∗∗,

where αY,X : (Y ⊗X)∗ → X∗ ⊗ Y ∗ and αX∗,Y ∗ are the unique isomorphisms
of Remark 4.2.7.

This last requirement may seem somewhat strange, but there is a good
reason for it. Both the identity functor and the double dual functor are
monoidal functors. The commutativity of the second diagram simply ex-
presses the requirement that φ be a monoidal natural isomorphism. Again,
the reader is referred to [EGNO15, TV17] for the details.

Within a pivotal tensor category we can define left and right traces for a
morphism f : X → X. The left trace trL(f) is the composite

1
coevX−−−→ X ⊗X∗ f⊗idX∗−−−−→ X ⊗X∗ φX⊗idX∗−−−−−→ X∗∗ ⊗X∗ evX∗−−−→ 1,

which we often identify with the corresponding scalar in k ∼= End(1). The
right trace is defined similarly. In string diagrams, this looks like

trL(f) =

coevX

f

φX

evX∗

X

X

X∗∗

X∗
.
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Lemma 4.2.9. For morphisms f : X → Y and g : Y → X, we have

trL(gf) = trL(fg),

so the trace deserves its name.

Proof. This follows from the naturality of φ, the identities in (4.7) and dia-
grammatic manipulation:

trL(gf) =

coevX

g

f

φX

evX∗

Y

X

X

X∗∗

X∗
=

coevX

φY

f

g∗∗

evX∗

Y

Y ∗∗

X

X∗∗

X∗
=

coevX

φY

f

g∗

evY ∗

Y

Y ∗∗

X

Y ∗

X∗
=

coevY

f

g

φY

evY ∗

X

Y

Y

Y ∗∗

Y ∗
= trL(fg).

Definition 4.2.10. If X is an object in a pivotal tensor category, then we
define the (left) dimension of X, dimX, to be the scalar trL(idX).

Lemma 4.2.11. If X is a simple object, then dimX 6= 0.

Proof. By proposition 4.2.4, we have

dim Hom(1, X ⊗X∗) = dim Hom(1⊗X,X) = dim Hom(X,X) = 1.

Similarly,

dim Hom(X ⊗X∗,1) = dim Hom(X,X∗∗) = dim Hom(X,X) = 1.

This implies that X ⊗ X∗ has a single copy of 1 in its decomposition as a
direct sum of simple objects. Thus, there are maps p : X ⊗ X∗ → 1 and
i : 1 → X ⊗ X∗ with p ◦ i = id1. In particular, this last equality implies
that neither p nor i can be the zero element of their respective hom-spaces.
In a similar way, the zigzag equations and the invertiblity of φX imply that
neither evX∗ ◦(φX ⊗ idX∗) nor coevX are zero. Since the two spaces above
are 1-dimensional, it follows that there are nonzero scalars λ1, λ2 ∈ k with

coevX

X X∗

= λ1i and

evX∗

X∗∗

X∗

φX

X

= λ2p.
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From this we can conclude that

trL(idX) =

evX∗

X∗∗

X∗φX

X

coevX

= λ1λ2p ◦ i = λ1λ2 id1 .

Hence dimX = λ1λ2 6= 0, as claimed.

There is also a notion of a (left) partial trace for a morphism f : Y ⊗X →
Z ⊗X, denoted ptrXL (f) : Y → Z and defined by the string diagram

ptrXL (f) =

coevX

f

φX

evX∗

X

X

X∗∗

X∗

Z

Y

.

If Y and Z happen to be the same object in the above, then it is geo-
metrically plausible that taking two consecutive partial traces should be the
same as taking the (full) trace once. Happily, this turns out to be true.

Lemma 4.2.12. If f is a morphism Y ⊗X → Y ⊗X then

ptrYL (ptrXL (f)) = trL(f).

Proof. Using equations (4.5) and (4.6) of Remark 4.2.7, we can calculate

ptrYL (ptrXL (f)) =

coevX

f

φX

evX∗

X

XY

X∗∗

X∗ Y ∗

Y ∗∗

Y

coevY

evY ∗

φY
=

αY,X

coevY⊗X

Y ∗X∗

Y ⊗X

(Y ⊗X)∗

f

φY φX

α−1
X∗,Y ∗

evX∗⊗Y ∗

Y X

Y ∗∗ X∗∗

(X∗ ⊗ Y ∗)∗

.
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Pulling the αY,X through the top evaluation map, this becomes

coevY⊗X

Y ⊗X

(Y ⊗X)∗

f

φY φX

α−1
X∗,Y ∗

ev(Y⊗X)∗

α∗Y,X

Y X

Y ∗∗ X∗∗

(X∗ ⊗ Y ∗)∗

(Y ⊗X)∗∗

=

coevY⊗X

Y ⊗X

Y ⊗X

(Y ⊗X)∗∗

(Y ⊗X)∗

f

φY⊗X

ev(Y⊗X)∗

= trL(f).

For the first equality here we have used the commutativity of the second
diagram in the definition of the pivotal structure.

In fact, the analogous statement for endomorphisms of arbitrary tensor
products also holds. However, we will only need Lemma 4.2.12 in what
follows. See [TV17] for a proof of the general statement.

Definition 4.2.13. An object X with left dual X∗ in a pivotal category C
is self dual if there is an isomorphism β : X → X∗. When there is such an
isomorphism, we can also produce another isomorphism

X
β−−−→ X∗

(β−1)∗−−−−→ X∗∗,

and we require that this is the same as the isomorphism φX : X → X∗∗

coming from the pivotal structure.

This additional requirement is there to ensure that the self duality in-
teracts conveniently with the pivotal structure. [Sel10] outlines several pro-
posed definitions of self duality in various types of monoidal categories. Our
requirement is just one of many axioms proposed, but it will be the only one
we make use of in what follows.

If X is a self dual object with self duality isomorphism β : X → X∗, then
we can further refine our graphical calculus by defining an unoriented cap
and an unoriented cup, both labelled by X. Let

X =

evX

X∗

X

β

X

and
X

=

coevX

X

X∗

β−1

X

.
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It is then straightforward to check that the zigzag equations for this pair
hold:

X = X = X .

We also have the geometrically plausible identity

f X

Y

Z

=

coevX

f

β

β−1

evX

X

X

X∗

X

Z

Y

X∗

=

coevX

f

β

(β−1)∗

evX∗

X

X

X∗

X∗∗

X∗

Z

Y

=

coevX

f

φX

evX∗

X

X

X∗∗

X∗

Z

Y

= ptrXL (f).

The proof of this fact makes use of the compatibility condition in the defini-
tion of a self dual object. A special case of this identity is the equation

X = dimX.

Now suppose we have an endomorphism f ∈ Rn = End(X⊗n). Then we
might depict f by the diagram

f

. . .

. . .
,

where we suppress the labels on the strands since they are all labelled by the
same object X. This exactly resembles the Temperley-Lieb diagrams we have
worked with previously. Morally, the identities for the cap and cup above
say that we can manipulate string diagrams of this type exactly as if they
were Temperley-Lieb diagrams, the only difference being that now the value
of the circle is dimX rather than [2]q. We will perform these manipulations
without further comment for the remainder of the work.

We now come to the central result:

Theorem 4.2.14. Let C be a pivotal tensor category and let X be a self dual
object in C. Then for any n, the induction and restriction functors

Indn+1
n : Rn-mod→ Rn+1-mod
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and
Resn+1

n : Rn+1-mod→ Rn-mod

form a biadjoint pair.

One adjunction is easy and was proved in Section 4.1. The other adjunc-
tion is harder and is covered in the next section. A key part of the proof is
the following lemma.

Lemma 4.2.15. The following formulae hold for any walks a, b ∈ Pn:

ea,b
. . .

. . .
=

dimBn

dimBn−1
δ(An−1, Bn−1)δan,bnea′,b′ . (4.8)

Recall that a′ denotes the walk in Pn−1 obtained by deleting the last vertex
and edge from a, and that δ is the Kronecker delta.

Proof. If a and b are not compatible paths, then ea,b = 0 by definition,
so the left hand side is zero. If the right hand side were not zero in this
case, then that would imply that An−1 = Bn−1 and an = bn. But then
γbn : Bn−1 ⊗ X → Bn and An → An−1 ⊗ X are dual. This means that we
must have An = Bn, which is a contradiction. Thus, the right hand side
vanishes also.

Having resolved that case, we now assume that An = Bn. We want to
understand the diagram

ea,b
. . .

. . .
.

To do this, refer to the diagrammatic description of ea,b in equation (2.5).
Taking the partial trace of the diagram depicted there, we find that within
this diagram there is a morphism Bn−1 → An−1. If these objects are dis-
tinct, then their simplicity implies that the whole morphism vanishes. This
accounts for the δ(An−1, Bn−1) factor above. If we assume that these objects
coincide, then the innermost piece in this diagram looks like

γbn

γan

XBn

Bn−1

Bn−1

= ptrXL (γanγbn).
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Since Bn−1 is simple, this is some multiple S of the identity morphism on
Bn−1. To find this coefficient, we take traces and make use of Lemmas 4.2.9
and 4.2.12 to calculate

S · trL(idBn−1) = ptr
Bn−1

L (ptrXL (γanγbn)) = trL(γanγbn)

= trL(γbnγ
an)

= δan,bn trL(idBn).

Rearranging (and using trL(idBn−1) = dimBn−1 6= 0) yields

S = δan,bn
dimBn

dimBn−1
.

completing the proof. Replacing the piece pictured above with S · idBn−1

yields the result.

Corollary 4.2.16. The following formulae hold for any walks a, b, c ∈ Pn:

ea,b

eb,c

. . .

. . .

. . .

=
dimBn

dimBn−1
δ(An−1, Bn−1)δan,bnea,c (4.9)

and

ea,b

eb,c

. . .

. . .

=
dimBn

dimBn−1
δ(Bn−1, Cn−1)δbn,cnea,c. (4.10)

Proof. Draw these diagrams in the tree basis and apply the Lemma 4.2.15.

4.3 Proof of Theorem 4.2.14

We will now establish that Resn+1
n is left adjoint to Indn+1

n by constructing
explicit natural transformations

η : 1Rn+1-mod → Indn+1
n Resn+1

n

and
ε : Resn+1

n Indn+1
n → 1Rn-mod
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for the adjunction.
For any Rn+1-module V , define ηV : V → Rn+1 ⊗n V by

v 7→
∑
a,b

r(b)ea,b ⊗n (eb,av),

where the ea,b are the matrix units in Rn+1, the sum is taken over all pairs
of compatible paths in Pn+1, and r(b) is the coefficient

r(b) :=
dimBn−1

dimBn

1

|PBn−1,n−1|
.

We note that this coefficient only depends on the vertices Bn−1 and Bn of
the walk.

We need to check that this map intertwines the action of Rn+1. This
follows from the fact that

∑
a,b r(b)ea,b ⊗n (eb,af) =

∑
a,b r(b)(fea,b) ⊗n eb,a

for any f ∈ Rn+1. To prove this, it suffices to prove it for each matrix unit
in Rn+1. This is easy – if ec,d is a matrix unit, then∑

a,b

r(b)ea,b ⊗n (eb,aec,d) =
∑
a,b

r(b)ea,b ⊗n δa,ceb,d

=
∑
b

r(b)ec,b ⊗n eb,d,

while ∑
a,b

r(b)(ec,dea,b)⊗n eb,a =
∑
a,b

δd,ar(b)ec,b ⊗n eb,a

=
∑
b

r(b)ec,b ⊗n eb,d.

Now, for any Rn-module W , define εW : Rn+1 ⊗nW → W by

f ⊗n w 7→ f

. . .

. . .
· w

and extending linearly. Here we understand that every strand is labelled by
X, and use the self duality of X to get the cap and cup.

There are two things to check for this map, namely that it is well-defined
and that it is a map of Rn-modules. For well-definedness we need to check
that if g ∈ Rn then fg ⊗n w and f ⊗n gw map to the same thing. This
is immediate from the definition of the map, the way that Rn includes into
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Rn+1 and the isotopy invariance of string diagrams. For similar reasons we
can conclude that this defines an Rn-module map.

Checking that η and ε both define natural maps is a straightforward
exercise. To show that these natural transformations constitute the data of
an adjunction we need to check that for a Rn-module W and a Rn+1-module
V , the composites

Resn+1
n (V )

Resn+1
n (ηV )−−−−−−−→ Resn+1

n Indn+1
n Resn+1

n (V )
ε
Resn+1

n (V )−−−−−−→ Resn+1
n (V )

and

Indn+1
n (W )

η
Indn+1

n (W )−−−−−−→ Indn+1
n Resn+1

n Indn+1
n (W )

Indn+1
n (εw)−−−−−−→ Indn+1

n (W )

are the identity on their respective domains. Writing things out, these are
the maps

V
ηV−−−→ Rn+1 ⊗n V

εV−−−→ V

v 7→
∑
a,b

r(b)ea,b ⊗n eb,av 7→
∑
a,b

r(b)
ea,b

eb,a

. . .

. . .

. . .

· v

and

Rn+1 ⊗nW
ηRn+1⊗nW−−−−−−→ Rn+1 ⊗n (Rn+1 ⊗nW )

idRn+1
⊗nεW

−−−−−−−−→ Rn+1 ⊗nW

f ⊗n w 7→
∑
a,b

r(b)ea,b ⊗n (eb,af ⊗n w) 7→
∑
a,b

r(b)ea,b ⊗n
eb,a

f

. . .

. . .

. . .

· w

=
∑
a,b

r(b) eb,a

f

ea,b
. . .

. . .

. . .

. . .

⊗n w

Thus, to establish the adjunction it suffices to prove that

∑
a,b

r(b)
ea,b

eb,a

. . .

. . .

. . .

= 1 (4.11)
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and

∑
a,b

r(b) eb,a

f

ea,b
. . .

. . .

. . .

. . .

= f (4.12)

for any f ∈ Rn+1.
Applying (4.9) to the left hand side of (4.11) we get

∑
a,b

r(b)
ea,b

eb,a

. . .

. . .

. . .

=
∑
a,b

r(b)
dimBn

dimBn−1
δ(An−1, Bn−1)δan,bnea,a

=
∑
a,b

1

|PBn−1,n−1|
δ(An−1, Bn−1)δan,bnea,a

=
∑
a

1

|PAn−1,n−1|
∑
b

Bn−1=An−1,bn=an

ea,a.

Since b and a are compatible, they end at the same point. Thus, the walks b
in the second sum are those with An = Bn, An−1 = Bn−1 and an = bn. The
number of such walks is exactly |PAn−1,n−1|, so the sum reduces to

∑
a ea,a.

This is the sum of the diagonal matrix units and is consequently equal to the
identity.

This shows that equation (4.11) holds, and it remains to verify equation
(4.12). Clearly it suffices to just check (4.12) for each matrix unit ec,d ∈ Rn+1.
Using (4.10) and the same logic used in the last calculation, we can calculate

∑
a,b

r(b) eb,a

ec,d

ea,b
. . .

. . .

. . .

. . .

=
∑
a,b

r(b)δa,c

ea,b

eb,d

. . .

. . .

=
∑
a,b

r(b)δa,c
dimBn

dimBn−1
δ(Bn−1, Dn−1)δbn,dnea,d

=
∑
b

1

|PBn−1,n−1|
δ(Bn−1, Dn−1)δbn,dnec,d
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=

 ∑
b

Bn−1=Dn−1,bn=dn

1

|PBn−1,n−1|

 ec,d

= ec,d,

as desired. Thus, we have established the adjunction. This completes the
proof of Theorem 4.2.14.



Chapter 5

Towards a graphical category

With the biadjunction in hand, we can now start to build a graphical category
as outlined in Chapter 0. The definition we are about to give closely mimics
those in [Kho14, LS13], the main difference being the relations we choose to
impose.

For the duration of this chapter we fix a pivotal tensor category C with a
distinguished self dual object X.

Definition 5.0.1. Define a k-linear strict monoidal category GX as follows.
The objects of GX are words in the symbols {+,−}. For two words w and
w′, the space of morphisms HomGX (w,w′) is the k-vector space with a basis
consisting of suitable planar diagrams, modulo local isotopy of arcs, and
modulo some other local relations. The diagrams consist of oriented compact
one-manifolds immersed in the strip R × [0, 1]. If the length of w is m and
the length of w′ is n, then we require that the endpoints of the one-manifold
are located at {1, . . . , n} × {1} and {1, . . . ,m} × {0}. Finally, we require
that the orientation of the one-manifold at the endpoints must agree with
the corresponding signs in the words and that no triple intersections occur.
For instance, the diagram

from the introduction depicts a morphism in HomGX (−+−−+,−−+). We
can compose morphisms by stacking basis diagrams and extending bilinearly.
The tensor product of words w and w′ is their concatenation ww′, hence the

71
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tensor unit is the empty word. The tensor product of morphisms is realised
by juxtaposing basis diagrams and again extending bilinearly.

The local relations are

= , = , = dimX ,

= , = , and = dimX.

The right hand side of this last relation should be interpreted as dimX times
the empty diagram.

5.1 Some set-up

Before continuing, it will be helpful to recap the results of Chapter 4. In our
pivotal tensor category C with a self dual object X, we constructed algebras
Rn = End(X⊗n). These include naturally into each other, producing a tower

R1 ⊂ R2 ⊂ R3 ⊂ · · ·

We showed that for each n ≥ 1, the functors Indn+1
n and Resn+1

n for this tower
form a biadjoint pair. Since induction is the process of ‘lifting’ an Rn-module
to an Rn+1-module, it makes sense to assign Indn+1

n a positive orientation,
and consequently we assign Resn+1

n a negative orientation.
Then the work of Chapter 4 produced four natural transformations for

this biadjunction. We will list them, show their diagrammatic depiction and
describe their component maps. From Section 4.1, we have

ηn : 1Rn-mod → Resn+1
n Indn+1

n .

This is represented by the diagram

n
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For an Rn-module V , the component ηn,W : W → Rn+1 ⊗n W is the Rn-
module map w 7→ 1⊗n w.

Also from Section 4.1, we have

εn : Indn+1
n Resn+1

n → 1Rn+1-mod.

This is represented by the diagram

n+ 1

For an Rn+1-module V , the component εn,V : Rn+1 ⊗n V → V is the Rn+1-
module map f ⊗n v 7→ f · v.

From Section 4.3, we have

ηn : 1Rn+1-mod → Indn+1
n Resn+1

n .

This is represented by the diagram

n+ 1

For an Rn+1-module V , the component ηn,W : W → Rn+1⊗nW is the Rn+1-
module map

v 7→
∑
a,b

r(b)ea,b ⊗n (eb,av),

where the ea,b are the matrix units in Rn+1, the sum is taken over all pairs
of compatible paths in Pn+1, and r(b) is the coefficient

r(b) :=
dimBn−1

dimBn

1

|PBn−1,n−1|
.

Also from Section 4.3, we have

εn : Resn+1
n Indn+1

n → 1Rn-mod.

This is represented by the diagram

n

For an Rn-module W , the component εn,W : Rn+1 ⊗n W → W is the Rn-
module map

f ⊗n w 7→ f

. . .

. . .
· w.
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Next we pick a natural transformation (really a family of natural trans-
formations) to be represented by the crossings

n

To be consistent with rest of a graphical calculus, this should represent a
natural transformation from Indn+2

n+1 Indn+1
n to itself. That is, for any Rn-

module V , we should define an Rn+2-module map

Rn+2 ⊗n+1 Rn+1 ⊗n V −−−→ Rn+2 ⊗n+1 Rn+1 ⊗n V.

To do this, we send f ⊗n+1 g ⊗n v to

f

g

. . .

. . .

. . .

⊗n+1 1⊗n v

and extend linearly. It is routine to check that this gives a well defined
Rn+2-module map and that these component maps assemble into a natural
transformation. We omit these details.

Once we have defined natural transformations for one oriented crossing we
get natural transformations for all other oriented crossings. This is achieved
by rotating the crossing using the various caps and cups. For example

n+ 1 = n+ 1 , (5.1)

n+ 1 = n+ 1 , (5.2)
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and

n+ 2 = n+ 2 . (5.3)

It will be helpful to have explicit formulae for some of these rotated
crossings.

Lemma 5.1.1. For any Rn+1-module V , the V -component of the natural
transformation represented by

n+ 1

is the Rn+1-module map Rn+1 ⊗n V → Rn+2 ⊗n+1 V sending g ⊗n v to

g
. . .

. . .
⊗n+1 v.

Proof. We can essentially read this off from (5.1). The effect of the V -
component of the right hand side on g ⊗n v ∈ Rn+1 ⊗n V is

g ⊗n v 7→ 1⊗n+1 g ⊗n v 7→
1

g

. . .

. . .

. . .

⊗n+1 1⊗n v 7→ g
. . .

. . .
⊗n+1 v.

Lemma 5.1.2. For any Rn+1-module V , the V -component of the natural
transformation represented by

n+ 1

is the Rn+1-module map Rn+2 ⊗n+1 V → Rn+1 ⊗n V sending f ⊗n+1 v to

∑
a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

⊗n eb,av.
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Proof. Refer to (5.2). The effect of the V -component of the right hand
natural transformations on f ⊗n+1 v ∈ Rn+2 ⊗n+1 V is

f ⊗n+1 v 7→ f ⊗n+1

 ∑
a,b∈Pn+1

r(b)ea,b ⊗n eb,av



7→
∑

a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

⊗n+1 1⊗n eb,av

7→
∑

a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

· (1⊗n eb,av) =
∑

a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

⊗n eb,av.

This proves the claim.

5.2 A family of functors out of GX
The set-up is complete and we can now state and prove the main theorem of
this chapter.

Definition 5.2.1. Define a category SX as in Chapter 0. The objects of SX
are compositions of the functors Ind2

1,Res21, Ind3
2,Res32, . . .. The morphisms

between two such composites are those natural transformations that can be
built (by the two types of composition) using the fixed biadjointness natural
transformations, the natural transformations representing the crossings, and
the identity natural transformations for the functors.

Theorem 5.2.2. For each n ≥ 1, there is a functor Fn : GX → SX . These
functors are collectively surjective – everything in SX is in the image of on
of these Fn.

The proof of this theorem will take the entirety of this section. To start,
we need to define the functors.

As in Chapter 0, for each n ≥ 1, there is a functor Fn : GX → SX . If w
is a word in {+,−} with at least n+ 1 more minuses than pluses, we define
Fn(w) = 0. Otherwise, w gets sent to some composition of induction and
restriction functors. We start at the level n and work from right to left – a
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plus contributes an induction functor and a minus contributes a restriction
functor. For instance,

Fn(+ +−+) = Indn+2
n+1 ◦ Indn+1

n ◦Resn+1
n ◦ Indn+1

n

On morphisms, Fn takes a diagram in C, labels the rightmost region by n
and interprets the resulting diagram as a morphism between compositions of
induction and restriction functors. If a region within this diagram ends up
labelled with a nonpositive integer, then we interpret the resulting diagram
as the zero morphism.

First, we need to check that these functors are well defined. Once we
have established this, the collective surjectivity is an immediate consequence
of the definition of SX . There is no issue on the level of objects, but we need
to be more careful on the level of morphisms. For each n, we want to show
that applying one of the defining local relations of GX to a morphism in GX
does not change the image of said morphism under Fn.

To establish well-definedness, it suffices to check that the local relations
allowed in GX also hold in SX when we label the rightmost region by any
positive integer. We have already seen that the caps and cups constitute the
data of a biadjunction, establishing that local isotopies of arcs are allowed
in SX for any labelling. For the remainder of this section we check that the
same is true for the other defining relations of GX .

Proposition 5.2.3. For any n ≥ 1, we have

n = dimX,

where the right hand side is interpreted as dimX times the identity functor
on Rn-mod.

Proof. Again we work in components. If V is any Rn-module, then the V -
component of the natural transformation represented by the left hand side
is the Rn-module map

V −−−→ Resn+1
n Indn+1

n (V ) = Rn+1 ⊗n V −−−→ V

sending v ∈ V to 1⊗n v, which is then sent to

1

. . .

. . .
· v.

Here 1 denotes the identity of Rn+1, which is depicted graphically as n + 1
vertical strands. Thus, taking the partial trace as above leaves us with n
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vertical strands and a circle. The n vertical strands are the identity of Rn,
so the above becomes dimX · v. This means that the map is dimX times
the identity map on V , and the result follows.

Proposition 5.2.4. For any n ≥ 1, we have

n = n .

Proof. Breaking the curl up into smaller pieces, we write

n = n .

Then for any Rn-module V , the effect of the V -component on f ⊗n v ∈
Rn+1 ⊗n V is

f ⊗n v 7→ 1⊗n+1 f ⊗n v 7→ f

. . .

. . .
⊗n+1 1⊗n v 7→ f

. . .

. . .
· (1⊗n v) = f ⊗n v.

This is the identity on Rn+1 ⊗n V , which is exactly the V -component of the
identity natural transformation on Indn+1

n . This proves the relation.

Proposition 5.2.5. For any n ≥ 1, we have

n+ 1 = n+ 1 .

Proof. We begin by breaking the right curl up into simpler pieces:

n+ 1 = n+ 1
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Then for any Rn+1-module V , the effect of the V -component on f ⊗n+1 v ∈
Rn+2 ⊗n+1 V is

f ⊗n+1 v 7→ f ⊗n+1

 ∑
a,b∈Pn+1

r(b)ea,b ⊗n eb,av



7→
∑

a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

⊗n+1 1⊗n eb,av

7→
∑

a,b∈Pn+1

r(b)

f

ea,b

. . .

. . .

. . .

⊗n+1 eb,av =
∑

a,b∈Pn+1

r(b)

f

ea,b

eb,a

. . .

. . .

. . .

. . .

⊗n+1 v.

We see that the effect of this map is to insert

∑
a,b∈Pn+1

r(b)
ea,b

eb,a

. . .

. . .

. . .

below f . Therefore, to establish the desired relation, it suffices to show
that this element is an idempotent. This follows from a straightforward
but tedious calculation using Corollary 4.2.16 and the same logic as the
calculations in Section 4.3. As such, we omit the details.

Proposition 5.2.6. For any n ≥ 1, we have

n = dimX n .

Proof. The diagram on the left is built by stacking two upwards oriented
crossings on top of each other. Thus, for any Rn-module V , the effect of the



5.2. A family of functors out of GX 80

V -component of the right hand side on some f ⊗n+1 g ⊗n v ∈ Rn+2 ⊗n+1

Rn+1 ⊗n V is

f ⊗n+1 g ⊗n v 7→
f

g

. . .

. . .

. . .

⊗n+1 1⊗n v 7→
f

g

. . .

. . .

. . .

⊗n+1 1⊗n v

= dimX ·
f

g

. . .

. . .

. . .

⊗n+1 1⊗n v.

This completes the proof.

Proposition 5.2.7. For any n ≥ 1, we have

n+ 1 = n+ 1 .

Proof. The diagram on the left is built by stacking the two oriented crossings
from Lemmas 5.1.1 and 5.1.2:

n+ 1 = n+ 1 .

From the aforementioned lemmas, we have formulae for these two pieces.
Thus, on an Rn+1-module V , the V -component of the left hand side has the
following effect on g ⊗n v ∈ Rn+1 ⊗n V :

g ⊗n v 7→ g
. . .

. . .
⊗n+1 v 7→

∑
a,b∈Pn+1

r(b)
g

ea,b

. . .

. . .

. . .

⊗n eb,av.

Now, pulling the partial traced ea,b through the tensor product and using the
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bilinearity of ⊗n, this last expression simplifies to

g ⊗n


∑
a,b

r(b)
ea,b

eb,a

. . .

. . .

. . .

· v

 .

Then by equation (4.12), this simplifies to g ⊗n v. Thus, the V -component
for the right hand side is exactly the V -component of the left hand side. The
result follows.

Proposition 5.2.8. For any n ≥ 1, we have

n+ 1 = n+ 1 .

Proof. The diagram on the left is built by stacking the two oriented crossings
from Lemmas 5.1.1 and 5.1.2 again, but this time the other way around. On
any Rn+1-module V , the V -component of the left hand side has the following
effect on f ⊗n+1 v ∈ Rn+2 ⊗n+1 V :

f ⊗n+1 v 7→
∑

a,b∈Pn+1

r(b)
f

ea,b

. . .

. . .

. . .

⊗n eb,av 7→
∑

a,b∈Pn+1

r(b)

f

ea,b

. . .

. . .

. . .

⊗n+1 eb,av

=
∑

a,b∈Pn+1

r(b)

f

ea,b

. . .

. . .

. . .

⊗n+1 eb,av.

Since eb,a ∈ Rn+1, we can pull it through the tensor product to find that this
last expression is equal to

∑
a,b∈Pn+1

r(b)

f

ea,b

eb,a

. . .

. . .

. . .

. . .

⊗n+1 v.
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In the proof of Proposition 5.2.5 we computed the components of the right
handed loop. Referring to this, we see that the V -component of the right
hand side in the statement is the same as the map just computed. This
completes the proof.

Thus, the defining relations of GX still hold when labelled by arbitrary
positive numbers and viewed as morphisms in SX . This completes the proof
of Theorem 5.2.2.
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Cahiers Topologie Géom. Différentielle Catég., 39(1):3–25, 1998.

[EGH+11] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex
Schwendner, Dmitry Vaintrob, and Elena Yudovina. Introduction
to representation theory, volume 59 of Student Mathematical Li-
brary. American Mathematical Society, Providence, RI, 2011.
With historical interludes by Slava Gerovitch.

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Os-
trik. Tensor categories, volume 205 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI,
2015.

[GdlHJ89] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R.
Jones. Coxeter graphs and towers of algebras, volume 14 of
Mathematical Sciences Research Institute Publications. Springer-
Verlag, New York, 1989.

[Jon83] V. F. R. Jones. Index for subfactors. Invent. Math., 72(1):1–25,
1983.

[Kho00] Mikhail Khovanov. A categorification of the Jones polynomial.
Duke Math. J., 101(3):359–426, 2000.

83



BIBLIOGRAPHY 84

[Kho10] Mikhail Khovanov. Categorifications from planar diagrammatics.
Jpn. J. Math., 5(2):153–181, 2010.

[Kho14] Mikhail Khovanov. Heisenberg algebra and a graphical calculus.
Fund. Math., 225(1):169–210, 2014.

[KL09] Mikhail Khovanov and Aaron D. Lauda. A diagrammatic ap-
proach to categorification of quantum groups. I. Represent. The-
ory, 13:309–347, 2009.

[LS13] Anthony Licata and Alistair Savage. Hecke algebras, finite gen-
eral linear groups, and Heisenberg categorification. Quantum
Topol., 4(2):125–185, 2013.

[ML98] Saunders Mac Lane. Categories for the working mathematician,
volume 5 of Graduate Texts in Mathematics. Springer-Verlag,
New York, second edition, 1998.

[Rou08] Raphael Rouquier. 2-kac-moody algebras, 2008. arXiv:0812.5023.

[RSA14] David Ridout and Yvan Saint-Aubin. Standard modules, induc-
tion and the structure of the Temperley-Lieb algebra. Adv. Theor.
Math. Phys., 18(5):957–1041, 2014.

[Sel10] Peter Selinger. Autonomous categories in which A ∼= A∗. In 7th
workshop on Quantum Physics and Logic (QPL 2010), 2010.

[Sel11] P. Selinger. A survey of graphical languages for monoidal cate-
gories. In New structures for physics, volume 813 of Lecture Notes
in Phys., pages 289–355. Springer, Heidelberg, 2011.

[Sta99] Richard P. Stanley. Enumerative combinatorics. Vol. 2, vol-
ume 62 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, 1999. With a foreword by
Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[Tub13] Daniel Tubbenhauer. Categorification and applications in topol-
ogy and representation theory, 2013. arXiv:1307.1011.

[TV17] Vladimir Turaev and Alexis Virelizier. Monoidal categories and
topological field theory, volume 322 of Progress in Mathematics.
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