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Introduction

Tournaments are an important class of directed graph. They were first introduced by Landau

in 1953 [Lan53] in order to model dominance relations in flocks of chickens and nowadays are

used widely in comparison based ranking, with applications to biology, chemistry, networks

and sports.

This thesis concerns itself with results related to random tournaments, which are prob-

ability distributions over tournaments. In Chapter 1, we provide a brief introduction to the

theory of tournaments and prove many famous results in the area. Then, in Chapter 2, we

introduce random tournaments and provides a brief survey of results in the field.

In Chapter 3, we introduce the combinatorial objects of multi-tournaments, generalised

multi-tournaments and generalised tournaments which are closely related to random tour-

naments. By using the tools of convex analysis, we prove some interesting results related to

these objects which, for example, have interesting implications for voting theory.

Chapter 4 uses the theory developed in Chapter 3 to derive results related to a special

type of random tournament called the β-model. This has many interesting applications to

the study of comparison based ranking. By making use of results from this chapter, in

Chapter 5 we derive an asymptotic formula for the number of tournaments with a particular

score vector (see Definition 1.1.21) that works for a wide range of ‘tame’ score vectors.

This provides a means for one to calculate the probability of a tournament with a particular

‘tame’ score vector with respect to any β-model random tournament.

The methodologies in Chapters 3, 4 and 5 are mostly original, inspired by similar results in

the field of random graphs and the direction of the author’s supervisor Brendan McKay and

Mikhail Isaev. The results are also new, unless otherwise stated.

xi
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Notation

This thesis will use the following notation:

Notation 0.0.1. Suppose n is a positive integer. We denote by [n] the set {1, 2, · · · , n}.

Notation 0.0.2. Let f(x) be a complex valued function and g(x) be a real valued function

with both functions taking inputs in Rn. We say f(x) = O(g(x)) as x→∞ if there exists

some positive constant M such that

|<f(x)| ≤M |g(x)|

and

|=f(x)| ≤M |g(x)|,

for |x| sufficiently large.

Notation 0.0.3. Let f(x) and g(x) be real valued functions taking inputs in R. We say

f(x) = Θ(g(x)) if for x sufficiently large there exist positive constants c1 and c2 such that

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)|.

Also note that for convenience we will often write vectors in x ∈ Rn as a list indicating the

components of the vector, so that if x has components x1, · · · , xn, we write x = (x1, · · · , xn).

xiii
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Chapter 1

Tournaments

In this chapter, we will assume that the reader has some basic familiarity with graph theory.

1.1 Basic Definitions

1.1.1 Preliminaries

Intuitively we may think of a tournament on n vertices as recording the results of a round-

robin competition with n players, where each game can only result in a win or a loss. In

order to make this precise, we first recall some definitions about directed graphs.

Directed Graphs

Definition 1.1.1. A directed graph, or digraph D is an ordered pair (V,E), where V is a

set of vertices, and E is a set of directed edges consisting of ordered pairs of vertices in V .

To avoid confusion between vertex and edge sets of different directed graphs, if D is a

directed graph, we use the notation V (D) and E(D) to denote the vertex set of D and edge

set of D respectively. In general, we will only consider directed graphs whose vertex set is

finite. Moreover, we will assume that there are no loops, that is, edges of the form (v, v).

Definition 1.1.2. Two directed graphs D and D′ are said to be vertex disjoint if V (D) ∩
V (D′) = ∅ and edge disjoint if E(D) ∩ E(D′) = ∅.

A directed graph may be represented as a diagram where each directed edge (u, v) between

vertices u and v is represented as an arrow from u to v. In fact, a lot of the intuition for

this subject comes from the pictures, the formalism is just a means for making these ideas

rigorous.

Example 1.1.3. Figure 1.1 is an example of a directed graph on 5 vertices represented as

a diagram.

1
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v1 v2

v3 v5

v4

Figure 1.1: A directed graph on 5 vertices

Definition 1.1.4. Let D be a directed graph. For any vertex v ∈ V (D) the out-degree of

v, denoted deg+(v), is the number of directed edges in E(D) directed from v (i.e edges of

the form (v, u), where u ∈ V (D)). The in-degree of v, denoted deg−(v) is the number of

directed edges in E(D) directed to v (i.e edges of the form (u, v), where u ∈ V (D)). An

isolated vertex v has deg+(v) = deg−(v) = 0.

Example 1.1.5. In Figure 1.1, deg+(v5) = 3 and deg−(v5) = 1.

Often it is useful to consider digraphs contained in larger digraphs.

Definition 1.1.6. Let D be a digraph. A subdigraph D′ of D is a digraph such that

V (D′) ⊆ V (D) and E(D′) ⊆ E(D). Given a subset U ⊆ V (D), the subdigraph of D induced

by U is the subdigraph DU = (U,E(DU)) such that each edge (u, v) ∈ E(D) with u, v ∈ U
is contained in E(DU).

Example 1.1.7. Figure 1.2 shows a digraph D on vertex set V (D) = {v1, v2, v3, v4, v5}, and

the subdigraph DU induced by U = {v2, v3, v5} coloured in red.

v1 v2

v3

v4

v5

Figure 1.2: A subdigraph induced by a set of vertices.

It is also useful to consider directed paths and directed cycles in directed graphs.

Definition 1.1.8. A directed trail from vertices v0 to vn in a directed graph D is an

alternating sequence v0e1v1e2 . . . vn−1envn of vertices vi ∈ V (D) and directed edges ei ∈
E(D), where each ei = (vi, vi+1). Moreover, every edge in the sequence is distinct. The

length of a trail is the number of edges in it. A directed trail in which all the vertices are

distinct, except possibly the first and the last vertex, is called a directed path. A directed

path which starts and ends at the same vertex is called a directed cycle.
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Definition 1.1.9. A Hamiltonian path in a directed graph D is a spanning directed path

in it, that is a directed path that hits every vertex in D. A Hamiltonian cycle is a spanning

directed cycle. A digraph that consists of exactly 1 Hamiltonian cycle is called a cycle

digraph or a cycle.

Example 1.1.10. Figure 1.3 below illustrates a directed path (red) and a directed cycle

(purple) in a digraph.

v1 v2 v3

v4 v5

v6

Figure 1.3: A directed path in a digraph from vertex v6 to vertex v3 (red), and a directed

cycle (purple).

Definition 1.1.11. Let D be a digraph. If, given vertices u and v in V (D), there is a

directed path from u to v, we say that {u → v}. This induces a binary relation on V (D),

called the reachability relation. In this case we say v is reachable from u.

A special type of digraph has every vertex reachable from each other:

Definition 1.1.12. A digraph D is called strongly connected or strong if, given any pair

of vertices u, v ∈ V (D), {u → v} and {v → u}. A strongly connected component is a

subdigraph of D which is strongly connected.

Since a single vertex digraph is strongly connected, evidently the vertices in the strongly

connected components of a digraph D partition V (D).

Example 1.1.13. Figure 1.4 shows the digraph of Figure 1.3 partitioned into strongly

connected components.

v1 v2 v3

v4 v5

v6

Figure 1.4: The strongly connected components of Figure 1.1, in blue, green, red and purple.
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Oriented Graphs

The main type of directed graph we will encounter in this thesis, is called an oriented graph.

Definition 1.1.14. An oriented graph is a directed graph D = (V,E) such that between

any pair of vertices u, v ∈ V , there can only be one directed edge: (u, v) or (v, u).

The terminology ‘oriented graph’ comes from the fact that these directed graphs may be

thought of as graphs where each edge is assigned an orientation, or direction. In particular,

given a graph G = (V,E), an orientation of G is a map ψ : E → V × V , such that each

unordered pair of vertices {u, v} ∈ E maps to exactly one of the ordered pairs (u, v) ∈ V ×V
or (v, u) ∈ V × V . Such an orientation of G yields a directed graph (V, ψ(E)) in the natural

way. Conversely, the condition that there can be exactly one directed edge between any two

vertices implies that any oriented graph D is the orientation of some simple graph.

Definition 1.1.15. Given an oriented graph D = (V,E), the underlying simple graph

S(D) is the graph obtained by removing the orientation of each edge. Precisely, S(D) =

(V, ψ−1(E)), where ψ−1 maps any ordered pair (u, v) ∈ E to the unordered pair {u, v}.

Example 1.1.16. Figure 1.5 shows an oriented graph D on three vertices {v1, v2, v3}, and

the underlying simple graph S(D).

v1 v2 v3

(a) An oriented graph D = (V,E) on three ver-

tices. Here V = {v1, v2, v3} and
E = {(v1, v2), (v2, v3)}.

v1 v2 v3

(b) The underlying simple graph S(D)

Figure 1.5: An oriented graph and its underlying simple graph.

We now have the terminology we need to define tournaments.

1.1.2 Tournaments

Definition 1.1.17. A tournament on n vertices is a directed graph obtained by orienting

every edge of the complete graph Kn. If, given vertices u and v, an edge is oriented from

u to v, we say that u dominates v. Given u, v ∈ V (T ), a game between u and v is the

unordered pair {u, v} in the underlying simple graph Kn.

We may thus this of a tournament as the results of the
(
n
2

)
possible different games

between n players, where the result is recorded by orienting the edge.

Example 1.1.18. Figure 1.6 shows a complete graph on five vertices {v1, v2, v3, v4, v5} (left),

and a tournament on the same set of vertices obtained by orienting each edge (right).
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v1

v2

v3v4

v5

(a) The complete graph K5

v1

v2

v3v4

v5

(b) A tournament on 5 vertices.

Figure 1.6: A tournament on 5 vertices obtained by orienting each edge of K5

We denote by Tn the set of all tournaments on a set of vertices {v1, · · · , vn}. Such a

tournament contains
(
n
2

)
edges, each of which can be oriented in exactly 2 ways,

|Tn|= 2(n2).

Continuing with the analogy of a round-robin competition, the out-degree of the vertex

u then records the total number of wins by u, or the total score of u in the competition.

Definition 1.1.19. Given a tournament T , the score of a vertex v ∈ V (T ) is the out-degree

of v in T .

It is often useful to record the results of each player in a round-robin tournament in a

list. This leads us to the following definitions:

Definition 1.1.20. Let T be a tournament on n vertices. An ordering of the vertices of

V (T ) is a bijection π : V (T )→ [n].

Definition 1.1.21. Let T be a tournament on n vertices, with an ordering π. A score vector

corresponding to π is a vector s ∈ Rn such that each entry si is the score of the vertex π−1(i)

in T .

If a tournament T has an indexed vertex set {v1, . . . , vn}, we will generally use the term

score vector to mean the score vector corresponding to the natural map π such that for each

i ∈ [n], vi 7→ i.

Often it is convenient to arrange the entries in the score vector in non-decreasing order,

so that the score vector conveys information about the performance of the players. We give

this type of score vector a name:

Definition 1.1.22. A score sequence of a tournament T on n vertices is a score vector s

with an ordering such that the entries of the score vector are in non-decreasing order, i.e

s1 ≤ s2 ≤ · · · ≤ sn.
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Example 1.1.23. The following tournament on 4 vertices, has score vector s = (2, 1, 2, 1).

The score sequence of this tournament is (1, 1, 2, 2).

v1

v2

v3

v4

Figure 1.7

Remark 1.1.24. Note that summing the scores of each of the vertices counts the total

number of possible edges between vertices (one may think of this as the total number of

games played), so that, for a tournament on n vertices, the sum of the scores will be
(
n
2

)
.

This is evident in Example 1.1.23, as we see that that 2 + 1 + 2 + 1 = 6 =
(

4
2

)
.

Notation 1.1.25. We denote by T(s) the set of tournaments with score vector s.

If T is a tournament, then any subset U ⊆ V (T ) induces a subdigraph which is also a

tournament. We call this a subtournament induced by U .

Notation 1.1.26. If U is a subset of V (T ) for a tournament T , then we denote by TU the

subtournament induced by vertex set U .

Example 1.1.27. Figure 1.8 shows a tournament and a subtournament induced by a vertex

set in red.

v1

v2

v3

v4

v5

v6

Figure 1.8: A subtournament of a tournament on 6 vertices induced by the vertex set

{v1, v2, v3, v5}.

Definition 1.1.28. If T is a tournament, and u ∈ V (T ), we denote by W (u) the set of

vertices in V (T ) that are dominated by u, and L(u) the set of vertices that dominate u.

Thus, {u}, W (u) and L(u) partition V (T ).

Example 1.1.29. In Figure 1.8, W (v4) = {v3, v5} and L(v4) = {v1, v2, v6}.
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1.2 Landau’s Theorem

An interesting question to ask is which sequences of length n correspond to score sequences

of a tournament. Suppose s = (s1, s2, · · · , sn) is the score sequence of a tournament T . For

any subset A ⊆ V (T ) of size k let (sA1 , · · · , sAk ) be the score sequence of the subtournament

TA. We then find that, if A is the subset of vertices corresponding to the first k terms of the

score sequence,
k∑
i=1

si ≥
k∑
i=1

sAi =

(
k

2

)
.

Thus,
k∑
i=1

si ≥
(
k

2

)
for all positive integers k ≤ n, with equality when k = n. In 1953, Landau showed that

these conditions are also sufficient [Lan53]:

Theorem 1.2.1 (Landau’s Theorem). A sequence of non-negative integers s1 ≤ s2 ≤ · · · ≤
sn is a score sequence for some tournament T ∈ Tn if and only if

k∑
i=1

si ≥
(
k

2

)
(1.1)

for all positive integers k < n, and

n∑
i=1

si =

(
n

2

)
. (1.2)

The following clever proof is due to Carsten Thomassen, from ([Cha81], pages 589-591).

We first require the following Definition and Lemma:

Definition 1.2.2. If v is a vertex in a tournament T such that v can reach any other vertex

via a path of length 1 or 2, v is called a king.

Lemma 1.2.3. In any tournament T the vertex with the highest score is a king.

Proof. Suppose the vertex with the highest score is v. If u 6= v is a vertex such that u is not

reachable from v via a path of length 1, then u dominates v. If u is also not reachable from

v via a path of length 2, then for all vertices w such that v dominates w, it is also the case

that u dominates w. This implies that the score of u is strictly larger than the score of v, a

contradiction.

Proof of Theorem 1.2.1. We have already seen the necessity of these conditions. For suffi-

ciency, assume the contrary. Then, let N be the smallest integer such that some ordered

non-decreasing sequence s = (s1, · · · , sN) satisfies (1.1) and (1.2), yet is not the score se-

quence for some tournament on N vertices. Suppose further that s1 is minimal for this value
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of N .

If there exists M < N such that
∑M

i=1 si =
(
M
2

)
, the sequence x = (s1, · · · , sm) satisfies

(1.1) and (1.2). Therefore, by the minimality of N , x is the score sequence of a tournament

T1 on M vertices. Moreover,

w∑
i=1

(sM+i −M) =
M+w∑
i=M+1

(si −M) ≥
(
M + w

2

)
−
(
M

2

)
−Mw =

(
w

2

)
for each w such that 1 ≤ w ≤ N −M and with equality when w = N −M . Thus, again by

minimality of N , the sequence y = (sM+1 −M, ..., sN −M) is the score sequence of some

tournament T2 on N − M vertices. Now, if we form the tournament on N vertices as a

disjoint union of T1 and T2, with edges directed from T2 to T1, then this is a tournament on

N vertices with score sequence s, contradicting our assumption.

Now suppose that each inequality in (3.6) is strict when k < N . Then, in particular, s1 > 0,

and sN < (N − 1). One may easily check that the score sequence (s1 − 1, · · · , sN−1, sN + 1)

satisfies (1.1) and (1.2), and thus by minimality of s1, has a corresponding tournament.

By Lemma 1.2.3 vN is a king, so there is a directed path of length 1 or 2 from vN to v1.

By reversing the edges of this directed path we obtain a tournament with score sequence

(s1, · · · , sN), a contradiction.

Since any score sequence can be obtained by arranging the scores of a tournament in

non-decreasing order, Landau’s Theorem provides conditions for T(s) to be non empty. In

particular, if I ⊆ [n] and s = (s1, · · · , sn) is any score vector for a tournament T , then the

Landau conditions are evidently equivalent to the condition that∑
i∈I

si ≥
(
|I|
2

)
,

with equality if I = [n].

Landau’s Theorem has an interesting application to ranking in sports. Suppose we have

a cricket competition consisting of 10 teams, where each team plays against each other once,

and every result is either a win or a loss. Suppose the teams are ranked by their number

of wins. How many possible winners are there in this competition? The answer is 9, since

the sequence of integers (0, 5, 5, 5, 5, 5, 5, 5, 5, 5) satisfies the conditions of Landau’s Theorem

(1.1) and (1.2), but no sequence containing ten integers all greater than 4 does.

1.3 Dominance Relations

1.3.1 Relations

Other than reachability (Definition 1.1.11), another relation on the vertices of a tournament

is that of dominance. This is a total, reflexive anti-symmetric relation corresponding to the
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orientation of the edge between any pair of vertices.

Many results in the field are related to the problem of ranking vertices based on the structure

of a tournament. Under the dominance relation, an unambiguous ‘winner’ of a tournament

would be a vertex that dominates every other vertex. This type of vertex has a special name:

Definition 1.3.1. If v is a vertex in a tournament T such that v dominates every other

vertex, we call v a emperor.

Evidently, a tournament can have exactly one emperor, but it is also the case that many

tournaments have no emperors at all. If we weaken the condition on a ‘winner’ v so that v

can reach every vertex via a path of length at most 2, we get the definition of a king of a

tournament (Definition 1.2.2). The following Proposition can be proven in a similar way to

Lemma 1.2.3.

Proposition 1.3.2 (Adapted from [FH66], Theorem 3). If a tournament T has no emperor,

then it contains at least three kings.

Proof. If T has less that 3 vertices, T always has an emperor. Thus, we may assume T has

at least 3 vertices. Let v be a vertex of T with maximum score. Then by Lemma 1.2.3, v is

a king. Also, since T has no emperor, there is at least one point which dominates v. Among

all such points, let u be the one with highest score. A similar argument to the proof of

Lemma 1.2.3 shows that this is a king. Now, choose a vertex w with maximum score among

those vertices which dominate u. The same argument again shows that this vertex is also a

king. Since the dominance relation is asymmetric, and we have that w dominates u and u

dominates v, it follows that these vertices are distinct points, and the result follows.

Examples 1.3.3. Figure 1.9a illustrates an emperor in a tournament, whilst Figure 1.9b

shows that Proposition 1.3.2 is tight.

v1

v2

v3v4

v5

(a) A tournament on 5 vertices with an

emperor and its directed edges in purple.

v1

v2

v3v4

v5

(b) A tournament on 5 vertices with exactly 3

kings (coloured vertices).

Figure 1.9: Two tournaments on 5 vertices: one having an emperor, and one having exactly

three kings.
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1.4 Directed Paths

A directed path has a natural meaning with regards to tournaments: it represents a sequence

of vertices where each vertex dominates the succeeding vertex. The following famous result

due to Rédei in 1934 ([R3́4]) shows that it is always possible to arrange every vertex in a

tournament in such a sequence.

Theorem 1.4.1. Every tournament contains a Hamiltonian path.

Proof. We use induction on the number of vertices in the tournament. If T denotes a

tournament, the base case V (T ) = 1 is trivial. If T has n vertices, fix a vertex vn ∈ V (T ).

Then, by induction hypothesis, the subtournament TU induced by the U = V (T ) − {vn}
has a Hamiltonian path. Suppose this Hamiltonian path is P = v1e1v2 · · · vn−2en−2vn−1. If

vn dominates v1 then by adjoining vn to P it is evident that T has a Hamiltonian path.

Otherwise, let i be the minimal value of the index such that vn is dominated by vi but

dominates vi+1. Then, if eout denotes the edge (vi, vn) and ein denoted the edge (vn, vi+1).

Then the path v1e1v2 · · · vieoutvneinvi+1 · · · vn−1 is a Hamiltonian path in T .

v1 v2 · · · vi vi+1 · · · vn−1

vn

eout

ein

Figure 1.10: The above diagram illustrates the inductive step of the proof of Theorem 1.4.1.

Example 1.4.2. The following picture illustrates a Hamiltonian path in a tournament on

6 vertices.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 1.11: A tournament on 6 vertices (left), and a Hamiltonian path coloured in red

(right).

1.5 Transitive Tournaments

Whilst every tournament does contain a Hamiltonian path, it is not always possible to

find a total ordering of vertices in a tournament based on the dominance relation, since
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the tournament may have cycles. However, if the tournament is such that the dominance

relation is transitive, it is possible, and such tournaments have a special name:

Definition 1.5.1. A tournament is transitive if its dominance relation is transitive.

The following theorem characterises transitive tournaments:

Theorem 1.5.2. The following are equivalent for any tournament T ∈ Tn:

1. T is transitive.

2. The score sequence of T is (0, 1, · · · , n− 1).

3. T is acyclic (does not contain a directed cycle).

4. T contains a unique Hamiltonian path.

Proof.

1⇒ 2 Any transitive tournament must contain an emperor. If this emperor is removed, the

resulting tournament is also transitive, and the result follows by induction.

2⇒ 3 Any emperor cannot be part of a directed cycle, so any such cycle must be part of the

subtournament with the emperor removed and again the result follows by induction.

3⇒ 4 Suppose T is acyclic. If V (T ) = 2 the result is clear. If V (T ) = n, then the subtour-

nament induced by the vertex set with vn ∈ V (T ) removed is also acyclic, and the

resulting tournament contains a unique Hamiltonian path. Denote the Hamiltonian

path by v1e1v2 · · · vn−2en−2vn−1. Now, reintroduce vn and the incident edges. If vn is

an emperor, then the result follows immediately. Otherwise, if there are two indices

i < j such that vi dominates vn which dominates vi+1 (and similarly for vj), then the

resulting tournament contains a cycle, as is illustrated in blue in the Figure below.

· · · vi vi+1 · · · vj vj+1 · · ·

vn

Figure 1.12

It follows that there is exactly one index i satisfying this property, and moreover, vn
dominates every vertex vj with j > i and j ≤ n− 1.

4⇒ 1 Applying a similar argument to the previous proof, if T contains a Hamiltonian path,

denoted by v1e1v2 · · · vn−1en−1vn, if each vi does not dominate every succeeding vertex

vj for j > i, then this Hamiltonian path is not unique. It follows that T must be

transitive.
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1.6 Irreducible Tournaments and Strong Score Sequences

Another special type of tournament is a reducible tournament:

Definition 1.6.1. A tournament is reducible if it is possible to partition its vertices into

sets A and B such that all the vertices in set A dominate all of those in set B. Otherwise a

tournament is irreducible.

If T is a tournament with score sequence (s1, s2, · · · , sn), evidently T is reducible if and

only if for some k < n

k∑
i=1

si =

(
k

2

)
.

Therefore, tournament is irreducible if and only if each inequality in (1.1) is strict for

k < n.

Theorem 1.6.2. A tournament is irreducible if and only if it is strong.

Proof. If a tournament T is strong, evidently it must be irreducible. For the converse,

suppose T is not strong. Then, for some v ∈ V (T ), the set A containing v along with all

vertices reachable from v is such that V (T ) − A 6= ∅. By partitioning V (T ) into A and

V (T )− A, it follows that T is reducible.

Theorem 1.6.3 (Adapted from [FH66], Theorem 7). If a tournament T ∈ Tn is strong, it

contains a cycle of length 3, 4, · · · , n. In particular, it contains a Hamiltonian cycle.

Proof. A strong tournament T ∈ Tn is not transitive, hence must contain a directed triangle.

Now, applying induction, suppose T contains a cycle of length k < n, which we denote as

v0e0 · · · vk−1ek−1v0. Suppose for some vertex v outside this cycle, the directed edges (vi, v)

and (v, vi+1) are in E(T ), where the index values are taken modulo k. Then, by removing

the edge (vi, vi+1) and incorporating these edges, we can form a cycle of length k + 1.

Otherwise, every vertex outside the cycle either dominates, or is dominated by the ver-

tices inside the cycle. If we partition the vertices outside the cycle into disjoint sets A and

B corresponding to either case, then since T is strong, by Theorem 1.6.2 both A and B are

nonempty. Moreover, there must be a vertex b ∈ B which dominates a vertex a ∈ A. If

ea = (a, v0), eb = (vk−2, b) and ep = (b, a), the cycle aeav0e0 · · · vk−2eb bepa is a cycle of length

k + 1, and this completes the proof.

1.7 Regular Tournaments

One special type of tournament, which we call a regular tournament, has the scores of

each of the vertices as evenly distributed as possible. One may think of this as a highly

‘competitive’ tournament.
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Definition 1.7.1. A regular tournament on n vertices, with n ≥ 3 is a tournament with

score sequence

s =

{(
n−1

2
, n−1

2
, · · · , n−1

2

)
, if n is odd,(

n−2
2
, n−2

2
, · · · , n−2

2
, n

2
, · · · , n

2
, n

2

)
, if n is even.

Note that in the case where n is even exactly n
2

vertices have score n−2
2

.

Remark 1.7.2. If n is even, it is not possible for all of the vertices to have the same score,

because this would imply that each vertex has score n−1
2

, which is not an integer.

Examples 1.7.3. Here are some examples of regular tournaments on even and odd numbers

of vertices.

v1

v2v3

(a) A regular tournament on 3 vertices

v1

v2

v3

v4

(b) A regular tournament on 4 vertices.

Figure 1.13: Regular tournaments on 3 and 4 vertices.

We see that in the case of 3 vertices, each vertex has score 1, whilst in the case of 4

vertices, v1 and v2 have score 1 and the other vertices have score 2. This shows that the

tournaments are regular.

1.7.1 Kelly’s Conjecture

One interesting thing about odd regular tournaments is that it appears that they always

can be decomposed into edge disjoint Hamiltonian cycles. This result is known as Kelly’s

Conjecture ([KO13]).

Conjecture 1.7.4. Any regular tournament on an odd number of vertices can be expressed

as the edge disjoint union of Hamiltonian cycles.

This result, while easy to state, appears to be very difficult to prove. Recently, in 2013,

a partial result was obtained by Kühn and Osthus, who proved the result to be true when

the number of vertices in the tournament is sufficiently large [KO13].

Theorem 1.7.5 (Kühn and Osthus, 2013 [KO13]). There exists some constant K such that

any odd regular tournament on n ≥ K vertices has a decomposition into Hamiltonian cycles.
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Example 1.7.6. Figure 1.14 shows an example of a decomposition implied by Kelly’s Con-

jecture:

v1

v2

v3v4

v5

Figure 1.14: A decomposition of a tournament on 5 vertices into edge disjoint Hamiltonian

cycles (blue and red).

Kühn and Osthus also proved that when n is even a tournament on n vertices has a

decomposition into edge disjoint Hamiltonian paths [KO13].

1.7.2 Excess Sequences

We will show in Chapter 2, that in some sense ‘most’ tournaments are ‘close’ to regular

(see Theorem 2.4.7). In order to quantify how ‘close’ a tournament is to regular we need

excesses.

Definition 1.7.7. Let T be a tournament on n vertices with vertex set V . The excess of

a vertex v ∈ V (T ) is the out-degree minus the in-degree of v in T .

We can then define excess vectors and excess sequences in a similar way to score vectors

and score sequences. Often we will use the symbol δ = (δ1, · · · , δn) to represent an excess

vector.

Example 1.7.8. If T is a regular tournament, the excess sequence of T is such that

δ =

{
(0, · · · , 0), if n is odd,

(−1, · · · ,−1, 1, · · · , 1), if n is even.

In some sense, ‖δ‖∞ gives an indication of how close the tournament is to regular. If

‖δ‖∞ is large, then at least one vertex has a much larger out-degree than in-degree or much

larger in-degree than out-degree, and at least ‖δ‖∞−1 directed edges need to be reversed to

get a regular tournament.

Example 1.7.9. The following tournament on 4 vertices, has excess vector δ = (3,−1,−1,−1)

under the ‘natural’ ordering such that vi 7→ i. The excess sequence of this tournament is

(−1,−1,−1, 3).
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v1

v2

v3

v4

Remark 1.7.10. Note that summing the scores of the vertices and summing the in-degrees

both count the number of possible edges between vertices. Thus, if we have an excess

sequence δ = (δ1, · · · , δn) of a tournament T

n∑
i=1

δi =
∑

v∈V (T )

deg+(v)−
∑

v∈V (T )

deg−(v) =

(
n

2

)
−
(
n

2

)
= 0.

This is in evident Example 1.7.9 where the sum of the excesses is 3− 1− 1− 1 = 0.

We will denote by Td(δ) the set of all tournaments with excess sequence δ.

1.8 Further References

In this chapter, we have provided an introduction to the theory behind tournaments, and

proved some interesting results about them. For a more thorough introduction to the subject

we recommend reading the papers ‘The Theory of Round Robin Tournaments’ by Frank

Harary and Leo Moser ([FH66]), and ‘The King Chicken Theorems’ by Stephen Maurer

([Mau80]).
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Chapter 2

Random Tournaments

2.1 Introduction

The purpose of this chapter is to give an introduction to the topic of random tournaments.

We will then provide a brief survey of the area. Most of the more technical proofs will be

omitted, since the approaches tend to vary widely, and are not immediately relevant to the

approach taken in this thesis. Results related to paired comparison models and asymptotic

enumeration will be considered separately in Chapters 4 and 5. In this chapter, we content

ourselves with an overview of the other main results in the field, to provide the reader a

broader understanding of the area, and a context for the results proved in Chapters 3 - 5.

We will assume the reader is familiar with basic probability theory. The content of

([Fel68]) should suffice.

2.2 Preliminaries

We define a random tournament in a similar way to the way a random graph is defined

([Bol01], page xiii):

Definition 2.2.1. A random tournament Tn on n vertices is a probability distribution over

Tn. We will use the notation T ∈ Tn to denote a tournament valued random variable T

drawn from this distribution.

As this is a probability distribution over a finite set, we can generate a random tournament

by specifying the probability P (T ) of each tournament T ∈ Tn, so that the sum over all

probabilities is 1.

Examples 2.2.2.

1. The uniform random tournament Un is the uniform distribution over all tournaments

defined on a set of n vertices. Each tournament has probability 1

2(
n
2)

.

17
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2. Given a tournament T , the Dirac random tournament on T gives the probability

P (T ) = 1, and all other tournaments probability 0.

A more general random tournament may be generated by having each directed edge occur

independently of the others, and with a specified probability:

Definition 2.2.3. The edge model random tournament is the random tournament obtained

by having each directed edge from vertex vi to vertex vj occur independently of the others,

with specified probability pij.

Clearly we must have pij + pji = 1, since one of the directed edges must occur. We may

think of an edge model random tournament as a type of generalised tournament, which will

be defined and studied in Chapter 3.

Examples 2.2.4.

1. The uniform random tournament is an edge model random tournament where the

directed edge from any vertex vi to any other vertex vj occurs with probability 1
2
.

2. The Dirac random tournament is such that, if pij is the probability of an edge directed

from vertex vi to vj, with i 6= j,

pij =

{
1, (vi, vj) ∈ T,
0, otherwise.

3. The β-model random tournament on n vertices, given strength parameters β1, · · · , βn
has each directed edge from vertex vi to vertex vj, with i 6= j, occurring with probability

pij =
eβi

eβi + eβj
.

We will discuss this model in depth in Chapter 4. It is used widely in the method of

paired comparisons in statistics, under the name Bradley-Terry model.

We can define expected scores of vertices in a random tournament T as follows:

Definition 2.2.5. The expected score si of a vertex vi in a random tournament Tn on n

vertices is the expected value of the score of a tournament T ∈ Tn. The expected score

vector of a random tournament Tn is the vector s such that the ith component of s is si.

The expected score sequence of Tn is the sequence obtained by arranging the components

of the expected score vector in non-decreasing order.

If pij denotes the probability of a directed edge from vertices vi to vj in a tournament

T ∈ Tn, then by linearity of expectation, we have

si =
∑
j 6=i

pij.
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The results of interest in this chapter are related to the properties a tournament T ∈ Tn

is ‘expected’ to have, or those properties that occur with ‘large’ probability. Often the

probability of a tournament T ∈ Tn having a particular property P tends to 1 as n goes to

infinity. The convention in a lot of literature related to random graphs is to say that property

P occurs almost surely ([Bol01], pages xiii), but as this is a slight abuse of terminology, we

use a different expression:

Definition 2.2.6. Let P be a property of a tournament T ∈ Tn. We say T has property

P asymptotically almost surely (a.a.s.) if the probability of P tends to 1 as n tends to

infinity. Equivalently, we may say asymptotically almost all (a. almost all) tournaments

T ∈ Tn have property P . If the random tournament is the uniform random tournament Un,

we will omit Un, and simply say that a. almost all tournaments have property P .

Remark 2.2.7. Another term often used in discrete mathematics and computer science that

means exactly the same thing is with high probability (w.h.p.).

Examples 2.2.8.

1. Let Tn be the uniform random tournament, and fix a tournament K. Then a. almost

surely, a tournament T ∈ T is not equal to K, since

P (T = K) =
1

2(n2)
= O

(
2−

n(n−1)
2

)
.

2. Let W denote the event that a tournament T ∈ T has a vertex v that dominates every

other vertex. Then W does not occur a.a.s, since

P (W ) =
n

2n−1
= O

(
2−cn

)
for a constant c > 0.

2.2.1 A Note on the ‘Probabilistic Method’

One of the most important, and most beautiful, contributions of the theory of random

tournaments is the birth of the probabilistic method. The probabilistic method is a non-

constructive proof technique used widely in combinatorics, number theory and other areas.

This technique is attributed to Szele, who, in 1943 [Sze43], used it to prove that there are

tournaments which contain a large number of Hamilton paths.

Theorem 2.2.9 (Szele, 1943). Let H(T ) denote the number of Hamiltonian paths in a

tournament T on n vertices. Then there exists T such that

H(T ) ≥ n!

2n−1
.
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Proof. Let Un denote the uniform random tournament. In any Hamiltonian path in a tour-

nament X ∈ Un, each of the n − 1 directed edges in the path occurs with probability 1
2
.

Thus, the probability of a particular path is 1
2n−1 . As there are n! possible Hamiltonian paths

(corresponding to the n! arrangements of the vertices), by linearity of expectation

EH(X) =
n!

2n−1
.

But as

EH(X) =
∑
K∈Tn

P (K)H(K) ≤ max
K∈Tn

H(K),

it follows that some tournament T has H(T ) ≥ n!
2n−1 .

In this way, the probabilistic method can be used to convert results about random tour-

naments into existence results for tournaments. For more about the probabilistic method,

the author strongly recommends reading [?].

2.3 The Regular Random Tournament

In 1974, in [Spe74], Joel Spencer proved a number of results related to the properties a

‘random’ regular tournament is likely to have. The motivation behind this paper has been

to develop an approach to attack problems specifically related to regular tournaments, for

example Kelly’s Conjecture (Conjecture 1.7.4).

To make this more precise, we define the regular random tournament to be the proba-

bility distribution which is uniform on all regular tournaments and zero otherwise. Let RTn
denote the set of regular tournaments on a set of n vertices {v1, · · · , vn}.

Definition 2.3.1. The regular random tournament Rn is the random tournament on n

vertices such that, if T ∈ Rn then

P (T ) =

{
0, T /∈ RTn,

1
|RTn| , otherwise.

Remark 2.3.2. We will find an explicit asymptotic formula for |RTn| in Chapter 5.

The following Theorem provides upper and lower bounds for the probability that the

set of games played by vertices in a subset (with each score equal to a fixed value m) is a

particular set. For T ∈ Rn let Sm be the set of all subsets A such that the score of each

vi ∈ A in T is exactly m. Also given such a set A, denote by GA the set of games played by

vertices in A, and set

S (A) = {GA : A ∈ Sm}.
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Theorem 2.3.3 (Spencer, 1974 [Spe74]). Suppose |A|= k, with k ≤ n0.6 and g1 ∈ S (A).

Then for sufficiently small ε > 0 and n sufficiently large,

|S (A)|−1 e−
k2

2−ε ≤ PRn (GA = g1|T ∈ RTn) ≤ |S (A)|−1 e
k2

2−ε .

The next Theorem, which is similar to the first, provides upper and lower bounds on the

probability that the subtournament induced by a vertex set A, where each vertex has the

same score m, is a particular tournament. With A as defined previously, denote by TA the

set of all tournaments on vertex set A.

Theorem 2.3.4 (Spencer, 1974 [Spe74]). With A as defined previously, suppose |A|= k,

with k ≤ n0.6. Let T1 ∈ TA. Then for sufficiently small ε > 0 and n sufficiently large

|TA|−1 e−(2+ε) k
3

n ≤ PRn (TA = T1|T ∈ RTn) ≤ |TA|−1 e(2+ε) k
3

n ,

where TA is the subtournament induced by A.

Spencer also proved the following:

Theorem 2.3.5 (Spencer, 1974 [Spe74]). Set t = [3 log2 n].Then, for a. almost all T ∈ Tn,

there do not exist subsets A, B ⊆ {v1, · · · , vn} with A∩B = ∅, |A|= |B|= t such that all of

the vertices in A dominates all of those in B (or vice-versa).

In some sense this result makes precise how ‘competitive’ a regular tournament is likely

to be: for n large it is very unlikely that that you can split a regular tournament into

disjoint subsets of size 3 log2 n such that the vertices of one set dominate the other.

2.4 The Uniform Random Tournament

More generally, results related to the uniform random tournament allow one to make con-

clusions about the properties any ‘random’ tournament is likely to have. Thus, a number of

results in the literature on random tournaments concern the uniform random tournament.

In this section, we provide an overview of the area.

2.4.1 Subgraph Counts

If a tournament is drawn at random from a uniform distribution, what is the probability of

it containing a particular subdigraph? In how many ways can one fit such a subdigraph on

the tournament so that the directed edges overlap?
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Example 2.4.1. If the tournament in Figure 3.5 was drawn from U4, it would contain two

copies of the directed cycle in Figure 3.3 (coloured).

v1

v2v3

(a) A directed triangle

v1

v2

v3

v4

(b) A regular tournament on 4 vertices.

Figure 2.1: The tournament on the right contains two copies of the directed cycle on the

left. One triangle is coloured in teal and the other in purple, with the edge common to both

coloured in blue (the edge (v2, v3)).

Evidently, since a tournament is an oriented graph, it can only contain copies of oriented

graphs. In this subsection we review some general results related to subdigraphs in a uniform

random tournament.

Three Cycles and Four Cycles

Denote by NC3(T ) and NC4(T ) the number of labeled directed 3 and 4 cycles respectively

in a tournament T . For example, if T1 is the tournament defined by Figure 3.5, then

NC3(T1) = 2. If we have a uniform random tournament T ∈ Un, then given three vertices

v1, v2, v3, the probability of a cycle containing these three vertices is 1
4
. Indeed, there are

2 different cycles containing these vertices (illustrated below), and each of these cycles has

probability 1
8
.

v1

v2v3

v1

v3v2

Figure 2.2: The two possible cycles on vertex set {v1, v2, v3}.

By linearity of expectation, if T ∈ Un it follows that

ENC3(T ) =
1

4

(
n

3

)
.
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Similarly,

ENC4(T ) =
3

8

(
n

4

)
.

A result by (Moran, 1947 [Mor47]) shows that the distribution of both of these are

asymptotically normal.

Theorem 2.4.2 (Moran, 1947 [Mor47]). Let T ∈ Un. Then, as n tends to infinity, the

distributions of

NC3(T )− 1
4

(
n
3

)√
3
16

(
n
3

) ,

and

NC4(T )− 3
8

(
n
4

)√
3
64

(
n
4

)
(4n− 11)

,

converge to the standard normal distribution.

2.4.2 Hamiltonian Cycles

Recall that a Hamiltonian Cycle in a directed graph is a spanning cycle. Let H(T ) denote

the number of Hamiltonian cycles in a tournament T . Then, a similar argument to the case

of finding ENC3(T ) shows that

EH(T ) =
(n− 1)!

2n
.

In 1995, Svante Janson [Jan95] showed thatH(T ) is also asymptotically normally distributed:

Theorem 2.4.3 (Janson, 1995 [Jan95]). Let T ∈ Un. Then as

VarH(T ) =

(
2

n
+O(n−2)

)
(EH(T ))2 ,

and as n→∞
H(T )− EH(T )√

VarH(T )

converges in distribution to the standard normal distribution.

By computing the conditional expectation of H(T ) in Un with respect to various types

of tournament, Wormald managed to find new asymptotic lower bounds on the maximum

number of Hamiltonian cycles in a tournament [Wornt].
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Paths of Length Two

Let rij denote the number of directed paths of length 2 from vertices vi to vj in a tournament

T ∈ Un. Let Rλ denote the expected number of ordered pairs of distinct vertices vi and vj
such that ∣∣∣∣rij − n− 2

4

∣∣∣∣ > λ.

The following theorem comes from J W Moon ([Moo68], page 42-43):

Theorem 2.4.4 (Moon, 1968 [Moo68]). If w(n) is such that log(n − 2) + w(n) → ∞ and

w(n)n−
1
3 as n→∞, and

λ =

(
3

4
(n− 2) (log n− 2 + w(n))

) 1
2

,

then asymptotically,

Rλ ∼ (2π (log n− 2 + w(n)))−
1
2 e−2w(n).

Tournaments with a Given Excess Sequence

If we know that a tournament drawn from U has a given score vector δ = (δ1, · · · , δn), what

is the probability that it contains a copy of a specified oriented graph D? In an enumera-

tive result by Gao, Mckay and Wang in 1998 [GMW00], under certain circumstances, the

asymptotic probability has been computed.

Let degi S(G) denote the degree of vertex vi in the underlying simple graph S(D). More-

over, define δi(D) to be the outdegree of vertex vi in D minus the indegree, and fix an excess

sequence δ = (δ1, · · · , δn).

Also, given an oriented graph D and an excess sequence δ = (δ1, · · · , δn), set

β1 =
1

2n

∑
1≤j≤n

(
2δjδj(D)− δ2

j (D)
)

+
1

3n3

∑
1≤j≤n

δ3
j δj(D) +

1

n4

∑
1≤j≤n

δ2
j

∑
1≤j≤n

δjδj(D),

and

β2 = − 1

2n2

∑
(j,k)∈D

(δj − δk − δj(D) + δk(D))2 .

Then, they proved the following result:
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Theorem 2.4.5 (Gao, McKay, Wang, 1998 [GMW00]). Let D be an oriented graph con-

taining m directed edges such that for each i ∈ [n], degi S(D) = O
(
n−

1
2
−ε′
)

where ε′ is any

positive constant. Moreover, let δ = (δ1, · · · , δn) be an excess vector with each δi = o
(
n

2
3

)
,

and such that δi degj S(D) = o(n) for all i, j ∈ [n]. Then, for T ∈ Un and β1 and β2 as

defined above

P (D ⊆ T | δ) ∼ 2−m exp
(m
n

+ β1 + β2

)
uniformly as n→∞.

2.4.3 Discrepancy Results

In the previous subsection we reviewed a number of results regarding random tournaments

containing oriented graphs. Informally, many of these results related to drawing a fixed

oriented graph on the vertex set of a tournament so that the edges overlapped. In this

subsection we review results of a similar flavour: regarding discrepancy.

If T1 and T2 are tournaments defined on sets of n vertices, roughly speaking, the discrepancy

between T1 and T2 measures how much their edges can be made to overlap if T1 is drawn on

the vertex set V (T2). More precisely, the positive discrepancy of these tournaments T1 and

T2 is defined by

disc+ (T1, T2) := max
φ
|E(φ(T1)) ∩ E(T2)| − 1

2

(
n

2

)
and the negative discrepancy is defined by

disc− (T1, T2) :=
1

2

(
n

2

)
−min

φ
|E(φ(T1)) ∩ E(T2)|

where the maximum and minimum are taken over all bijections φ from the vertex set of T1

to the vertex set of T2. The reason for the 1
2

(
n
2

)
term in these definitions is that any two

tournaments can be drawn on the same vertex set so that at least 1
2

(
n
2

)
edges overlap.

Indeed, if T1 is drawn randomly on the same set of vertices as T2, then the probability

of a particular edge between a pair of vertices vi and vj overlapping is 1
2
. By linearity of

expectation, the expected number of common edges is 1
2

(
n
2

)
, so that there exists at least one

drawing of T1 on the vertex set of T2 satisfying the required property.

The (unsigned) discrepancy is defined as

disc (T1, T2) = max{disc+ (T1, T2), disc− (T1, T2)}.
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Let TRn denote any transitive tournament on n vertices. Then, in ([Spe71], 1971), and

([Spe80], 1980), Spencer showed that a. almost all tournaments T ∈ Un are such that

disc+ (T, TRn) = Θ
(
n

3
2

)
.

The upper bound in this result was sharpened by Vega in 1983, who showed that a. almost

surely

disc+ (T, TRn) ≤ 1.73n
3
2 .

In 2015, Bollabás and Scott [BS15] considered the (unsigned) discrepancy between two tour-

naments drawn from Un. They showed that if T1, T2 ∈ Un, then a. almost surely

disc (T1, T2) = Θ
(
n

3
2

√
log n

)
.

This provided an asymptotic answer to the question “how much more can two random

tournaments be made to agree or disagree?”

2.4.4 A Surprising Correlation

Let Un be the uniform random tournament on vertices V = {v1, · · · , vn}. Let a, s and b be

three vertices in V , and denote by {a→ s} the event that there is a directed path from a to

s, and similarly define {s→ b}.

Recall that two events X1 and X2 are said to be negatively correlated if

P (X1 ∧X2) < P (X1)P (X2),

and positively correlated if

P (X1 ∧X2) > P (X1)P (X2).

One might expect the events {a → s} and {s → b} to be negatively correlated. Indeed,

increasing the probability of the event {a→ s} might involve increasing the number of edges

directed towards s which might decrease the probability of the event {s → b}. However,

a result by Sven Erick Alm and Svante Linussen in 2009 [EL09] shows that, somewhat

counter-intuitively this is not the case if the number of vertices n ≥ 4:

Theorem 2.4.6 (Alm and Linussen, 2009 [EL09]). Let Un be the uniform random tourna-

ment on n vertices, with n ≥ 3 , and the events {a → s} and {s → b} as defined above.

Then, these two events are negatively correlated if n = 3, independent if n = 4, and positively

correlated otherwise.

This rather interesting result has also been studied in the case of random orientations of

arbitrary graphs G, where the orientation of each edge is independent, and each orientation

has equal probability.
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2.4.5 Dominating Sets of Vertices

Since the universal random tournament can be expressed as an edge model random tourna-

ment with each edge having probability 1
2
, one might expect any tournament drawn from

this distribution to be ‘competitive’ in the sense that few vertices dominate a large number

of other vertices. This is indeed the case.

In 1962, Moon and Moser showed that a. almost all tournaments T ∈ Un are irreducible. In

fact, they showed ([Moo62], [Moo68] pages 3-5) that if I denotes the event that a tournament

T ∈ Un is irreducible, then ∣∣∣P (I)− n

2n−2

∣∣∣ < 1

2

( n

2n−2

)2

.

More generally, if δ denotes the excess sequence of a tournament T , a. almost all tour-

naments T are such that δ ≤ O
(
n

1
2

+ε
)

for any ε > 0. This result has been alluded to in

[Spe74], but does not appear to have been explicitly proven, hence we provide a proof here.

Theorem 2.4.7. Suppose δ = (δ1, · · · , δn) is the excess sequence of a tournament T ∈ Un.

Then, a. almost surely, ‖δ‖∞≤ O
(
n

1
2

+ε
)

.

Proof. In Un, we may think of the score of any vertex vi as the sum of n− 1 i.i.d Bernoulli

random variables, with success probability 1
2
. Now, for any vertex vi and constant c > 0,

the probability that

P
(
|δi|> cn

1
2

+ε
)

) = P
(
|2si − n− 1|> cn

1
2

+ε
)
.

By Hoeffding’s inequality applied to si, since E si = n−1
2

, we have

P

(∣∣∣∣si − n− 1

2

∣∣∣∣ > c

2
n

1
2

+ε

)
≤ 2 exp

(
− c

2
nε
)
,

so that the probability of any vertex having excess larger that cn
1
2

+ε is bounded above by

2n exp
(
− c

2
ε
)

which tends to 0 as n goes to ∞.

Unbeaten k-sets

If a set A ⊆ V is such that |A|= k, and at least one vertex in A dominates a vertex outside

A, A is said to be an unbeaten k-set . In (Barbour et al. 1993 [BGQ97]), Barbour, Godbole

and Qian have managed to show that the number of k−sets in a random tournament T ∈ Un

is well approximated (with respect to a probability metric) by a Poisson Distribution with

mean (
n

k

)(
1− 2−k

)n−k
.
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2.4.6 Quasi-Random Results

A class of properties of tournaments is said to be quasi-random if T ∈ Un (or any random

tournament Tn) satisfies one of them, then a.a.s T satisfies all of them. These properties are

particularly significant in relation to the uniform random tournament because it means that

if n is large, then in order to verify that a tournament T satisfies a variety of properties,

with a high probability it is enough to verify that one property holds.

A quasi-random class of properties have been studied in a paper by Fan Chung and Ronald

Graham [Chu91]. In order to state their result we will need to introduce some terminology.

Suppose T is a tournament on vertex set V with |V |= n. Let

(
T

T ′

)
denote the number

of copies of a digraph T ′ in T .

For u, v ∈ V , we denote by

same(u, v) := |(W (u) ∩W (v)) ∪ (L(u) ∩ L(v))| .

Intuitively, this denotes the set of vertices w whose encounter with u and v is the same (ie

w dominates u and w dominates v or w is dominated by u and w is dominated by v).

Finally, if T has excess vector δ = (δ1, ..., δn), we say T is almost balanced if

n∑
i=1

|δi|= o(n2).

We are now able to state the main result of (Chung and Graham, 1991 [Chu91]):

Theorem 2.4.8 (Chung and Graham, 1991 [Chu91]). Let Un be the uniform random tour-

nament on vertex set V , and let T ∈ Un. The following form a quasi-random class of

properties of T :

1. If T ′ is a tournament on s vertices, s ≤ n(
T

T ′

)
= (1 + o(1))ns2−(s2).

2. NC4(T ) = (1 + o(1)) n4

2
.

3.
∑

u,v∈V

∣∣same (u, v)− n
2

∣∣ = o(n3).

4.
∑

u,v∈V

∣∣|W (u) ∩W (v)| − n
4

∣∣ = o(n3).

5. For all subsets X ⊂ V , the subtournament TX is almost-balanced.

6. Every subtournament of T on bn
2
c vertices is almost balanced.
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7. For every partition of V = A ∪B with |A|= bn
2
c and |B|= dn

2
e, we have∑

v∈A

||W (v) ∩B|−|L(v) ∩B|| = o(n2).

8. For all A,B ⊂ V , ∑
v∈A

||W (v) ∩B| − |L(v) ∩B|| = o(n2).

9. For every ordering π of T ,

|{(u, v) ∈ E(T ) : π(u) < π(v)}| = (1 + o(1))
n2

4
.

2.5 The p Model Random Tournament

A few results have been proved for a more general type of random tournament, which we

call the p-model random tournament.

Definition 2.5.1. The p-model random tournament Tn(p) on the ordered vertex set [n]

is a type of edge model random tournament where the probability of a directed edge from

vertex i to vertex j is p if i < j, and 1− p otherwise.

To the author’s knowledge, this type of random tournament was first studied by (Frank,

1968 [Fra68]), who showed that for T ∈ Tn(p),

ENC3(T ) =

(
n

3

)
p(1− p)

and

VarNC3(T ) =

(
n

3

)
p(1− p)

(
1− p(1− p) +

n− 3

2

)
.

Note that this is consistent with the case p = 1
2

in (2.4.1).

In 1996, (Luczaks et al. [RG96]) proved a number of asymptotic results related to this

random tournament, when p can vary as a function of n.

For a graph G = (V (G), E(G)), define d(G) to be the ratio

d(G) =
|E(G)|
|V (G)|

,

and set m(G) = maxH⊆G d(H). Also, recall that if D is an oriented graph, then S(D)

denotes the underlying simple graph on the same vertex set. Then we have the following

threshold result:
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Theorem 2.5.2 (Luczacs et al. 1996 [RG96]). Let T ∈ Tn(p) and let D be a oriented graph

with at least one cycle. Then,

lim
n→∞

P (D ⊆ T ) =


0, if npm(S(D)) → 0,

1, if n (min {p, 1− p})m(S(D)) →∞,
0, if n(1− p)m(S(D)) → 0.

Now, if T ∈ Tn(p), define

α := min {i : (i, j) ∈ T for some j > i} ,

and

β := max {j : (i, j) ∈ T for some i < j} .

In the same paper, (Luczacs et al.) showed the following:

Theorem 2.5.3 (Luczacs et al. 1996 [RG96]). Let T ∈ Tn(p). If n2p → ∞ and p ≤ 1
2
, a.

almost surely the set {α, α + 1, · · · , β} is the vertex set of a strong component of T .

Note that this result can be extended to random tournaments with p ≥ 1
2

by the duality

between Tn(p) and Tn(1− p).



Chapter 3

More General Types of Tournament

3.1 Introduction and Literature

In this chapter we will briefly describe some more general types of tournaments. There are

three types of classes we will consider: generalised tournaments, multi-tournaments and

generalised multi-tournaments.

It is difficult to find literature on these more general classes of tournaments. The class

of generalised tournaments was, to the best of our knowledge, first introduced by Moon

[Moo63]. In [Jec83], Jech introduced the types of tournament we will call generalised multi-

tournaments, motivated by applications to comparison based ranking.

The primary motivation behind this chapter is to study these types of tournaments in the

context of polytopes. As a result much of this chapter will assume basic knowledge of con-

vex analysis, which may be found in any introductory text on on the subject (for example

[HU01]). As generalised tournaments are closely related to random tournaments, the results

proved in this chapter will be useful in Chapters 4 and 5. On the way we provide proofs of

some Landau-like theorems for these types of tournaments. In particular, Theorem 3.3.12

shows that for any score vector s there exists a generalised tournament with this score

vector that can be expressed as the convex combination of transitive tournaments. We will

explain this more detail later on, but this has an interesting interpretation in terms of voting

theory (Subsection 3.3.4).

3.1.1 A Word on Notation and Terminology

In this chapter we will use terminology and notation related to convex analysis. We will

assume the reader has some familiarity with these terms.

Given a set S ⊆ Rn recall that the affine hull of S is the set of affine combinations of

vectors in S.

31



32 CHAPTER 3. MORE GENERAL TYPES OF TOURNAMENT

Notation 3.1.1 (Affine Hull). We denote by aff(S) the affine hull of S.

Also recall that convex hull of a set is defined similarly, in terms of convex combinations

rather than affine combinations.

We use the standard notation for open balls:

Notation 3.1.2 (Ball). Given a point p ∈ Rn and r ∈ R+, we denote by Br(p) the open

ball of radius r centred at p.

Finally, recall that the relative interior of a set in Rn is the interior of the set when

viewed as a subset of its affine hull. Specifically, the relative interior of a set S ∈ Rn is the

set

{x ∈ S : ∃ε > 0 such that Bε(x) ∩ aff(S) ⊆ S}

We then have the following notation:

Notation 3.1.3 (Relative Interior). Given a set S ∈ Rn, we denote by rint (S) the relative

interior of S.

3.2 Multi-Tournaments

A tournament can be thought of as encoding the results of a round-robin competition, where

every pair of individuals competes against each other once. A multi-tournament allows the

possibility of multiple encounters, as is the case with many sporting leagues around the world.

Let M be an n× n symmetric matrix with each entry mij ∈ Z, and

mij

{
= 0, i = j,

> 0, i 6= j.
(3.1)

Definition 3.2.1. A multi-tournament T on a labelled vertex set V = {v1, · · · , vn} with

schedule matrix M is an orientation of the multi-graph on the vertex set V having mij edges

between vertices vi and vj.

Remark 3.2.2. A multi-tournament is hence a type of multidigraph, or a quiver.

Example 3.2.3. Figure 3.1b is an example of a multi-tournament with schedule matrix

M =


0 2 1 3

2 0 1 1

1 1 0 1

3 1 1 0

 .
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v1

v2

v3

v4

(a) A multi-graph corresponding to

the schedule matrix M .

v1

v2

v3

v4

(b) A multi-tournament with schedule

matrix M .

Figure 3.1

We define the score of each vertex, the score vector, and score sequence in a similar

way to usual tournaments so that, if s is the score sequence of a multi-tournament, then the

following Landau-like conditions are satisfied:

k∑
i=1

si ≥
∑

i<j, i,j∈[k]

mij, (3.2)

for each k ∈ [n], with equality if k = n.

Example 3.2.4. The score vector s of the multi-tournament in Figure 3.1b is (4, 3, 1, 1).

The score sequence is (1, 1, 3, 4) and one may readily check that conditions (3.2) are satisfied.

One may immediately wonder whether these Landau-like conditions are also sufficient.

The general case appears to be difficult, but a very similar proof to Theorem 1.2.1 in Chapter

1 shows that there is a Landau-like theorem in the particular case that each mij is equal to

some constant p.

Theorem 3.2.5. Let M be the schedule matrix for a multi-tournament T where each mij = p

for i 6= j. A sequence of non-negative integers s1 ≤ s2 ≤ ... ≤ sn is a score sequence for T

if and only if
k∑
i=1

si ≥ p

(
k

2

)
(3.3)

for all positive integers k < n, and

n∑
i=1

si = p

(
n

2

)
. (3.4)

Proof. The proof follows a similar argument to Theorem 1.2.1 in Chapter 1.
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3.2.1 Generalised Multi-Tournaments

In generalised multi-tournaments every game between participants i and j results in each

player given a rating corresponding to their performance. The sum of the ratings of both

players is always 1. For example, if the result was a draw, both players i and j might get 1
2
.

Definition 3.2.6. A generalised multi-tournament G with schedule matrix M on n vertices

is an ordered pair (V, T ). Here V is a finite set of vertices {v1, ..., vn} and T is a collection

of non-negative real number edges {tqij : i, j ∈ [n], q ∈ [mij]} such that tqij + tqji = 1, tqjj = 0

and 0 ≤ tqij ≤ 1. If we set K = 2
∑

1≤i<j≤nmij + n, we may think of the edge set as a vector

t ∈ RK obtained by adjoining the edge values.

Example 3.2.7. We may think of a normal multi-tournament as a generalised multi-

tournament, where each tqij is either 0 or 1, corresponding to whether i dominates j or

j dominates i.

Definition 3.2.8. Let G = (V, T ) be a generalised multi-tournament. Given a vertex

vi ∈ V , the score si of vi is the sum
n∑
j=1

mij∑
q=1

tqij.

We then define score sequences and score vectors in a similar way to other tournaments.

It is possible to prove the following generalisation of Landau’s Theorem for generalised multi-

tournaments:

Theorem 3.2.9. Let M be the schedule matrix for a generalised multi-tournament G. A

sequence of non-negative real numbers s1 ≤ s2 ≤ ... ≤ sn is a score sequence for G if and

only if

k∑
i=1

si ≥
∑

i<j, i,j∈[k]

mij,

for all positive integers k ≤ n, with equality if k = n.

Proof. The proof of necessity of these conditions is straightforward. For ease of notation,

we will only prove sufficiency in the specific case where each mij = 1, in Theorem 3.3.12,

however the main idea is as follows:

1. Construct polytopes PM (depending on the schedule matrix M) corresponding to the

necessary conditions a score vector must satisfy (similar to Definition 3.3.3).

2. Compute the vertices of this polytope using a similar argument to Proposition 3.3.7.

3. Observe that these vertices correspond to the score vector of a specific type of ‘tran-

sitive’ generalised multi-tournament. Then, using the fact that a bounded polytope

is the convex hull of its vertices, contruct a generalised multi-tournament with the

required score vector as a convex combination of these ‘transitive’ generalised multi-

tournaments.
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3.3 Some Polytopes

In this section we outline an approach to study generalised multi-tournaments using poly-

topes. For brevity, we only study the particular case of a generalised multi-tournament

where each mij = 1 for i 6= j, but the results for the other cases are similar.

Let Q be the symmetric n× n matrix such that Qij = 0 if i = j and 1 otherwise.

Definition 3.3.1. A generalised tournament is a generalised multi-tournament with sched-

ule matrix Q.

We may think of a generalised tournament as the combinatorial structure underlying

an edge model random tournament. This type of tournament G may be represented as a

diagram of with directed edges from vertices vi to vj labelled with the value of the edge tij.

By convention, we will only draw edges having values greater than or equal to 1
2
, and assume

any unlabelled directed edge has value 1.

Example 3.3.2. The following diagram illustrates a generalised tournament on 4 vertices:

v1

v2

v3

v4

2
3

1
2

4
5

2
π

Figure 3.2: A generalised tournament on 4 vertices. This tournament has score vector(
7
6
, 8

15
, 9

5
+ 2

π
, 5

2
− 2

π

)
.

The Landau-like conditions for generalised tournaments imply that the set of ‘permissible’

score vectors of a generalised tournament are those satisying a set of linear inequality and

equality constraints. Indeed, if s ∈ Rn is a score vector then

1. si ≥ 0 ∀i ∈ [n],

2. ∀I ( [n]
∑

i∈I si ≥
(|I|

2

)
,

3.
∑n

i=1 si =
(
n
2

)
.

We may thus think of the set of all score vectors of generalised tournaments on n vertices

as a convex polytope in Rn. We call this the score vector polytope .

Definition 3.3.3. The score vector polytope is the convex polytope defined by:

P n
Q :=

{
s ∈ Rn : si ≥ 0 ∀i ∈ [n], ∀I ( [n]

∑
i∈I

si ≥
(
|I|
2

)
,

n∑
i=1

si =

(
n

2

)}
.
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Now if G is a generalised tournament on n vertices with score vector s, the edges {tij :

i, j ∈ [n]} that define G are also vectors that satisfy a set of linear equality and inequality

constraints and thus also define a convex polytope.

Definition 3.3.4. We call the set

GTn :=
{
t ∈ Rn2

: tjk ≥ 0, tjj = 0, ∀k 6= j tjk + tkj = 1
}

the polytope of generalised tournaments on n vertices .

Definition 3.3.5. We call the convex polytope

GTn(s) :=

{
t ∈ Rn2

: tjk ≥ 0, tjj = 0, ∀k 6= j tjk + tkj = 1,
n∑
k=1

tjk = sj

}

the polytope of generalised tournaments with score vector s .

Note that by the necessity of the Landau-like conditions, we have GTn =
⋃
s∈PnQ

GTn(s).

We now proceed to work out some details about these polytopes.

3.3.1 Vertices of the Polytopes

In this subsection we find the vertices of some of these polytopes. This is significant, because

since these polytopes are bounded, they are equal to the convex hull of their vertices ([Zie95],

Theorem 1.1).

Proposition 3.3.6 (Vertices of GTn). The vertices of GTn correspond to usual tournaments

T ∈ Tn.

Proof. This proof is rather straightforward, and follows from the definition of vertices of a

polytope.

Proposition 3.3.7 (Vertices of P n
Q). The vertices of P n

Q are the vectors corresponding to the

n! permutations of (0, 1, 2, ·, n− 1).

Proof. Suppose s ∈ P n
Q has its ith component si = n− 1. Then, the conditions on P n

Q imply

that this is the maximum possible value of si, so that if s is the convex combination of vectors

in P n
Q, all of these vectors have their ith components equal to n − 1. The maximum value

of any of the other components of these vectors is then n− 2, so that if the jth component

of s is n − 2, then the jth component of all of these vectors is n − 2. By iterating in this

manner, it follows that s can only be expressed as the convex combination of itself in P n
Q

and therefore must be a vertex.

Suppose that a vector s ∈ P n
Q is not a permutation of (0, 1, 2, · · · , n − 1). We will show

that s is not a vertex by expressing it as the convex combination of two other vectors in
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P n
Q. Re-order the components of s so that they are non-decreasing. Then the condition for

inclusion in P n
Q is equivalent to

k∑
i=1

si ≥
(
k

2

)
,

with equality if k = n. If s has every component distinct, then if j is the first index such

that sj > j − 1, for ε sufficiently small the vectors obtained from s such that sj 7→ sj + ε,

sj+1 7→ sj+1 − ε, and sj 7→ sj − ε, sj+1 7→ sj+1 + ε are contained in P n
Q, and evidently this

allows s to be expressed as a convex combination.

Otherwise, s has some components, say sj, · · · , sj+l having the same value. It must be

the case that

j∑
i=1

si >

(
j

2

)
,

so we may apply a similar argument to show that the vector such that sj 7→ sj − ε and

sj+l 7→ sj+l + ε is in P n
Q. Noting the symmetry in the fact that sj = · · · = sj+l, the vector

with sj 7→ sj + ε and sj+l 7→ sj+l − ε also belongs to P n
Q, and this again allows us to express

s as a convex combination.

The interesting thing about the Proposition 3.3.7, is that it shows that the polytope P n
Q

is actually a known polytope called the permutation polytope ([Bow72]).

Examples 3.3.8. The following pictures illustrate the polytopes P n
Q when n = 2, 3 and 4.

In the cases n = 2, 3, the polytope is illustrated as a shaded region within the ambient space.

For n = 4, the region occupied by the polytope has been projected onto three-dimensions,

and the net of the polytope has been drawn. These figures have been produced using the

open source software system SageMath.

Figure 3.3: The green line illustrates the polytope P 2
Q in R2.
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Figure 3.4: The green region illustrates the polytope P 3
Q in R3.

Figure 3.5: The net of the polytope P 4
Q, after the local region has been projected onto three

dimensions.
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3.3.2 Relative Interiors

In this subsection we compute the relative interiors of P n
Q and GTn(s). We will require the

following fundamental result from convex analysis on the relative interior of the intersection

of two convex sets:

Lemma 3.3.9. Let C1 and C2 be convex sets such that rint(C1) ∩ rint(C2) 6= ∅. Then

rint(C1 ∩ C2) = rint(C1) ∩ rint(C2).

Proof. See [HU01], Proposition 2.1.10.

This allows us to compute the relative interiors of P n
Q and GTn(s):

Proposition 3.3.10. The relative interior of P n
Q is such that

rint(P n
Q) =

{
s ∈ P n

Q : ∀ ∅ ( I ( [n]
∑
i∈I

si >

(
|I|
2

)}
.

Proof. Define

C1 :=

{
s ∈ Rn : si ≥ 0, ∀ ∅ ( I ( [n]

∑
i∈I

si ≥
(
|I|
2

)}
and

C2 :=

{
s ∈ Rn :

n∑
i=1

si =

(
n

2

)}
.

Then C1 and C2 are convex sets, and P n
Q = C1 ∩ C2. Now, since aff(C2) = C2 we have

rint(C2) = C2. We claim that

rint(C1) =

{
s ∈ Rn : si ≥ 0, ∀ ∅ ( I ( [n]

∑
i∈I

si >

(
|I|
2

)}
:= H.

For one inclusion, if s ∈ H then for ε > 0 sufficiently small Bε(s) ⊆ C1, thus s ∈ rint(C1).

For the other inclusion, suppose for some s ∈ rint(C1) there is some set ∅ ( I ( [n] such

that
∑

i∈I si =
(|I|

2

)
. Then for w > 0 sufficiently small Bw(s)∩aff(C1) ⊂ C1. Since the vector

q such that qi = si + 1 is in C1, for all λ > 0 we have that (1 + λ)s − λq ∈ aff(C1). Thus,

the vector r such that ri = si − w
n

satisfies r ∈ Bw(s) ∩ aff(C1), however,
∑

i∈I ri <
(|I|

2

)
so

r /∈ C1. This contradiction proves the claim.

Now, evidently rint(C1) ∩ rint(C2) 6= ∅ since, for example, the vector
(
n−1

2
, · · · , n−1

2

)
be-

longs to the set. Thus, by Lemma 3.3.9,

rint(P n
Q) = rint(C1) ∩ rint(C2) =

{
s ∈ P n

Q : ∀ ∅ ( I ( [n]
∑
i∈I

si >

(
|I|
2

)}
.
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Proposition 3.3.11. Suppose there exists t ∈ GTn(s) such that, for all i 6= j, tij > 0. Then

rint(GTn(s)) = {t ∈ GTn(s) : tij > 0}.

Proof. The proof is similar to Proposition 3.3.10, by considering GTn(s) as the intersection

of two convex sets K1 and K2 where

K1 :=
{
t ∈ Rn2

: tjj = 0, tij ≥ 0
}

and

K2 :=

{
t ∈ Rn2

: ∀k 6= j tij + tji = 1,
n∑
k=1

tjk = sj

}
.

3.3.3 Connections between Polytopes

The results in this subsection relate the polytopes P n
Q and GTn(s).

Theorem 3.3.12. A vector s belongs to P n
Q if and only if the polytope GTn(s) is non-empty.

Proof. Evidently if GTn(s) 6= ∅ then P n
Q 6= ∅, by the necessity of the Landau-like conditions.

For the other direction, since P n
Q is a bounded polytope, it is equal to the convex hull

of its vertices. Thus, given s ∈ P n
Q, we have

s = c1v1 + · · ·+ cnvn!,
∑
i

ci = 1, ci ≥ 0. (3.5)

In this equation v1, · · · ,vn! are the vertices of P n
Q. Now, as the vertices vi ∈ P n

Q correspond

uniquely to transitive tournaments tvi in GTn, if we set

p =
∑
i

citvi ,

it is not too difficult to check that p ∈ GTn(s) so it follows that GTn(s) is non-empty.

Corollary 3.3.13. Given any generalised tournament G with score vector s, there exists

a generalised tournament with the same score vector that can be expressed as the convex

combination of transitive tournaments.

Our final result of this subsection relates the relative interiors of the two polytopes.

Proposition 3.3.14. A vector s belongs to the relative interior of P n
Q if and only if there

exists a vector p ∈ GTn(s) such that for all i 6= j pij > 0.

Proof. The necessity of these conditions is straightforward. For the other direction, suppose

s = (s1, · · · , sn) ∈ rint (P n
Q). Then, for sufficiently small ε > 0, define sε to be the vector

such that the ith component sεi = si−(n−1)ε
1−2ε

for each i ∈ [n]. A routine calculation shows that

for sufficiently small ε > 0, sε ∈ P n
Q. Therefore, by Theorem 3.3.12, the polytope GTn (sε) is
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non-empty. Suppose λ is a vector such that λ ∈ GTn (sε). Then a simple calculation shows

that the vector p ∈ GTn(s) defined by

pij =

{
(1− 2ε)λij + ε, i 6= j,

0, otherwise.

satisfies the required properties.

3.3.4 Applications to Voting Theory

In any preferential election with candidates {c1, · · · , cn}, the preferences of a single voter d1

may be expressed as a transitive tournament T1. If all of the preferences of each voter are

taken into account, the result of an election with k voters may then be represented as a

generalised tournament, corresponding to the convex combination

k∑
i=1

1

k
Ti.

The famous voters paradox [Sil92] shows that the individual preferences may be in conflict

with each other in such an election.

Example 3.3.15. Suppose an election has three candidates: Hillary Clinton (C), Donald

Trump (T) and Scott Morrison (M). Suppose there are three voters, and their preferences

are represented by the following transitive tournaments:

T

CM

C

MT

M

TC

Figure 3.6

Then, the result of the election may be represented by the following generalised tourna-

ment:

T

CM

2
3

2
3

2
3

Figure 3.7

We see that the majority of the population preference Trump over Hillary, Hillary over

Morrison, and Morrison over Trump, so there can be no fair way to call this election. All of

the candidates have equal score.
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More generally, if we think of the score vector of the resulting generalised tournament as

a means of ranking the participants, it is interesting to see which score vectors are possible

outcomes of such an election. Corollary 3.3.13 shows that any score vector is possible if the

coefficients of the convex combination are real numbers. This result roughly means that such

an election, with a fixed number of candidates, can have any possible result as the number

of voters tends to infinity.

3.4 Moon’s Theorem for Generalised Tournaments

Theorem 3.3.12 was actually first proved by Moon in 1963 [Moo63]. In this section we pro-

vide another proof of this theorem, by applying Theorem 3.2.5 along with a convergence

argument adapted from the proof by Bang and Sharp in 1976 [BjS77].

It will first be beneficial to express Theorem 3.2.5 in a different form, by using the following

definition.

Definition 3.4.1. A p-weighted tournament Pn on n vertices is an ordered pair (V, T )

where, V is a finite set of vertices {v1, ..., vn}, and T is a collection of non-negative integer

edges {tij : i, j ∈ [n]} such that tij + tji = p, tjj = 0 and 0 ≤ tij ≤ p for all i, j ∈ [n]. We

define scores, score sequences and score vectors in a similar way to other tournaments we

have studied.

It is then not too difficult to check the following reformulation of Theorem 3.2.5:

Theorem 3.4.2. A sequence of non-negative integers s1 ≤ s2 ≤ · · · ≤ sn is a score-sequence

for some p-weighted tournament Pn = (V, T ) on n vertices if and only if

k∑
i=1

si ≥ p

(
k

2

)
(3.6)

for all positive integers k < n, and

n∑
i=1

si = p

(
n

2

)
. (3.7)

Theorem 3.4.3 (Moon). A sequence s of non-negative real numbers s1 ≤ s2 ≤ · · · ≤ sn is

a score sequence for some generalised tournament G if and only if

k∑
i=1

si ≥
(
k

2

)
(3.8)

for all positive integers k ≤ n, with equality if k = n.
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Proof. The necessity of these conditions are straightforward.

For the other direction, assume first that the sequence s is rational. Then, for some in-

teger r sufficiently large, (rs1, ..., rsn) is a sequence satisfying equations (3.6) and (3.7), so

by Theorem 3.2.5 there exists a r-weighted tournament Rn on n vertices. Suppose the edge

set of this r-weighted tournament is given by {pij : i, j ∈ [n]}. Then, setting tij :=
pij
r

,

tjj = 0, we obtain a generalised tournament t with this score sequence.

Otherwise, since the set of possible generalised tournaments on n vertices

W :=
{
t ∈ Rn2

: tjk ≥ 0, tjj = 0, ∀k 6= j tjk + tkj = 1
}

is a closed and bounded subset of Rn2
, it is compact. Thus, if we can approximate any

real sequence s by rational sequences converging to s, by a compactness argument the

corresponding generalised tournaments t ∈ W will contain a subsequence converging to a

generalised tournament t′ ∈ W with score sequence s.

In this way, suppose we are given a sequence s = (s1, · · · , sn) with at least one irrational

component. There exists a largest integer m < n such that sm < sm+1. Now for each integer

K > 0, choose rational numbers q1, · · · , qm such that q1 ≤ q2 ≤ · · · ≤ qm and for 1 ≤ i ≤ m

si < qi ≤ si +
sm+1 − sm

2Km
,

whilst for i > m we define

qi = qi+1 = ... = qn =

(
n
2

)
−
∑m

k=1 qk

n−m
.

It can easily be checked that q = (q1, ..., qn) satisfies equation (3.8) and converges to s as K

goes to infinity, thus the argument is complete.

3.5 Connection to Random Tournaments

If Tn is a random tournament on n vertices, we can construct a generalised tournament G

by setting each edge tij equal to the probability of an edge directed from vertex vi to vj.

More precisely, let Pn be the space of all random tournaments on n vertices {v1, · · · , vn}
and define the map

F : Pn → GTn

such that

Tn 7→ p = (pij : i, j ∈ [n])

where each pij is the probability of an edge from vertex vi to vj.
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Definition 3.5.1. Following the above notation, if Tn ∈
⋃
t∈GTn(s) F

−1 (t) we say R lies

above GTn(s).

Remark 3.5.2. Clearly the set F−1 (t) is non-empty because we can use the edges of G to

construct an edge model random tournament.

Remark 3.5.3. By linearity of expectation, if R is a random tournament above the gen-

eralised tournament Gn, the score of a vertex vi corresponds to the expected score of vi in

R.

Proposition 3.5.4. A vector s ∈ P n
Q if and only if there exists a random tournament R

above GTn(s).

Proof. By definition, F (R) ∈ GTn(s), so s ∈ P n
Q by Theorem 3.3.12. For the other direction,

by Theorem 3.3.12, choose a vector p in GTn(s). Then, picking a random tournament R

above p we have the result.



Chapter 4

The Beta Model

4.1 Introduction

4.1.1 Motivation

There are many situations where it is important to rank objects based on a number of

pairwise comparisons. But what does such a ranking mean? To answer this, we first look at

some examples:

Examples 4.1.1.

1. Before a big cricket competition, a bookmaker would like to know the probabilities

of the result of each game. He has, at his disposal, the history of all previous games

between teams. How should he proceed?

2. A board wishes to rank the candidates participating in an election, based on the way

a random voter is expected to preference the candidates (similar to Example 3.3.15).

We can see that in these examples, the objective of the ‘ranking’ system is to predict the

outcome of future paired comparisons. We make the following assumptions:

1. The result of any paired comparison is binary — that is — it can have exactly one of

two states.

2. The result of every pairing is independent of the others, and not predetermined (either

state has non-zero probability).

3. We have, in our ‘history’, results from every possible pairing of objects we are com-

paring.

If the outcome of every pairing is represented by a directed edge and the objects are vertices,

the goal is then to construct an edge model random tournament, with each edge having non-

zero probability, that best describes the history. We will see that if we can use the history

to form a generalised tournament with score vector s such that s ∈ rintP n
Q, then such a

construction is possible.

45
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4.1.2 Literature

This problem is not new and has been widely studied in statistics, in what is known as the

‘method of paired comparisons’. The model we will describe is a special case of what is

known in the statistics literature as the ‘Bradley-Terry’ model, due to the paper by Bradley

and Terry in 1952 [RAB52]. However, the approach was first discovered by Zermelo in 1929

[Zer29] and independently rediscovered again by Ford in 1957 and Jech in 1983 [Jec83].

These examples actually consider the possibility of multiple comparisons between the same

pairs of objects, (corresponding to a multi-tournament). Similar to the approach outlined

here, the main idea in these papers has been to use maximum likelihood estimation.

Simons and Yao, in 1999, have studied the asymptotics of the model as the number of

comparisons tends to infinity, see [SY99]. A good review of this model, including many

generalisations, may be found in [Hun04].

It is important to mention that the approach here only takes into account the overall score of

each player obtained from a generalised tournament that represents the ‘history’ of previous

encounters. However, other models, such as the Kendall-Wei method [Wei52] [Ken55] also

take into account the quality of players defeated in previous games.

The literature on methods of paired comparisons is large, and could be the topic of a thesis

in its own right. Whilst the idea of using maximum likelihood estimation is the same, the

approach taken here to derive the model is quite different to a lot of other approaches in

that in does not assume that the expected scores are integer valued. This has been inspired

by literature on the so called β-model for random graphs. In particular, many results in

this chapter are based on similar results in [CHK+12] and [Bar12] for the random graph

case. We will hence call this model the β-model for random tournaments, to emphasise the

connections between these models. We also remark that a similar analysis could be carried

out for multi-tournaments, however, we restrict ourselves to the tournament case for brevity.

4.2 The Beta Model

4.2.1 Preliminaries

If we have a history of paired comparisons between objects, we may use this data to construct

a generalised tournament, where the weight of the edge λjk represents the relative strength

of vertex j over vertex k. If this generalised tournament has score vector s, the problem

of predicting the results of future paired comparisons can be phrased as finding the most

‘appropriate’ random tournament having its expected score vector equal to s. According

to the Principle of Maximum Entropy, the probability distribution that best describes the

current state is the probability function with maximum entropy (see [SJ80]). If X is a
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discrete random variable, taking values in {x1, · · · , xn}, the entropy function is given by

H(X) = −
n∑
i=1

P (X = xi) log (P (X = xi)) ,

with the convention that the values of the terms corresponding to 0 log 0 are set to 0. Note

that the entropy function is additive with respect to independent events.

In order to find such any random tournament with fixed expected scores s this requires

solving the system of equations
n∑
j 6=i

pij = si (4.1)

subject to the constraint

pjj = 0 ∀j ∈ [n] (4.2)

and

pij + pji = 1 ∀i 6= j ∈ [n]. (4.3)

Here there are n2 different variables, and 2n +
(
n
2

)
independent equations, so for n ≥ 4

there will be infinitely many solutions to this system. If we assume, however, that there

are ‘strength’ parameters βi associated with each vertex vi, then we may expect that the

probability of a future encounter pij should depend on the difference βj − βi (or vice versa).

This motivates the following definition:

Definition 4.2.1. Let p be an edge model random tournament on n vertices such that each

edge has non-zero probability. We say that p belongs to the β-model if there exists real

parameters β1, · · · , βn such that for every pair of vertices vi, vj with i 6= j we have

pij =
eβi

eβi + eβj
=

eβi−βj

1 + eβi−βj
. (4.4)

where pij denotes the probability that i dominates j.

Remark 4.2.2. Note that as this equation depends only on the differences βi − βj (repre-

senting relative strengths of the objects being compared), translating each βi by a constant

will result in the same edge model random tournament.

Example 4.2.3. Since every edge in the uniform random tournament has probability 1
2
, the

uniform random tournament belongs to the β-model, since we may fix some constant c and

set every βi = c.

4.2.2 Existence

The following Theorem shows that the random tournament with maximum entropy satisfying

equation (4.1) belongs to the β-model. Note that the entropy function of an arbitrary edge

model random tournament is given by

H(p) = −
∑

1≤i<j≤n

(pij log pij + (1− pij) log (1− pij)). (4.5)
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Theorem 4.2.4 (Existence of β Parameters). Suppose s ∈ rintP n
Q. Then the maximiser of

(4.5) subject to the constraint (4.1) is a β-model random tournament.

Proof. By Proposition 3.3.14, since s ∈ rintP n
Q, there exists a random tournament y satis-

fying equation (4.1) such that all of the probabilities yij > 0. Now, suppose b is a random

tournament that maximises H, with at least one of the probabilities bij = 0 or 1. At bij = 0

the right handed partial derivative satisfies

∂

∂bij
=∞

and at bij = 1 the left handed partial derivative satisfies

∂

∂bij
= −∞,

whilst the partial derivative is finite if 0 < bij < 1. It follows, that for some ε > 0 the

random tournament z := (1− ε) b + εy has all of its edge probabilities zij > 0, satisfies

equation (4.1) and is such that H(z) > H(b), a contradiction. It follows that the random

tournament p that maximises H is such that p ∈ rintGTn(s).

If we denote Lagrangian multipliers by βi and set

H∗(p) = H(p) +
n∑
i=1

βi

(∑
j 6=i

pij − si

)
,

at the maximum, the partial derivatives satisfy

∂H∗(p)

∂pij
= − log

pij
1− pij

+ βi − βj = 0

This implies that the pij satisfy equation (4.4), and, by Definition 4.2.1, p belongs to the

β-model.

4.2.3 Uniqueness

Remark 4.2.2 shows that the βi corresponding to a β-model random tournament will in

general not be unique. However, since the edge probabilities are only dependent on the dif-

ferences βi−βj, we may expect the parameters to be unique up to translation by a constant.

Suppose therefore that s ∈ rintP n
Q, and we have a solution for the βi, such that, by (4.4),

for each i ∈ [n]

∑
j 6=i

eβi

eβj + eβi
= si. (4.6)
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By relabelling vertices if necessary, we may assume that s1 ≤ s2 ≤ · · · ≤ sn, so that, by

Proposition 4.2.8 β1 ≤ β2 ≤ · · · ≤ βn. Moreover, by the translation invariance property

(Remark 4.2.2), we may assume β1 = 0.

In order to simplify notation, we define the vector α so that αi = eβi for each i ∈ [n].

Then, if φ : Rn → Rn is the function defined by

φi(y) = si

(∑
j 6=i

1

yj + yi

)−1

,

α is a fixed point of this function. Moreover, by (4.6), any fixed point of this function cor-

responds to a solution for the β-parameters. Note that if Rn
+ denotes the set of all vectors

in Rn with positive components, then φ fixes this space.

Define ρ on Rn
+ such that for x,y ∈ Rn

+,

ρ(x,y) = max

(
max
i∈[n]

xi
yi
,max
i∈[n]

yi
xi

)
.

Lemma 4.2.5. For any integer n ≥ 1 and positive numbers p1, · · · , pn and q1, · · · , qn,

p1 + · · ·+ pn
q1 + · · ·+ qn

≤ max
i∈[n]

pi
qi
, (4.7)

with equality exactly when all of the ratios pi
qi

are the same.

Proof. Suppose each pi ≤ kqi for some k > 0. Then the left hand side of equation (4.7) is

bounded above by k, with equality exactly when each pi
qi

= k.

Theorem 4.2.6. For any x,y ∈ Rn
+ with x 6= cy for any constant c > 0

ρ (φ(x), φ(y)) < ρ(x,y).

Proof. We have

φi(x)

φi(y)
=

∑
j 6=i (yj + yi)

−1∑
j 6=i (xj + xi)

−1 ≤ max
j 6=i

xj + xi
yj + yi

≤ max
j 6=i

max

(
xj
yj
,
xi
yi

)
,

where both inequalities follow from Lemma 4.2.5. We also see that equality holds precisely

when x = cy for some constant c > 0, thus the inequality is strict. The same argument

holds when we reverse x and y, and the result follows.

Corollary 4.2.7 (Uniqueness of β-Parameters). The βi corresponding to the random tour-

nament p in Theorem 4.2.4 can be computed by iterating φ. Moreover, these βi will be unique

up to the addition of a constant.
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Proof. Define the metric d(x,y) = log ρ(x,y) on Rn
+. If α denotes a fixed point of φ, then

every point on the line {cα : c > 0} is also a fixed point, by Remark 4.2.2. If we start with

a point x0, and construct the sequence of iterates xi+1 = φ(xi), then by Theorem 4.2.6, the

distance from each xi and this line is strictly decreasing and bounded below by 0. Moreover,

any limit point limn→∞ xn must be a fixed point, and by Theorem 4.2.6, must lie on this line.

Since the fixed point α is unique up to multiplication by a positive constant, the βi are

unique up to addition by a constant.

Note that whilst this Corollary provides an algorithm for computing the βi, the main

importance of this Corollary is to prove the uniqueness up to translation by a constant.

Interior point methods can be applied to solve the constrained optimisation problem in

(4.2.4) for the random tournament p directly, from which the βi can be calculated.

4.2.4 Equivalence to Ranking Based on Scores

If our motivation for studying the β-model is purely to rank objects based on previous

information encoded in some generalised tournament, how do the βi compare to naively

ranking based on the score vector? The following Proposition shows, rather unsurprisingly,

that the two are equivalent:

Proposition 4.2.8. Let p be a random tournament on n vertices belonging to the β-model

{1, 2, · · · , n}. If s denotes the expected score vector of p, then

s1 ≤ s2 ≤ · · · ≤ sn

if and only if

β1 ≤ β2 ≤ · · · ≤ βn.

Proof. Note that for each i

si =
∑

k 6=i∈[n]

eβi−βk

1 + eβi−βk
.

Now, if we define a function f : R→ R by

−1

2
+

n∑
k=1

ex−βk

1 + ex−βk
,

this function is monotonically increasing for x ∈ R. Noting that f(βi) = si for i ∈ [n], the

result follows.

In summary, an approach for applications to comparison based ranking could be as

follows:
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1. Form a generalised tournament where each edge between objects corresponds to infor-

mation from previous known encounters between the objects. For example, in sporting

applications, the relative number of wins over all previous encounters could be used.

2. Compute the generalised score vector s and check that s ∈ rintP n
Q. This will involve

sorting the scores in non-decreasing order, and then checking a series of inequality

constraints.

3. Apply either Corollary 4.2.7 or an interior point method to solve for the βi.

4.2.5 Maximum Likelihood Estimation in the β-Model

Suppose we view a tournament T with score vector s ∈ rintP n
Q, and wish to find the β-model

random tournament that maximises the probability of T . The probability of a tournament

T with score vector s = (s1, s2, · · · , sn) in the β-model is given by

∏
(i,j)∈T

pij =
∏

(i,j)∈T

eβi

eβi + eβj
=

∏n
i=1 e

siβi∏
1≤i<j≤n (eβi + eβj)

, (4.8)

where the last equality follows from the fact that the denominator is same for the probability

of the edge (i, j) and the probability of the edge (j, i). The log-likelihood equations are given

by

∂

∂βi
logP (T ) = si −

∑
j 6=i

eβi

eβi + eβj
,

which implies that the maximum likelihood estimator is the β-model that also maximises

the entropy in Theorem 4.2.4. We thus find that a β-model random tournament with fixed

integral expected scores maximises the likelihood of any tournament with expected score

vector s.

This is the context in which the β-model is usually presented in the literature. Assum-

ing the expected score vector has only integral values, the condition s ∈ rintP n
Q is equivalent

to this score vector being the score vector of a strong tournament, which, by Theorem 1.6.2,

is equivalent to the following condition (which implies a tournament is irreducible), seen in

[For57], [SY99],[Hun04] and other papers on the topic:

Condition 1. For every partition of the objects into two non-empty sets, an object in the

second set has dominated an object in the first at least once.

Thus, this is equivalent to the approach taken here when the underlying score vector of

the generalised tournament corresponding to the ‘history’ takes only integer values.

Note that these papers also show that the same condition can be applied for ranking in

multi-tournaments. The details in this case are quite similar.
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4.2.6 Conditional Distribution of a Tournament given a Score Vec-

tor

According to equation (4.8), the probability of a particular tournament T in the β-model,

conditioned on the fact that it has score vector s, is uniform. The following Theorem shows

that the reverse implication also holds. This is unsurprising, since, in Theorem 4.2.4 the βi
were derived by considering an entropy maximisation problem.

Theorem 4.2.9. Let T be an edge model random tournament on n vertices with independent

edges, such that each edge has a non-zero probability. Then T belongs to the β-model if and

only if for any score vector s = (s1, · · · , sn), the conditional distribution of a tournament

given that score vector is uniform.

Proof. Necessity follows immediately from equation (4.8). For sufficiency, first note that if

a tournament contains a directed triangle, reversing the edges of the triangle preserves the

score vector of the tournament. Since any two tournaments with the same score vector have

equal probability, it follows that the probability of any directed triangle occurring is the

same as the probability of the reverse triangle occurring.

Now, for any three distinct vertices vi, vj, vk ∈ V (T ) there obviously exists a tournament

containing a directed triangle with these three points. Thus, if for every pair of vertices vi, vj
we have

pij
1− pij

:= µij,

then for any vi, vj, vk ∈ V (T )

µijµjkµki = 1.

If we fix two vertices vi and vj, for p 6= i, j ∈ [n] we get∏
p 6=i,j

µijµjpµpi = µn−2
ij

∏
p6=i,j

µjpµpi = 1.

Also, since µijµji = 1, we have

µnij
∏
p6=j

µjp
∏
p 6=i

µpi = 1. (4.9)

Since the product ∏
p6=i

µip

only depends on i, if for every vertex vm in T we define

eβm := n

√∏
p 6=m

µmp, (4.10)

we have µij = eβi−βj , and this implies that the tournament belongs to the β-model.
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The expected score vector s of a β-model random tournament is such that s ∈ rintP n
Q.

What is the probability of a strong score vector in an edge model random tournament that

does not belong to the β-model?

Theorem 4.2.10. Let p be an edge model random tournament with expected score vector

r /∈ rintP n
Q. Then the probability of a tournament with a strong score vector z is 0.

Proof. Since r /∈ rintP n
Q, for some nonempty subset I ( [n] we have

∑
i∈I

ri =

(
|I|
2

)
. (4.11)

Let X be a tournament valued random variable drawn from p, with score vector s =

(s1(X), · · · sn(X)), and let f(X) be the value of the sum∑
i∈I

si(X).

On the one hand, by 4.11, E f(X) =
(|I|

2

)
. One the other hand, by the definition of expec-

tation,

E f(X) =
∑
K∈Tn

P (K)f(K). (4.12)

Since f(T ) >
(|I|

2

)
for any tournament T with strong score vector z, the only way (4.12) can

hold is if P (T ) = 0.

4.3 Tame Score Sequences

In this section we provide some conditions, which, if satisfied by a score vector s, implies the

existence of a generalised tournament p ∈ GTn(s) satisfying ‘nice’ properties. We will make

this more precise, but for now we begin with a condition on the score vector of a generalised

tournament so that the likelihood equations of Theorem 4.2.4 have a solution.

Proposition 4.3.1. Suppose s is a score vector such that for each si we have

α <
si

n− 1
< β,

with α and β such that

n

n− 1
≥ 2(β − α) (4.13)

Then s ∈ rintP n
Q, and in particular the likelihood equations of Theorem 4.2.4 have a solution.
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Proof. Note that by Proposition 3.3.10, after ordering and re-labelling the si if necessary, it

suffices to show that for each t ∈ [n] we have

t∑
i=1

si >

(
t

2

)
=
t(t− 1)

2
.

By counting in two ways, using
∑n

i=1 si =
(
n
2

)
, this will be true if

max

(
tα(n− 1),

n(n− 1)

2
− (n− t)β(n− 1)

)
≥ t(t− 1)

2
. (4.14)

Define a function f : R→ R by f(t) = n(n−1)
2
− (n− t)β(n− 1)− t(t−1)

2
. Note that, for fixed

n and β, f is a quadratic, with maximum value obtained at t = β(n− 1) + 1
2

and f(n) = 0.

It follows that f(t) ≥ 0 for 2β(n− 1) + 1− n ≤ t ≤ n.

Suppose then that tα(n − 1) < t(t−1)
2

, so 2α(n − 1) + 1 < t. Then equation (4.14) will

be satisfied if

2α(n− 1) + 1 ≥ 2β(n− 1) + 1− n =⇒ n ≥ 2(β − α)(n− 1)

which is exactly the condition of (4.13).

The following corollary is useful, because it provides a condition that that is independent

of n.

Corollary 4.3.2. A vector s belongs to rintP n
Q if for each si we have

α <
si

n− 1
< β,

with α and β such that β − α ≤ 1
2
.

Remark 4.3.3. Note that since si is a score-vector, we necessarily have 0 < α ≤ 1
2

and
1
2
≤ β < 1.

Proposition 4.3.1 gives criteria for the existence of a random tournament belonging to

the β-model, via Theorem 4.2.4. However, the probability of an edge pij may be very small,

depending on n, and approach 0 in the limit as n goes to infinity.

Definition 4.3.4. For a fixed δ > 0, a score vector s is called δ-tame if there exists a random

tournament belonging to the β-model with these expected scores, such that the probability

of any edge pij > δ.

Our final result for this chapter provides a condition for the score vector to be δ-tame.
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Proposition 4.3.5. Suppose δ is a constant with 0 < δ ≤ 1
2

and s ∈ P n
Q is a score vector

satisfying the condition that for each component si

α ≤ si
n− 1

≤ β, β − α ≤ 1

2
− δ. (4.15)

Then s is δ-tame.

Proof. First note that by Corollary 4.3.2, there exists a β-model random tournament p with

score vector s. Assume, by relabelling if necessary, that

s1 ≤ s2 ≤ · · · ≤ sn,

so that, by Proposition 4.2.8, the strength parameters of p are such that

β1 ≤ β2 ≤ · · · ≤ βn.

By invariance under translation by a constant we may assume that β1 = 0. Also, set b := βn.

Then, by (4.15)

sn − s1 ≤ (β − α)(n− 1) ≤
(

1

2
− δ
)

(n− 1).

Note that

sn − s1 =
n∑
j=1

(
eb−βj

1 + eb−βj
− e−βj

1 + e−βj

)
=

n∑
j=1

(
1

1 + eβj−b
− 1

1 + eβj

)
.

Define a function f : R→ R by

f(t) =

(
1

1 + et−b
− 1

1 + et

)
.

We look to minimise this function on the interval [0, b]. Noting the symmetry f(t) = f(b− t)
it is evident that this function is minimised on the boundary. Therefore

1

1 + e−b
− 1

2
≤ 1

2
− δ

which implies that b ≤ log 1−δ
δ

, so that in the random tournament p the probability of any

edge is bounded below by δ.
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Chapter 5

Asymptotic Enumeration

5.1 Introduction

5.1.1 Motivation

Suppose n cricket teams enter a round-robin competition and are ranked in a points table

based only on their number of wins. Assuming that the result of any game is either a win or

a loss, how many possible ways could the competition end with the same points table? In the

formalism of tournaments, this problem is that of finding the number of tournaments with

a given score vector and is a problem of considerable interest and difficulty. For example,

since the conditional distribution of a tournament given its score vector is uniform in the

β-model, this would provide a means of computing the probability of a tournament having

a given score vector with respect to a β-model random tournament. With regards to the

cricket analogy, this would allow one to predict the probability of a particular final points

table, based on the rankings of each team.

In this chapter, we consider the more tractable problem of enumerating the number of tour-

naments with a given score vector asymptotically. Our main result is an asymptotic formula

(Theorem 5.4.1) that can be applied to compute the number of tournaments with any δ-tame

score vector. In Section 5.6, we prove a number corollaries of this formula, including finding

the asymptotic numbers of regular tournaments. We then outline some possible future areas

of research in Section 5.7.

We assume familiarity with probability theory and some complex analysis, including complex

random variables.

5.1.2 Notation

Notation 5.1.1. Given a complex random variable X, we will denote by VX the pseu-

dovariance of X, so that

VX = E (X − EX)2 .

57
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5.1.3 Approach

The main approach to finding an asymptotic formula (Theorem 5.4.1) is as follows:

1. Note that the number of tournaments with a particular score vector is just the coeffi-

cient of the monomial xs11 · · ·xsnn in the generating function
∏

1≤j<k≤n(xj + xk).

2. Isolate this coefficient by applying Cauchy’s Theorem for n dimensional complex inte-

grals.

3. Observe that the integral inside a small box around the origin is the expectation of a

function of the form ef(x) with respect to a Gaussian measure (where f(x) is a function

well approximated by a polynomial). Apply methods of Isaev and McKay in [IM16] to

approximate this integral.(Subsection 5.5.1)

4. Show that the integral is negligible elsewhere, using a similar integral approximation,

and an averaging argument. (Subsection 5.5.2)

Dependencies

Steps 3 and 4 are dependent on the results related to weighted Laplacian tournament matrices

in Subsection 5.3.2. These steps are also highly dependent on the results from the paper by

Isaev and McKay [IM16], and we include the required results from this paper in Appendix A.

The results of Section 5.6 are, for the most part, dependent only on Theorem 5.4.1 and

Subsection 5.3.1.

5.2 Review of Literature

The first major results related to the asymptotic enumeration of tournaments with a given

score vector appear to have been obtained by Spencer in 1972 [Spe74].

Let r denote the score vector of a regular tournament, that is,

r =

{(
n−1

2
, · · · , n−1

2

)
, n odd,(

n−2
2
, · · · , n−2

2
, n

2
, · · · , n

2

)
, n even.

Also, recall that RTn denotes the set of regular tournaments on n vertices, that is, if m ∈ N

|RTn|=

{
|T(r)| , n = 2m+ 1,(
n
m

)
|T(r)| , n = 2m.

In ([Spe74], 1974) Spencer showed that as n goes to infinity(
|RTn|
2(n2)

) 1
n

=


√

2
nπ

(1 + o(1)) , n odd,

2
√

2
nπ

(1 + o(1)) , n even.
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Recall that T d (δ) is the set of all tournaments with excess vector δ = (δ1, .., δn). For

example, if n is odd, then T d (0) = T(r), with r as defined above. In the same paper,

Spencer obtained the estimate that

T d (δ) = |RTn|exp

(
− (2 + o(1))

∑n
i=1 δ

2
i

n

)
.

for tournaments where the maximum score is not too far from n
2
. In 1990, McKay obtained

a more precise estimate of |RTn|. In particular, he showed that for any ε > 0 and odd n

sufficiently large:

|RTn|=
(

1 +O
(
n−

1
2

+ε
))(2n+1

πn

)n−1
2

n
1
2 e−

1
2 . (5.1)

McKay and Wang, in 1993, extended these results to obtain a formula which approximates

T d (δ) when each δi = O
(
n

3
4

+ε
)

for sufficiently small ε > 0. A Corollary of their result

showed that when each δi = o
(
n

3
4

)
,

∣∣T d(δ)
∣∣ =

(
2n+1

πn

)n−1
2

n
1
2 exp

−1

2
−
∑n

i=1 d
2
i

2n
+

1

n2

n∑
i=1

δ2
j −

1

12n3

n∑
i=1

δ4
i −

1

4n4

(
n∑
i=1

δ2
i

)

− 1

30n5

n∑
i=1

δ6
i −

1

6n6

(
n∑
i=1

δ3
i

)2

− 1

2n7

(
n∑
i=1

δ2
i

)3

+O

(
δ4

max

n3
+ n

1
4

+ε

) ,

(5.2)

for sufficiently small ε > 0. Note that by Theorem 2.4.7, almost all tournaments satisfy

this property. Similar techniques were applied by Gao, McKay and Wang [GMW00] in their

enumeration of tournaments containing a specified digraph (Theorem 2.4.5).

In what follows, we will use w to represent the vector (1, 1, · · · , 1) ∈ Rn. We will abuse

notation slightly, so that w denotes the vector of ones in dimensions smaller than n as well

(the dimension will be clear from the context).

5.3 Some Useful Results About Some Matrices

In this section we derive some identities involving special types of matrices that will be useful

later on.

5.3.1 Perturbed Identity Matrices

The first type of matrix we will consider, for convenience we will give a name:

Definition 5.3.1. An (a, b)−perturbed identity matrix is a matrix of the form

aI + bwwT .
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Lemma 5.3.2. For all a ∈ R− {0}, b 6= − a
n
∈ R, every (a, b)−perturbed identity matrix is

invertible, and moreover has an inverse given by

1

a
I − b

a2 + abn
wwT .

Proof. We have(
aI + bwwT

)(1

a
I − b

a2 + abn
wwT

)
= I +

b

a
wwT − ab

a2 + abn
wwT − b2n

a2 + abn
wwT

= I +

(
ab+ b2n

a2 + abn
− ab

a2 + abn
− b2n

a2 + abn

)
wwT

= I.

Lemma 5.3.3. The eigenvalues of an (a, b)-perturbed identity matrix are given by a, which

has multiplicity n− 1 and nb+ a.

Proof. It is clear that w is an eigenvector with eigenvalue a+nb, and any vector orthogonal

to w is an eigenvector with eigenvalue a.

Corollary 5.3.4. The determinant of an (a, b)-perturbed identity matrix is

an−1 (nb+ a) .

Proof. This follows from the fact that the determinant is the product of the eigenvalues.

5.3.2 Weighted Laplacian Tournament Matrices

The next type of matrix we will find useful later on, we will call weighted Laplacian tourna-

ment matrices .

Let W be an n × n symmetric matrix with components wij such that there exist c1, c2 > 0

with {
c1 ≤ wjk ≤ c2, j 6= k;

wjk = 0, j = k.
(5.3)

Definition 5.3.5. We define the W -Weighted Laplacian Tournament Matrix as the n× n
matrix PW such that

PW
jk =

{
−wjk, j 6= k;∑n

l=1 wjl, j = k.
(5.4)

Note that as an immediate consequence of the definition of W we have that

c1(n− 1) ≤ PW
jj ≤ c2n, 1 ≤ j ≤ n. (5.5)

For the remainder of this subsection we denote by κ a fixed constant greater that 0.
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Lemma 5.3.6. The matrix PW + κwwT has n − 1 eigenvalues ηi (counting multiplicity)

such that

c1n ≤ ηi ≤ c2n, (5.6)

and one eigenvalue equal to nκ. In particular, if c3 = min(c1, κ), then all of the eigenvalues

of this matrix are bounded below by c3n.

Proof. Note that PW and wwT are symmetric matrices, thus have real eigenvalues. Now,

for v ∈ Rn we have
c1

∑
j <k

(vj − vk)2 ≤ vTPWv

=
∑
j<k

wjk(vj − vk)2

≤ c2

∑
j<k

(vj − vk)2.

If S is the symmetric matrix corresponding to the quadratic form

vTSv =
∑
j<k

(vj − vk)2,

a routine calculation shows that all eigenvalues of S are n, except for one zero eigenvalue

corresponding to the eigenvector w. It follows that the eigenvalues of PW are all bounded

below by c1n and above by c2n, except for the 0 eigenvalue corresponding to w. If y is an

eigenvector of PW corresponding to an eigenvalue k > 0, then since y is orthogonal to w,

we have (
PW + κwwT

)
y = ky ≥ c1ny,

and similarly (
PW + κwwT

)
y = ky ≤ c2ny.

Otherwise, if y is the eigenvector of PW in the direction of w, then(
PW + κwwT

)
y = κny.

The result follows.

Corollary 5.3.7. We have cn−1
1 κnn ≤ det(PW + κwwT ) ≤ cn−1

2 κnn.

Lemma 5.3.8. Let W1 be the matrix obtained from W by deleting the first row and the first

column. Then there is a constant c > 0 depending only on c1 and c2 such that

det
(
PW1 + κwwT

)
≥

det
(
PW + κwwT

)
cn

. (5.7)
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Proof. If PW
n−1 +κwwT is the matrix obtained by deleting the first row and the first column

of PW + κwwT , note that this matrix coincides with PW1 + κwwT , with the exception of

the diagonal entries. Define the n× n matrix X by

Xjk =


−w1j +

(κ−w1j)
2

PW11 +κ
, For j = k 6= 1,

(κ−w1j)(κ−w1k)

PW11 +κ
For j, k 6= 1, j 6= k,

0, Otherwise.

Then, after performing Gaussian elimination on the matrix PW +κwwT to form a pivot

in the first column, we find that

det
(
PW + κwwT +X

)
=
(
1 + PW

11

)
det
(
PW1 + κwwT

)
. (5.8)

By equation (5.5), we have that

‖X‖2≤ ‖X‖1≤ c4, (5.9)

for some c4 > 0 depending only on c1 and c2. Moreover, by Lemma 5.3.6, we find that∥∥∥X (PW + κwwT
)−1
∥∥∥

2
≤ ‖X‖2

∥∥∥(PW + κwwT
)−1
∥∥∥

2
≤ c4

c3n
. (5.10)

Therefore,

det
(
I +X

(
PW + κwwT

)−1
)
≥
(

1− c4

c3n

)n
. (5.11)

By combining equations (5.5), (5.8) and (5.11), we obtain (5.7).

Corollary 5.3.9. Let Wr be the matrix obtained from W by deleting some r rows and the

corresponding r columns. Then, for r ≤ n − 1 there is a constant c > 0 depending only on

c1 and c2 such that

det
(
PWr + κwwT

)
≥

det
(
PW + κwwT

)
(cn)r

. (5.12)

Proof. The result follows by applying Lemma 5.3.8 r times.

5.4 The Main Theorem

In this chapter we apply the methods of Isaev and McKay in [IM16] to derive an asymptotic

formula for the number of tournaments with a given score vector if the score vector is δ-tame.

Let s be a δ-tame score vector, for δ > 0. Then, by equations (4.1) and (4.4) there ex-

ist βj satisfying ∑
k 6=j

eβj

eβj + eβk
= sj, 1 ≤ j ≤ n. (5.13)
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Suppose we approximate each βj by β̃j so that so that, if for 1 ≤ j < k ≤ n we set

λjk =
eβj

eβj + eβk
(5.14)

and

λ̃jk =
eβ̃j

eβ̃j + eβ̃k
(5.15)

then

sup
j,k

∣∣∣λ̃jk − λjk∣∣∣ = O
(
n−2
)
. (5.16)

Moreover, let

P̃ (T ) =
eβ̃1s1+···+β̃nsn∏

1≤j<k≤n

(
eβ̃j + eβ̃k

) (5.17)

approximate the probability of a tournament T with score vector s in the β-model.

Also, let

f(θ) =
∑
j<k

−1

6
iλ̃jk(1− λ̃jk)(1− 2λ̃jk)(θj − θk)3 +

1

24
λ̃jk(1− λ̃jk)

(
1− 6λ̃jk + 6λ̃2

jk

)
(θj − θk)4,

A be the n× n symmetric matrix such that

θTAθ =
1

2

∑
j<k

λ̃jk(1− λ̃jk)(θj − θk)2, (5.18)

and x be a random variable with density

π−
n
2 det

(
A+ κwwT

) 1
2 e−x

T (A+wwT )x, (5.19)

with κ ≥ 1
2
δ(1− δ) a constant. Our main result this section is then the following theorem:

Theorem 5.4.1. For n→∞, if s is a δ-tame score vector then

|T(s)|=
(

1 +O
(
n−

1
2

+9ε
)) √κ det

(
A+ κwwT

)− 1
2

(2
√
π)

n−1
P̃ (T )

eE(f(x)− 1
2

(=f(x))2), (5.20)

for any ε > 0, where P̃ (T ) is as given by (5.17).

The method we use is to estimate the number of tournaments with a given score vector by

a contour integral over the complex plane. We note that the integral simplifies to computing

the expectation of a quartic polynomial with respect to a Gaussian measure, and can be

estimated asymptotically using the methods of Isaev and McKay [IM16].
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5.5 The Contour Integral

Let T be a tournament on n vertices with a δ-tame score vector (s1, · · · , sn). Note that the

number of tournaments with this score vector is given by the coefficient of xs11 x
s2
2 · · ·xsnn in

the generating function ∏
1≤j<k≤n

(xj + xk).

This follows from the fact that if vj and vk are two vertices such that vj dominates vk, then

the score of vj increases by 1 whilst the score of vk remains the same.

Now, by applying Cauchy’s theorem for n dimensional complex integrals ([Kni96], Theo-

rem 3.1), we see that the value of this coefficient is given by

1

(2πi)n

∮
· · ·
∮ ∏

1≤j<k≤n(xj + xk)

xs1+1
1 · · ·xsn+1

n

dx1dx2 · · · dxn.

Since the pole is at the origin, we choose circular contours centred at the origin. By making

the substitution

xj = eβ̃j+iθj (5.21)

for each 1 ≤ j ≤ n, we have

dxj
dθj

= ieβ̃j+iθj ,

so that the integral reduces to

1

(2π)n

∫ π

−π
· · ·
∫ π

−π

∏
1≤j<k≤n(eβ̃j+iθj + eβ̃k+iθk)

eβ̃1s1+···+β̃nsnei(s1θ1+···+snθn)
dθ1 · · · dθn

=

∏
1≤j<k≤n(eβ̃j + eβ̃k)

(2π)neβ̃1s1+···+β̃nsn

∫ π

−π
· · ·
∫ π

−π
F (θ)dθ

=
1

(2π)n P̃ (T )

∫ π

−π
· · ·
∫ π

−π
F (θ)dθ,

(5.22)

where

F (θ) =
∏

1≤j<k≤n

(
eβ̃j+iθj + eβ̃k+iθk

eβ̃j + eβ̃k

)
/ei(s1θ1+···+snθn). (5.23)

Let ρ > 0 and let

Un(ρ) := {x ∈ Rn : |xj| ≤ ρ for 1 ≤ j ≤ n}

denote the n dimensional cube with side length 2ρ. Then, we are left with estimating the

integral ∫
Un(π)

F (θ)dθ. (5.24)

The remainder of this section will deal with solving this problem.
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5.5.1 The Main Contribution of the Integral

The first thing to note when evaluating equation (5.24) is that, since s is a score vector, for

any constant k we have

n∑
i=1

iksi = ik

(
n

2

)
,

which implies the symmetry

F (θ) = F (θ + kw). (5.25)

Moreover, F (θ) is invariant upon adding 2π to any variable, so depends only on the

value of each variable modulo 2π. This motivates the definition of the pseudometric |.|π:

R→ [0,∞) such that

|x|π= min
K∈Z
|x+ 2πK|. (5.26)

For ε > 0, let Ω be the set{
θ ∈ Rn : |θj − θn|π≤ n−

1
2

+ε 1 ≤ j ≤ n
}
.

As we will show in the next subsection, the dominant part of the integral comes from Ω, so

that

∫
Un(π)

F (θ)dθ =
(

1 +O
(
e−b

′n2ε
))∫

Ω

F (θ)dθ, (5.27)

for b′ > 0 a constant.

Let Q and W be matrices such that for y ∈ Rn

Qy = y − ynw

and

Wy =

√
κ

n
(y1 + · · ·+ yn)w,

with κ ≥ δ(1−δ)
2

. Note that by equation (5.25) we have F (Qθ) = F (θ), so that∫
Ω

F (θ)dθ =

∫
Ω

F (Qθ)dθ.

Now, the integral on the right does not depend on θn, which can range over 2π values in Ω.

We therefore have ∫
Ω

F (θ)dθ = 2π

∫
Ω∩Q(Rn)

F (x)dx.
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Noting that det
(
QTQ+W TW

)
= κn2, we apply Lemma 4.6 of [IM16] (Lemma A.0.4)

with ρ =
√
κnε to find that

(5.28)2π

∫
Ω∩Q(Rn)

F (x)dx =
(

1 +O(e−c
′n2ε

)
)

2
√
πκn

∫
Ωρ

F (θ)e−θ
TWTWθdθ,

for some c′ > 0, where Ωp is such that

Ωp = {x ∈ Rn : Qx ∈ Ω and Wx ∈ Un(ρ)}. (5.29)

Lemma 5.5.1. The set Ωρ is between two boxes of side length O
(
n−

1
2

+ε
)

, in particular

Un

(
1

2
n−

1
2

+ε

)
⊆ Ωρ ⊆ Un

(
3n−

1
2

+ε
)
.

Proof. For the first inclusion, note that if x ∈ Un
(

1
2
n−

1
2

+ε
)

, then

sup
j<k∈[n]

|xj − xk| ≤ n−
1
2

+ε,

so that Qx ∈ Ω and Wx ∈ Un(ρ).

For the second inclusion, if x ∈ Ωρ, then x satisfies

sup
j<k∈[n]

|xj − xk| ≤ 2n−
1
2

+ε. (5.30)

Suppose the x /∈ Un
(

3n−
1
2

+ε
)

. Then for some j ∈ [n] either xj > 3n−
1
2

+ε or xj < −3n−
1
2

+ε.

Assume that for some xj > 3n−
1
2

+ε. Then (5.30) implies that for all k 6= j xk > n−
1
2

+ε, which

implies that Wx /∈ Un(ρ). The case where xj < −3n−
1
2

+ε is similar.

Now, by (5.15), we have

(5.31)

F (θ)ei(s1θ1+···+snθn) =
∏
j<k

(
λ̃jke

iθj + (1− λ̃jk)eiθk
)

=
∏
j<k

eiθk
∏
j<k

(
1 + λ̃jk

(
ei(θj−θk) − 1

))
.

By Taylor’s Theorem, for θ ∈ Ωρ

log
(

1 + λ̃jk
(
ei(θj−θk) − 1

))
= iλ̃jk(θj − θk)−

1

2
λ̃jk(1− λ̃jk)(θj − θk)2

− 1

6
iλ̃jk(1− λ̃jk)(1− 2λ̃jk)(θj − θk)3

+
1

24
λ̃jk(1− λ̃jk)

(
1− 6λ̃jk + 6λ̃2

jk

)
(θj − θk)4

+O
(
n−

5
2

+5ε
)

1 ≤ j < k ≤ n.
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Thus

F (θ)ei(s1θ1+···+snθn) = exp

(∑
j<k

(
λ̃jkθj + (1− λ̃jk)θk

)
− θTAθ + f(θ) +O

(
n−

1
2

+5ε
))
(5.32)

where

f(θ) =
∑
j<k

−1

6
iλ̃jk(1− λ̃jk)(1− 2λ̃jk)(θj − θk)3 +

1

24
λ̃jk(1− λ̃jk)

(
1− 6λ̃jk + 6λ̃2

jk

)
(θj − θk)4,

and A is the n× n symmetric matrix such that

θTAθ =
1

2

∑
j<k

λ̃jk(1− λ̃jk)(θj − θk)2. (5.33)

Now, by (5.13) and (5.16)

(5.34)

exp

(
i
∑
j<k

(
λ̃jkθj + (1− λ̃jk)θk

))
= exp

(
i
∑
j<k

(
λ̃jkθj + λ̃kjθk

))

= exp

(
i

n∑
j=1

(∑
k 6=j

λ̃jk

)
θj

)
=
(

1 +O
(
n−

1
2

+ε
))

ei(s1θ1+···+snθn);

so that ∫
Ωρ

F (θ)e−θ
TWTWθdθ

=
(

1 +O
(
n−

1
2

+ε
))∫

Ωρ

exp
(
−θT (A+ κwwT )θ + f(θ) +O

(
n−

1
2

+5ε
))
dθ.

The following sequence of Lemmas allow us to apply the main results of [IM16] to ap-

proximate this integral.

Note that A is a Λ-Weighted Laplacian Tournament matrix, with Λ such that

Λjk =
1

2
λ̃jk(1− λ̃jk) (5.35)

since by the condition of δ-tameness, for n sufficiently large,

1

2
δ(1− δ) ≤ λ̃jk ≤

1

8
. (5.36)

Lemma 5.5.2. Suppose D is the diagonal matrix with the same diagonal as A. Then for

some constant a1 we have ∥∥∥(A+ κwwT
)−1 −D−1

∥∥∥
max
≤ a1n

−2.

Moreover, there exists a matrix T with T T
(
A+ κwwT

)
T = I and some constants a2 and

a3 such that ‖T‖1, ‖T‖∞ ≤ a2n
− 1

2 and ‖T−1‖∞ ≤ a3n
1
2 .
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Proof. By equation (5.36), we have ‖A − D‖max≤ 1
8
. Also, by Lemma 5.3.6, since κ ≥

1
2
δ(1− δ), for x ∈ Rn we have

xT
(
A+ κwwT

)
x ≥ 1

2
δ(1− δ)nxTx.

Noting that

maxDjj ≤
1

8
(n− 1) and minDjj ≥

1

2
δ(1− δ)(n− 1),

we apply Lemma 4.9 of [IM16] (Lemma A.0.5) with r = n
4δ(1−δ)(n−1)

and γ = 4δ(1 − δ) n
n−1

to finish the proof (Note that the condition γ ≤ 1 in Lemma 4.9 is not needed).

Let g(θ) = <f(θ), and set ρ1, ρ2 = O(nε).

Now, for θ ∈ Ωp, we have

1. |fj(θ)|= O(n2ε)

2. ‖H(f, T (Un(ρ1)))‖∞= O(n
1
2

+ε)

3. |gj(θ)|= O(n−
1
2

+3ε)

4. ‖H(g, T (Un(ρ2)))‖∞= O(n2ε).

Let x be a random variable with density

π−
n
2 det

(
A+ κwwT

) 1
2 e−x

T (A+κwwT )x. (5.37)

Then by applying Theorem 4.4 (Theorem A.0.2) and Remark 4.5 (Remark A.0.3) of [IM16]

with φ1 = O(n−
1
6

+3ε), φ2 = O(n−
2
3

+4ε) and h(x) = O
(
n−

5
2

+5ε
)

, we get

(5.38)

∫
Ωρ

exp
(
−xT (A+ κwwT )x+ f(x) +O

(
n−

5
2

+5ε
))
dx

= (1 +K)π
n
2 det

(
A+ κwwT

)− 1
2 eE f(x)+ 1

2
Vf(x),

where |K| ≤ Ce
1
2

Var=f(x)

(
e
O
(
n−

1
2+9ε

)
− 1

)
.

Lemma 5.5.3. We have

E f(x) = E<f(x) = O(1) (5.39)

and

(5.40 )
Vf(x) = Var<f(x)− Var=f(x)

= Var<f(x)− E (=f(x))2

= O (1) .
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Proof. Let x = (X1, · · · , Xn) be the random variable defined by equation (5.37). If we denote

the entries of the covariance matrix
(
2
(
A+ κwwT

))−1
by σjk, Lemma 5.5.2 implies that,

σjj = O (n−1) and σjk = O (n−2) for all j 6= k. By applying Theorem 4.2 of [IM16] (Theorem

A.0.1), the expected value of any odd monomial is 0, and for p, q ∈ N and j 6= k, j′ 6= k′, we

find that

E (Xj −Xk)
2p = O

(
n−p
)

;

Cov
(
(Xj −Xk)

2p+1 , (Xj′ −Xk′)
2q+1) =

{
O (n−p−q−1) , if {j, k} ∩ {j′, k′} 6= ∅,
O (n−p−q−2) , otherwise;

Cov
(
(Xj −Xk)

2p , (Xj′ −Xk′)
2q) =

{
O (n−p−q) , if {j, k} ∩ {j′, k′} 6= ∅,
O (n−p−q−2) , otherwise.

Equations (5.39) and (5.40) then follow from the above, using the useful identity

Var

(∑
j

Rj

)
=
∑
j,k

Cov (Rj, Rk)

to show

Var<f(x) = O
(
n−1
)

and

Var=f(x) = E (=f(x))2 = O(1)

(since E=f(x) = 0).

Putting all this together we get

(5.41)

∫
Ωρ

exp
(
−xT (A+ κwwT )x+ f(x) +O

(
n−

5
2

+5ε
))
dx

=
(

1 +O
(
n−

1
2

+9ε
))

π
n
2 det

(
A+ κwwT

)− 1
2 eE(f(x)− 1

2
(=f(x))2).

By combining (5.41), (5.28) and (5.22) we get the main result of the chapter ((5.20)). The

only gap left to fill is to prove Proposition 5.5.4, which shows that the rest of the integral is

negligible.

5.5.2 The Negligible Part of the Integral

In this sub-section we will prove the following Proposition:

Proposition 5.5.4. For ε > 0, and b′ > 0 dependent only on δ,∫
Un(π)

F (θ)dθ =
(

1 +O
(
e−b

′n2ε
))∫

Ω

F (θ)dθ. (5.42)
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Proof. Note that∣∣∣∣∫
Un(π)

F (θ)dθ −
∫

Ω

F (θ)dθ

∣∣∣∣ =

∣∣∣∣∫
Un(π)−Ω

F (θ)dθ

∣∣∣∣ ≤ ∫
Un(π)−Ω

|F (θ)| dθ.

We will show that the right side of this equation is small compared to the dominant term of

(5.38). By applying Corollary 5.3.7, we see that this dominant term satisfies

π
n
2 det

(
A+ κwwT

)− 1
2 ≥ κ−12π

n
2 8

n−1
2 n−

n
2 . (5.43)

We start by observing that

|F (θ)| =
∏
j<k

∣∣∣1 + λ̃jk
(
ei(θj−θk) − 1

)∣∣∣ .
Lemma 5.5.5. For all 0 ≤ λ ≤ 1 and x ∈ R∣∣1 + λ

(
eix − 1

)∣∣ =
√

1− 2λ (1− λ) (1− cosx)

≤ exp

(
−1

2
λ (1− λ)x2 +

1

24
λ (1− λ)x4

)
.

Proof. This follows from comparing the functions using Taylor’s Theorem.

For θ = (θ1, · · · , θn) ∈ Un (π) suppose that there are m pairs θj, θk, i < j, such that

|θj − θk|π >
1

2
n−

1
2

+ε. (5.44)

Then, if B is the set of all such (unordered) pairs

(5.45)

|F (θ)| =
∏
j<k

√
1− 2λ̃jk

(
1− λ̃jk

)
(1− cos (θj − θk))

≤
∏

(j,k)∈B

√
1− 2λ̃jk

(
1− λ̃jk

)(
1− cos

(
1

2
n−

1
2

+ε

))
≤ exp

(
−δ (1− δ) 11

96
mn−1+2ε

)
.

Suppose m ≤ n2−ε. Then, by an averaging argument, there exists some θs such that the

number of θj, j 6= s with

|θs − θj|π >
1

2
n−

1
2

+ε

is at most n1−ε.

It then follows that the set Un (π)− Ω is covered by the set

M :=
{
θ ∈ Un (π) : the number of pairs satisfying (5.44) is more than n2−ε} ,
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together with the collection of sets

Θr :=

{
θ ∈ Un (π) : ∃ θs such that

|θs − θj| > n−
1
2

+ε, for exactly r values of j,

|θs − θj| ≤ 1
2
n−

1
2

+ε, otherwise.

}
,

with 1 ≤ r ≤ n1−ε.

By (5.45), we have∫
M

|F (θ)| dθ ≤ (2π)n exp

(
−δ (1− δ) 11

96
n1+ε

)
= exp

(
−bn1+ε

)
. (5.46)

for some b > 0. For n large, this is negligible compared to the dominant term in (5.43).

Now if θ = (θ1, · · · , θn) ∈ Ωr, and I is a subset of [n] such that |I|= r, r ≤ n1−ε define

GI (θ) such that

GI (θ) =
∏
j<k,

j,k∈[n]−I

exp

(
−1

2
λ̃jk (θj − θk)2 +

1

24
λ̃jk (θj − θk)4

)
.

We then have that, by (5.45)

(5.47)

∫
Θr

|F (θ)| dθ ≤ (2π)re−grn
2ε
∑
I⊂[n]

∫
Un−r

(
1
2
n−

1
2+ε

)GI(θ),

where g > 0 depends only on δ. For each I, define the matrix AI such that

θTAIθ =
∑
j<k,

j,k∈[n]−I

−1

2
λ̃jk

(
1− λ̃jk

)
(θj − θk)2 .

Now, by a very similar approach to the evaluation of the integral in the previous subsection

(see (5.38)), we find that∫
Un−r

(
1
2
n−

1
2+ε

)GI(θ) = O (1)π
n−r
2 det

(
AI + κwwT

)− 1
2 , r ≤ n1−ε.

Observe that each AI is a matrix obtained from the Λ-Weighted Laplacian Tournament

matrix A by deleting some r rows and the corresponding r columns. Applying Corollary

5.3.9, we find that∫
Un−r

(
1
2
n−

1
2+ε

)GI(θ) = O (1)π−
r
2 (cn)−

r
2 π

n
2 det

(
A+ κwwT

)− 1
2 ,

where c depends only on δ. Substituting this in equation (5.47), we find
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Θr

|F (θ)| dθ = O (1) (2π)re−gn
2ε

(
n

r

)
π−

r
2 (cn)−

r
2 π

n
2 det

(
A+ κwwT

)− 1
2

= O (1)
(

2πe−gn
2ε

nπ−
1
2 (cn)−

1
2

)r
π
n
2 det

(
A+ κwwT

)− 1
2 ;

whence we have, for n large enough,

(5.48)
n1−ε∑
r =1

∫
Θr

|F (θ)| dθ = O
(
e−g

′n2ε
)
π
n
2 det

(
A+ κwwT

)− 1
2 ,

where g′ > 0 is a constant, dependent only on δ. By adding (5.46) and (5.48), we get (5.42),

and this completes the proof.

5.6 Some Basic Corollaries

In this section we prove some basic Corollaries of Theorem 5.4.1.

5.6.1 Growth rate of |T(s)|
Our first Corollary gives a rough indication of the growth rate of |T (s)|.

Corollary 5.6.1. For any δ-tame score vector s there exists a constant C, such that

C

(
2

π

)n−1
2
(

1

1− δ

)(n2)
n−

n
2 ≤ |T(s)|≤ C

(
2n−1

πδ(1− δ)

)n−1
2

n−
n
2 . (5.49)

Proof. By (5.36) and Corollary (5.36), if we set κ = 1, we have

2
3n−3

2 n−
n
2 ≤ det

(
A+ κwwT

)− 1
2 ≤

(
1

2
δ(1− δ)

) 1−n
2

n−
n
2 . (5.50)

Moreover, since by Theorem 4.2.4 the β-model is the probability distribution that maximises

P (T ), we have, in particular, that P (T ) is larger than the probability of a tournament with

score vector s coming from a uniform random tournament. Thus

P (T ) ≥ 1

2(n2)
.

Moreover, by δ-tameness,

P (T ) ≤ (1− δ)(
n
2) .

Therefore (
1

1− δ

)(n2)
≤ 1

P (T )
≤ 2(n2). (5.51)

Applying Theorem 5.4.1, if we set C to be the O(1) terms in (5.20), the result then follows

from (5.50) and (5.51).
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5.6.2 Odd Regular Tournaments

Another easy application is to use the formula (5.20) to compute the number of regular

tournaments on n vertices, when n is odd. By Corollary 5.6.1, we need only compute the

O(1) term in (5.20).

Note that if n is odd, the score vector for a regular tournament is the expected score vector of

a uniform random tournament, which in turn corresponds to a β-model random tournament

in which all the values βi are equal. Since each λjk = 1
2
, we find

f(θ) = − 1

192

∑
j<k

(θj − θk)4 .

In applying formula (5.20), we find that a good choice of κ is 1
8

so that A + κwwT is a

diagonal matrix with each diagonal entry equal to 1
8
n. Thus, the random variable defined

by 5.37 has covariance matrix given by(
2
(
A+ κwwT

))−1
= 4n−1In,

where I is the identity matrix. In this case, the fact that the random variables are uncorre-

lated (and hence independent) makes the expectation in formula (5.20) easy to compute. In

particular, if the terms of the covariance matrix are σij, we have

E (Xj −Xk)
4 = 3

(
σ2
jj + σ2

kk

)
+ 6σjjσkk = 192n−2,

so that

E f(x) = −n− 1

2n
.

Therefore, we have the following Corollary:

Corollary 5.6.2. For odd n→∞, the number of regular tournaments is

(
1 +O

(
n−

1
2

+9ε
))(2n+1

πn

)n−1
2

n
1
2 e−

1
2 ,

for any ε > 0.

This is equivalent to McKay’s result (5.1).

5.6.3 Even Regular Tournaments

Another interesting application of formula (5.20) is to compute the number of regular tour-

naments on n vertices when n is even. This is a special case of (5.2). Recall that an almost

regular tournament, for n even, is a tournament with the score vector(
n− 2

2
,
n− 2

2
, · · · , n− 2

2
,
n

2
, · · · , n

2
,
n

2

)
.
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Let U =
[
n
2

]
and V = [n] −

[
n
2

]
. Then, this score vector is the expected score vector of

an edge model random tournament where the probabilities (denoted by λjk) that a vertex j

dominates vertex k are given by

λjk =


1
2
− 1

n
, if j ∈ U, k ∈ V,

1
2

+ 1
n
, if j ∈ V, k ∈ U,

1
2
, otherwise,

so that

f (θ) =
∑

j∈U, k∈V

− 1

3n

(
1

4
− 1

n2

)
i (θj − θk)3 − 1

24

(
1

2
− 6

n2

)(
1

4
− 1

n2

)
(θj − θk)4

− 1

192

( ∑
j<k∈U

(θj − θk)4 +
∑
j<k∈V

(θj − θk)4

)
.

By choosing κ = 1
2

(
1
4
− 1

n2

)
, the result is that A+ κwwT is a block diagonal matrix:

A+ κwwT =

[
C 0

0 C

]
with

Cij =

{
n
8
− 1

4n
− 1

2n2 , if i = j,

− 1
2n2 , otherwise.

Noting that 2C is a
(
n
4
− 1

2n
,− 1

n2

)
-perturbed identity matrix, by Lemma 5.3.2, the matrix

2C has an inverse given by

(2C)−1
ij =

{(
n
4
− 1

2n

)−1
+ 16

(n2−6)(n2−2)
, if i = j,

16
(n2−6)(n2−2)

, otherwise,

so that the random variable defined by (5.37) has covariance matrix[
(2C)−1 0

0 (2C)−1

]
.

We see from (5.6.3) and Lemma 5.5.3, that

E f (x) = E

(
− 1

192

∑
j<k

(Xj −Xk)
4

)
+O

(
n−2
)

and

E (=f(x))2 = O
(
n−1
)
.
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Moreover, since the main contributing factors from the covariance matrix in computing this

expectation are the O (n−1) terms, we find that

E
(
f (x)− 1

2
(=f(x))2

)
= −n− 1

2n
.

Moreover, since A + κwwT is a block matrix, its eigenvalues are two copies of those of C

(including multiplicity). By Corollary 5.3.4,

det
(
A+ κwwT

)
=

(
n

8
− 1

4n

)n−2(
n

8
+

1

4n

)2

,

so that

det
(
A+ κwwT

)− 1
2 =

(
1 +O

(
n−2
))

2
3n
2 n−

n
2 .

Finally, for the term P (T ), we need only consider the probability of a particular tournament

with score vector s. By counting edges in such a tournament, we get

P (T ) = 2−
n
4 (n2−1)

(
1

2
− 1

n

)n
4 (n2−1)

2−
n
4 (n2−1)

(
1

2
+

1

n

)n
4 (n2 +1)

= 2−(n2)
(

1− 4

n2

)n2

8
(

1 +
2

n

)n
2 (

1 +O
(
n−1
))

= 2−(n2)e
1
2

(
1 +O

(
n−1
))
.

We then get
1

P (T )
= 2(n2)e−

1
2

(
1−O

(
n−1
))
.

This gives us our next corollary:

Corollary 5.6.3. For even n→∞, the number of regular tournaments is

(
1 +O

(
n−

1
2

+9ε
))(2

n+1
2

πn

)n−1
2

n
1
2 e−1,

for any ε > 0.

Remark 5.6.4. Note that a similar approach to that outlined in this section may be applied

to find the number of tournaments with exactly 2 scores s1 and s2, at least up to a constant

term. The difficulty lies in approximating the covariance and expectation in (5.20).

5.7 Future Direction

5.7.1 Finding the Number of Tournaments with a Given Score

Vector

Suppose one were to observe a tournament with n players with δ-tame score vector s. How

many other ways could the tournament result in score vector s?
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If we can find explicit bounds for the constant terms in formula (5.20), this formula provides

an approach for approximating this question. Such a method would proceed as follows:

1. Use an optimisation algorithm to find the λ̃jk (by maximising (4.5)).

2. Compute A+ κwwT , for a suitable choice of κ, and use this to find the determinant,

the expectation and covariance terms in (5.20)

3. Find a tournament with score vector s, and use this to compute the term P̃ (T ) using

the λ̃jk.

Alternatively, the bounds in Corollary 5.6.1 provide a rough approximation that can be

computed much more quickly. This simply requires computing the value of δ, and applying

equation (5.49).

This result would allow one to compute the probability that a tournament has score vector

s, with respect to a β-model random tournament.

5.7.2 Finding the Number of Tournaments with a Specified Ori-

ented Graph

A similar approach outlined in this section would allow the enumeration of tournaments with

a δ-tame score vector s containing a fixed oriented graph H. The main difference would be

in changing λ̃jk so that

λ̃jk =


1, (j, k) ∈ H,
0, (k, j) ∈ H,

eβ̃j

eβ̃j+eβ̃k
, otherwise.

This change increases the complexity of many parts of this section, in particular, there may

be difficulty in bounding the negligible contribution of the integral. If such an enumeration

result can be found, then this would allow one to find the probability that a tournament with

score vector s contains an oriented graph H, with respect to a β-model random tournament.
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Results Needed for Chapter 5

For completeness, we reproduce the results from [IM16] required for Chapter 5 below.

Theorem A.0.1 (Theorem 4.2 [IM16], due to Isserlis [Iss18]). Let A be a positive-definite real

symmetric matrix of order n and let X = (X1, . . . , Xn) be a random variable with the normal

density π−n/2|A|−1/2e−x
TAx. Let Σ = (σjk) = (2A)−1 be the corresponding covariance matrix.

Consider a product Z = Xj1Xj2 · · ·Xjk , where the subscripts do not need to be distinct. If k

is odd, then EZ = 0. If k is even, then

EZ =
∑

(i1,i2),(i2,i3),...,(ik−1,ik)

σji1ji2 · · ·σjik−1
jik
,

where the sum is over all unordered partitions of {1, 2, . . . , k} into k/2 disjoint unordered

pairs. The number of terms in the sum is (k − 1)(k − 3) · · · 3 · 1.

Theorem A.0.2 (Theorem 4.4 [IM16]). Let c1, c2, c3, ε, ρ1, ρ2, φ1, φ2 be nonnegative real con-

stants with c1, ε > 0. Let A be an n× n positive-definite symmetric real matrix and let T be

a real matrix such that TTAT = I. Let Ω be a measurable set such that Un(ρ1) ⊆ T−1(Ω) ⊆
Un(ρ2), and let f : Rn → C, g : Rn → R and h : Ω → C be measurable functions. We make

the following assumptions.

(a) c1(log n)1/2+ε ≤ ρ1 ≤ ρ2.

(b) For x ∈ T (Un(ρ1)), 2ρ1 ‖T‖1 |fj(x)| ≤ φ1n
−1/3 ≤ 2

3
for 1 ≤ j ≤ n and

4ρ2
1 ‖T‖1 ‖T‖∞ ‖H(f, T (Un(ρ1)))‖∞ ≤ φ1n

−1/3.

(c) For x ∈ Ω, <f(x) ≤ g(x). For x ∈ T (Un(ρ2)), either

(i) 2ρ2 ‖T‖1 |gj(x)| ≤ (2φ2)3/2n−1/2 for 1 ≤ j ≤ n, or

(ii) 2ρ2 ‖T‖1 |gj(x)| ≤ φ2n
−1/3 for 1 ≤ j ≤ n and

4ρ2
2 ‖T‖1 ‖T‖∞ ‖H(g, T (Un(ρ2)))‖∞ ≤ φ2n

−1/3.

(d) |f(x)|, |g(x)| ≤ nc3ec2x
TAx/n for x ∈ Rn.

77
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Let X be a random variable with the normal density π−n/2 det(A)1/2e−x
TAx. Then, provided

Vf(X) and Vg(X) are finite and h is bounded in Ω,∫
Ω

e−x
TAx+f(x)+h(x) dx = (1 +K)πn/2 det(A)−1/2eE f(X)+ 1

2
Vf(X),

where, for some constant C depending only on c1, c2, c3, ε,

|K| ≤ Ce
1
2

Var=f(X)
(
eφ

3
1+e−ρ

2
1/2 − 1

+ (2eφ
3
2+e−ρ

2
1/2 − 2 + sup

x∈Ω
|eh(x) − 1|) eE(g(X)−<f(X))+ 1

2
(Var g(X)−Var<f(X))

)
.

In particular, if n ≥ (1 + 2c2)2 and ρ2
1 ≥ 15 + 4c2 + (3 + 8c3) log n, we can take C = 1.

Remark A.0.3 (Remark 4.5 [IM16]). Note that Un(ρ1) ⊆ T−1(Ω) ⊆ Un(ρ2) is implied by

Un(ρ1‖T‖∞) ⊆ Ω ⊆ Un(ρ2‖T−1‖−1
∞ ), so the latter condition could be used instead of the

former.

Lemma A.0.4 (Lemma 4.6 [IM16]). Let Q,W : Rn → Rn be linear operators such that

kerQ ∩ kerW = {0} and span(kerQ, kerW ) = Rn. Let n⊥ denote the dimension of kerQ.

Suppose Ω ⊆ Rn and F : Ω ∩Q(Rn)→ C. For any ρ > 0, define

Ωρ = {x ∈ Rn | Qx ∈ Ω and Wx ∈ Un(ρ)}.

Then, if the integrals exist,∫
Ω∩Q(Rn)

F (y) dy = (1−K)−1 π−n⊥/2 det
(
QTQ+WTW

)1/2
∫
Ωρ

F (Qx) e−x
TWTWx dx,

where

0 ≤ K < min(1, ne−ρ
2/κ2), κ = sup

Wx6=0

‖Wx‖∞
‖Wx‖2

≤ 1.

Moreover, if Un(ρ1) ⊆ Ω ⊆ Un(ρ2) for some ρ2 ≥ ρ1 > 0 then

Un

(
min

( ρ1

‖Q‖∞
,

ρ

‖W‖∞

))
⊆ Ωρ ⊆ Un

(
‖P‖∞ ρ2 + ‖R‖∞ ρ

)
for any linear operators P,R : Rn → Rn such that PQ+RW is equal to the identity operator

on Rn.

Lemma A.0.5 (Lemma 4.9 [IM16]). Let D be an n × n real diagonal matrix with dmin =

minj djj > 0 and dmax = maxj djj. Let A be a real symmetric positive-semidefinite n × n

matrix with

‖A−D‖max ≤
rdmin

n
and xTAx ≥ γxT

‖Dx‖ = γxTD1/2(I − PD)D1/2x

for some 1 ≥ γ > 0, r > 0 and all x ∈ Rn. Let n⊥ denote the dimension of kerA. Then the

following are true.
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(a) ‖AD − A‖∞ ≤ rn⊥d
1/2
maxd

1/2
min, ‖AD − A‖max ≤

r2n⊥dmin

n
and n⊥ ≤ r2.

(b) AD is symmetric and positive-definite. Moreover,

‖A−1
D ‖∞ ≤

r + γ

γdmin

and ‖A−1
D −D

−1‖max ≤
(r + γ)r

γndmin

(1 + rn⊥).

(d) There exists a matrix T such that TTADT = I and

‖T‖1, ‖T‖∞ ≤
r + γ1/2

γ1/2d
1/2
min

and ‖T−1‖1, ‖T−1‖∞ ≤
(

(r + 1)(r + γ1/2)

γ1/2
+ rn⊥

)
d1/2

max.
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