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Abstract

In this thesis our aim is to show the ground states of Hamiltonians on 2-dimensional

surfaces, which is made up by putting together stablizer operators correspond-

ing to edges(vertices) and faces, coincide with topology of surface [Kit03]. we

first introduce the Temperley-Lieb categories and then define the skein module

of TL(δ = 1), which is the specialization of the Temperley-Lieb category at

δ = 1. Then we introduce the Levin-Wen models, which is the generalization of

the toric code, with general defined projections (operators in quantum physics)

corresponding to edges and vertices. We then prove the kernel of Hamiltonian in

the toric code is isomorphic to the skein module of TL(δ = 1) and therefore only

depends on the topology of surface it bases on.
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Introduction

The toric code is a class of stabilizer quantum codes associated with lattices on

2-dimensinal surfaces. There is a 1/2-spin state, qubit, lives on each stage of

the lattice while at each vertex and face there is a stabilizer operator [Kit03].

The sum of all these operators defines a Hamiltonian with local relations. The

ground states of this Hamiltonian do not relate to the lattice the toric code model

associated with but coincide with the topology of the surfaces. Specifically, it is

4g-fold degenerate, where g is the genus of the surfaces.

The Levin-Wen models are lattice models build upon a unitary fusion category

C to describe corresponding topological orders [Wen90]. The Levin-Wen models

for higher dimensional show that their ground states naturally gives rise to both

emergent gauge bosons and emergent fermions. Thus, the ground states provides

a mechanism for unifying gauge bosons and fermions in dimensions higher than

3. For more details please refer [LW05] but we are not going to address this any

further in this thesis.

The aim of this thesis is to describe the Levin-Wen model and show that the

ground states of Hamiltonians in the toric code, the simplest example which

illustrate the general properties of Levin-Wen models [KK], are isomorphic to the

skein module of the quotient category TL(δ = 1).

In Chapter 1, we introduce some preliminary definitions including fusion category

and associated concepts. In Chapter 2, we define the Temperley-Lieb category

based on the Temperley-Lieb algebra and introduce the Jones-Wenzl idempotents

which is vitally important throughout this thesis. In Chapter 3, the Karoubi

envelope for categories is defined and we then prove that the Karoubi envelope

of the Temperley-Lieb category is semisimple.

In Chapter 4 we consider evaluating the Karoubi envelope of the Temperley-Lieb

category at a root of unity and then define the negligible ideal. This gives a

semisimple category with finitely many simple objects after taking the quotient

by the negligible ideal. A special case when δ = 1 is introduced and we show that

1
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the skein module of any surface associated to this category is isomorphic to the

C-linear span of first homology group H1(Σ;Z/2Z).

In Chapter 5, we introduce the Levin-Wen models for surface Σ, which for any

cellulation Γ on surface Σ, gives a Hilbert spaceHΓ and an associated Hamiltonian

H which is the sum of all Hamiltonians HE for edges and HF for faces. We prove

that the kernel, or physically the ground states, of the Hamiltonian H is the

intersection of kernels of all components HE and HF .

Then in Chapter 6, we shown in the toric code models, the ground states of

Hamiltonian H for any cellulation Γ ⊂ Σ is isomorphic to, surprisingly, the C-

linear span of first homology group H1(Σ;Z/2Z). So the kernel only depends on

the topology of Σ. Combined with Section 4, the kernel of the Hamiltonian H in

the toric code model is isomorphic to the skein module of the quotient category

TL(δ = 1).



Chapter 1

Preliminaries

Here we introduce the basic notions in monoidal (tensor) category and fusion

categories which will be frequently used in later chapters.

We start from the definition of monoidal category since it is a basic concept in

category theory and widely used to define other complexer categories.

1.1 Monoidal category

Definition 1.1. A monoidal category is a sextuplet (C,⊗, 1, α, λ, ρ) where

C is a category, tensor product ⊗ : C × C → C is a bifunctor, 1 ∈ Obj(C) is

a distinguished object and α, λ, ρ are natural isomorphisms with the following

properties:

1. (Identity). There are natural isomorphisms λ and ρ with components such

that for each X ∈ Obj(C),

λX : 1⊗X ∼= X

ρX : X ⊗ 1 ∼= X

2. (Associativity). There is a natural isomorphism α with components such

that for all X, Y, Z ∈ Obj(C),

αX,Y,Z : (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z)

3. (Coherence). For all W,X, Y, Z ∈ Obj(C), we have the triangle diagram

3



4 CHAPTER 1. PRELIMINARIES

X ⊗ (1⊗ Y )
αX,1,Y

1X ⊗ λYρX ⊗ 1Y

(X ⊗ 1)⊗ Y

X ⊗ Y

and the pentagon diagram

(W ⊗X)⊗ (Y ⊗ Z) (W ⊗ (X ⊗ Y ))⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

W ⊗ (X ⊗ (Y ⊗ Z)) W ⊗ ((X ⊗ Y )⊗ Z)

αW,X,Y⊗Z αW,X⊗Y,Z

1W ⊗ αX,Y,Z

αW⊗X,Y,Z αW,X,Y ⊗ 1Z

commutes.

The commuting diagrams show the order in which we parenthesize a tensor

product of a1, . . . , an with arbitrary insertions of the tensor identity 1 does

not matter. Through a sequence of morphisms ρ, λ, α and their inverses,

any two parenthesized tensor products x and y are isomorphic.

The “exchange relation” (f⊗g)◦(h⊗k) = (f ◦h)⊗(g◦k) holds for all morphisms

f, g, h, k ∈Mor(C) as a consequence of ⊗ being a bifunctor.

Remark 1.2. The structure which a monoidal category equipped with is call the

monoidal structure.

A monoidal category is strict if the natural isomorphisms ρ, σ and α are

identities.

Consider the definition of monoidal categories and natural transformations,

representation of groups are actually functors. We then define the category of

such representations.
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Definition 1.3. The category of representations Rep(G) is a category with

Obj(Rep(G)) is the collection of representations of group G. For any two objects

ρ : G → Aut(V ) for vector space V and σ : G → Aut(W ) for vector sapce

W , the morphisms HomRep(G)(ρ → σ) = {f : HomV ec(k)(V → W ) : f(gv) =

gf(v) for any ∀g ∈ G and ∀v ∈ V } where V ec(k) is the category of vector space

k.

1.2 Duality

The definition of rigid category is based on duality. Specifically, we need to define

left dual and right dual.

Definition 1.4. Left dual and right dual. Let (C,⊗, 1, α, λ, ρ) be a monoidal

category. Suppose X ∈ Obj(C) then the left dual of X is an object Y ∈ Obj(C)
with two morphisms εX : Y ⊗X → 1 and coεX : 1→ X⊗Y called the evaluation

and coevaluation morphisms. The morphisms satisfies:

1X ⊗ εX ◦ coεX ⊗ 1X = 1X

and

coεX ⊗ 1Y ◦ 1Y ⊗ εX = 1Y

If we represent two morphisms εX : Y ⊗X → 1 and εX : 1 → X ⊗ Y by
⋂

and⋃
respectively, the properties above becomes

X

coεX

Y

εX

X

=

X

X

and
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X

coεX

Y

εX

X

=

X

X

Then X is called the right dual of Y at the same time.

Remark 1.5. If duals (left or right) exists for some object X, suppose they are

Y and Y ′, then we have Y ∼= Y ′. The details of proof is shown in [Müg08].

From this remark we have the duals for an object, if exists, is unique up

to isomorphism. Therefore we define a left duality of a monoidal category.

(C,⊗, 1) to be a map that gives each object X in C a left dual X∗ and morphisms

ε(X) : X∗⊗X → 1 and coε(X) : 1→ X⊗X∗ with properties in definition. Then

right duality is defined correspondingly.

Definition 1.6. A monoidal category (C,⊗, 1) is called rigid if it is equipped

with both left duality and right duality. Alternatively, every object X ∈ C has

both left dual and right dual.

Definition 1.7. In a rigid monoidal category C [Müg08], we define a functor, ∗
for morphisms f : X → Y as:

f ∗ = ε(Y )⊗ 1X∗ ◦ 1Y ∗ ⊗ f ⊗ 1X∗ ◦ 1Y ∗ ⊗ coεX .

It can be equipped with a natural isomorphism γ : (Y ∗)⊗ (X∗)→ (X ⊗ Y )∗ and

1∗ → 1.

Remark 1.8. If the category C has left duality only then it is left rigid. Simi-

larly, if C has right duality, it is right rigid.

1.3 Fusion category

It is easier for introducing fusion categories to start from a so-called additive

category.
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Definition 1.9. An additive category C is a category, such that:

1. The additive category C has a zero object 0 ∈ Obj(C) (for any object

X ∈ Obj(C) there exists precisely one morphism HomC(0 → X) and one

HomC(X → 0)). Then for two arbitrary objects X, Y ∈ Obj(C), there is a

unique morphism: X → 0→ Y .

2. For all X, Y ∈ Obj(C), HomC(X → Y ) is an abelian group. The zero map

gives the identity and the composition is bilinear.

3. C has finite biproducts.

We can then use this definition to define abelian categories. Before that, we

need to define kernel/cokernel and image/coimage.

Definition 1.10. Kernel and cokernel. Suppose C is a category with zero

morphisms. Let X, Y ∈ Obj(C) and f ∈ HomC(X → Y ).

The kernel Ker(f) of f is an object K ∈ Obj(C) together with a morphism

k ∈ HomC(K → X) such that f ◦ k = 0. If there is a object A with mor-

phism g ∈ HomC(A → X) such that f ◦ g = 0, then there exists a unique

h ∈ HomC(A→ K) with g = k ◦ h. and the pentagon diagram

XK Y

A

k f

h

g

The cokernel Coker(f) of f is an object C ∈ Obj(C) together with a morphism

c ∈ HomC(C → X) such that c ◦ f = 0. If there is a object B with mor-

phism j ◦ c ∈ HomC(B → Y ) such that j ◦ f = 0, then there exists a unique

l ∈ HomC(C → B) with j = l ◦ c. and the pentagon diagram

YX C

B

f c

l

j
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Definition 1.11. Image and coimage. Then the image is defined by, for f the

image Im(f) is the kernel of its cokernel. Then coimage Coim(f) of f is just the

cokernel of its kernel.

Then we have enough technology to define an abelian category

Definition 1.12. An abelian category is an additive category C with proper-

ties:

1. Every morphism f ∈ Mor(C) has a kernel and cokernel.

2. For an arbitrary morphism f ∈ Mor(C). the natural transformation η :

Coim(f)→ Im(f) is a natural isomorphism.

Using the defintion of abelian category combined with semisimple, it is easy

to define semisimple category.

Definition 1.13. For an abelian category C, it is called semisimple if admits

a family of simple objects Xi, i ∈ I such that for any X ∈ Obj(C), X is a finite

direct sum of Xi.

To define the fusion category we also need to recall k-linear category.

Definition 1.14. An abelian category C is said to be K-linear if for any ob-

jects X, Y ∈ Obj(C) the hom-set Hom(X → Y ) is a K-vector space and the

composition of morphisms ◦ (and ⊗ in the monoidal category) is bilinear.

Remark 1.15. Then the functors between two k-linear ctegory must be K-linear.

Combine the definition of semisimple, rigid and K-linear, the fusion category

is easy to be defined.

Definition 1.16. A fusion category is a rigid semisimple K-linear monoidal

category with finite isomorphism classes of simple objects, such that the endo-

morphisms of the unit object 1 is End = K.



Chapter 2

The Temperley-Lieb category

2.1 The Temperley-Lieb algebra

In the following chapters, the ground field we take is K = C(q) if there is no

further statement, where q is a parameter.

Definition 2.1. The quantum integer [n] is given by

[n] = qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1 =
qn − q−n

q − q−1

where q is the quantum parameter The n-th quantum integer satisfies many re-

lations. There is an important one which we are going to use.

Lemma 2.2. If n ≥ 0, then

[n+ 1] = [2][n]− [n− 1]

This lemma can be easily proved from the definition.

Definition 2.3. Let m, n be non-negative integers. Consider a rectangle with m

marked points on upper side and n points on lower side. If m+n is even, connect

each pair of points by an arc inside the rectangle such that each point is connected

by an arc and no points are connected by two arcs while there are no arcs intersect

with each other. Such diagram is called a simple Temperley-Lieb diagram

or TL diagram for convenience. Isotopic diagrams are considered equivalent. If

m+ n is odd, there is no simple TL diagram from m to n points.

A through string is a string connecting a point on the upper side to a point

on the lower side. A cup connects two points on the upper side while a cap

connects two points on the lower side.

9



10 CHAPTER 2. THE TEMPERLEY-LIEB CATEGORY

through strands

cups

cap

Figure 2.1: A Temperley-Lieb diagram showing terminologies

Remark 2.4. Temperley-Lieb diagrams with m = n, which means the rectan-

gle has same number of points on both the upper and lower edges, are called n

strand Temperley-Lieb diagrams.

The composition for TL diagrams is given by stacking. Let f : n→ m denotes

a TL diagram f from n points to m points. For any two TL diagrams f : n→ m

andg : m → l, the composition is defined as g ◦ f : n → k which is stacking g

over f with joined end points on attached edges. This stacking is “well-defined”

as both the top edge of f and bottom edge of g have m points. Since isotopic

diagrams are equivalent, we can rescaling the diagram into a new diagram with

same height as f and g.

◦ = =

Figure 2.2: Composition of TL diagrams
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2.2 The Temperley-Lieb Category

Before we define the Temperley-Lieb category, we first specify the ground field

K = C(q), where q is a quantum parameter. That is K is the fraction field of

complex polynomials over a quantum paramenter q.

Definition 2.5. The Temperley-Lieb category TL. The objects of TL are

n ∈ N. The morphisms are defined that for each m,n ∈ N, Hom(n → m) is

the K-linear span of simple TL diagrams with n and m points on bottom and

top edges respectively. If there are closed loops formed after the composition of

diagrams, replace each loop by inserting a multiplicative factor [2] = q + q−1.

The composition of morphisms is derived by extending the composition of TL

diagrams bilinearly over K.

= [2]

Figure 2.3: Composition of two 5 strand TL diagrams

Proposition 2.6. The Temperley-Lieb category is a strict linear monoidal cat-

egory equipped with tensor product ⊗. For objects n and m, n ⊗ m = n + m.

For simple TL diagrams f : n → m and g : k → l, the tensor product f ⊗ g :

n+k → m+l is placing f to the left of g. Tensor product for formal TL diagrams

obtained by bilinearly extending tensor product for simple diagrams.

Proof. The tensor product ⊗ defined on objects is the same as addition. Then

the tensor product is strictly associative with identity id : 0 → 0. So ρ, λ, α

are all equalities. It is then a strict monoidal category. Since the Temperley-

Lieb category is base on vector space K, the tensor product and composition are

linear.
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⊗ =

Figure 2.4: Tensor product of TL diagrams

According to the definition, any simple closed loop is removed. Therefore all

morphisms f ∈ Hom(n → m) are K-linear combinations of simple TL diagrams

without simple closed loops. The set of all such simple TL diagrams without

simple closed loops from n to m points is then a basis of Hom(n → m). The

total number of simple TL diagrams without simple closed loops from n to m

points is cn,m = 1
n+m+1

(
2(n+m)

n+m

)
, which can be easily proved according to the

Definition 2.3. It then gives that for any n,m ∈ N such that n + m is even,

Hom(n→ m) is finite dimentional.

Remark 2.7. The identity morphism 1n ∈ Hom(n → n) is defined as the TL

diagram with n through strings. It is the identity in Hom(n→ n).

· · ·

1

Figure 2.5: Identity TL diagram in Hom(n→ n)

There is a special subalgebra of Temperley-Lieb algebra called n strand Temperley-

Lieb algebra, which will be used to define idempotents in TL.

Definition 2.8. The n strand Temperley-Lieb algebra TLn is the algebra

over C(q) spanned by TL diagrams with n points on both bottom and top edges.

It is the morphism space Hom(n→ n) together with a multiplication defined as

that for any morphisms f, g ∈ Hom(n→ n), fg = f ◦g defined by stacking f over

g.
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Definition 2.9. The multiplicative generator ei (i ∈ {1, 2, . . . , n − 1} is the

n strand TL diagram with a cap connecting the i-th and the i + 1-th points on

the bottom edge and a cup connecting the i-th and the i+ 1-th points on the top

edge while the rest points are connected by n− 2 through-strings.

· · ·

e1

· · ·

e2

· · · · · ·

en−1

Figure 2.6: Multiplicative generators

Since any Hom(n→ m) is finite dimensional for n+m even, so Hom(n→ n)

is finite dimensional. In particular, the n strand Temperley-Lieb algebra TLn is

generated by {e1, e2, · · · , en−1} with the following relations:

e2
i =[2]ei

eiej = ejei, |i− j| ≤ 2

eiei+1ei = ei and ei+1eiei+1 = ei+1

(2.1)

Proposition 2.10. The multiplicative generators {e1, e2, · · · , en−1} generate TLn.

Proof. To show {e1, e2, · · · , en−1} generates TLn it is enough to show any simple

TL diagram without simple closed loops is a composition of generators. Any

formal TL diagram can be obtained by taking a K-linear combination.

The key steps are to show that the generators can make caps/caps within caps/cups

and move caps/cups left or right. Making cups within cups can be achieved by

eiei+1ei−1, which is:

ei

ei+1

ei−1
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To move cups left, use eiei+1:

ei

ei+1

The details please refer to [Kau90].

The figure 2.7 is an example for obtaining a simple TL diagram by a com-

position of generators. It shows that the provided diagram f satisfies f =

e2e3e1e4e2e3. In fact the relations 2.1 give that there are different ways to obtain

TL diagrams by composition of generators.

=

e3

e2

e4

e2

e3

e1

Figure 2.7: Decomposition of a simple diagram

For convenience of further discussion about the TL category, we introduce the

following operation on TL morphisms.

Definition 2.11. Anti-involution. For any TL diagram f ∈ Hom(n→ m), the

anti-involution of f is f̄ ∈ Hom(m→ n) with complex conjugated coefficients of

f , replaced quantum parameter q → q−1 and reflected every simple TL diagram

about the horizontal line at the middle.

Definition 2.12. Dual. For any TL diagram f ∈ Hom(n → m), the dual of f

is f ∗ ∈ Hom(m → n) given by rotating every simple diagrams in f around its

center by π.
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(1 + i) = (1-i)

Figure 2.8: Anti-involution

(1+i)

∗

= (1+ i)

Figure 2.9: Dual

Definition 2.13. Markov trace. The Markov trace of f is denoted as tr(f),

where f ∈ TLn. It is defined by a tracial closure: for any simple TL diagram, con-

necting the bottom n points with their corresponding top points with n disjoint

arcs outside the TL diagram. Then every traced simple TL diagram becomes a

collection of disjoint simple closed loops in the plane. If the total number of loops

is n, then tr(f) = [2]n. Then formal diagrams are obtained by taking a K-linear

combination. Trace of f is used instead of Markov trace of f for convenience.

Remark 2.14. We define the k-strand (right) trace trn(f) for f ∈ TLn: for

any simple TL diagram f , connecting the right k points on the bottom edge with

their corresponding top points by k disjoint arcs outside the TL diagram. Let all

arcs on the right hand side of the TL diagram. Formal diagrams are obtained by

taking a K-linear combination of partially traced simple TL diagrams.

tr2 = = [2]
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tr = = [2]2

Figure 2.10: Markov trace

Definition 2.15. Ideal and tensor ideal. The definition of idea in a category

follows canonically from the definition of an ideal in a field. For an arbitrary

ategory C, an ideal of C is a collection of morphisms I such that for any morphsim

f ∈ I and g ∈ Mor(C), the composition of f and g is still in I. whenever such

a composition is defined. Additionally, if the category C is a linear monoidal

category, then an ideal I is a tensor ideal if whenever f ∈ I and g ∈ Mor(C),
f ⊗ g ∈ I and g ⊗ f ∈ I. For any pair of objects X, Y ∈ Obj(C), I ∩ Hom(n→
m)∀I is a linear subspace of Hom(n→ m).

Here we introduce a proposition and corollary which will be useful in proofs

of later theorems.

Proposition 2.16. Suppose f , g are two simple TL daigrams such that f ∈
Hom(n → m) with α through strings and g ∈ Hom(m → l) with β through

strings. If the composition gf has γ through strings, then γ ≤ min(α, β).

Proof. We have f ∈ Hom(n → m) with α through strings. So there are n − α
points at the bottom of f connected by caps. Similarly g ∈ Hom(m → l) with

β through strings gives that there are l − β points at the top of g connected by

cups. It is obvious that after the composition gf , the n−α points at the bottom

connected by caps are still connected by caps and so are the l − β points at

the top. Thus the points connected by strings at the bottom of gf are less than

n−(n−α) = α while such points at the top of gf are also less than l−(l−β) = β.
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Therefore the total number of through strings γ satisfies γ ≤ α and γ ≤ β, which

gives γ ≤ min(α, β).

Then we consider the formal TL diagrams. For convenience we are going to

define the total number of strings in formal TL diagram.

Definition 2.17. An arbitrary formal TL diagram f is a K-linear combination

of simple TL diagrams. Denote all such simple diagrams f1, f2, · · · . If there

are αi through strings in fi, then the total number of through strings in f is

αf = max(α1, α2, · · · ).

Then combining the definition of ideals with proposition 2.16 gives the fol-

lowing corollary.

Corollary 2.18. The set of all formal TL diagrams Iβ := {f : f ∈ Mor(TL), αf ≤
β} forms an ideal in TL. The proof is obvious since the composition of any f ∈ Iβ
and arbitrary g ∈ Mor(TL) will not increase the total number of strings by Propo-

sition 2.16.

Remark 2.19. Iβ is not a tensor ideal. The tensor composition of any f ∈ Iβ
and 1n will increase the total number of through strings in f by n.

2.3 Jones-Wenzl idempotents

First we are going to introduce a special set of simple diagrams.

Definition 2.20. Suppose n ≥ 2 and 1 ≤ i < n, define Ci,n ∈ Hom(n → n− 2)

to be the simple TL diagram that is the combination of i− 1 through strings, a

cap at the bottom edge and n− i− 3 through strings after that. Similarly define

Ci,n ∈ Hom(n− 2→ n) to be the simple TL diagram that is the combination of

i− 1 through strings, a cup at the top edge and then another n− i− 3 through

strings.

Theorem 2.21. In the n strand Temperley-Lieb algebra TLn there is a special

endomorphism jn ∈ Hom(n→ n), satisfying

jn 6= 0

jnjn = jn

Ci,njn = jnC
i,n = 0

(2.2)
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Ci,n= Ci,n=

Figure 2.11: Ci,n and Ci,n

called the Jones-Wenzl idempotent. Such an idempotent can be constructed

uniquely by a recursive formula known as Wenzl’s formula:

j0 = empty simple TL diagram

j1=

jn+1 = jn

· · ·

· · ·

− [n]

[n+ 1]

jn

· · ·

· · ·

jn

· · ·

(2.3)

The equation 2.3 is therefore called Wenzl’s recurrence formula.

Before proving the theorem, some lemmas and propositions will be introduced

and proved first.

Lemma 2.22. The Jones-Wenzl idempotent jn always has an identity component

1n with coefficient 1. Then the Jones-Wenzl idempotent jn = 1n + gn where gn is

a linear combination of non-identity simple diagrams.

Proof. Suppose jn = a1n + gn where a ∈ C and gn is a formal TL diagram

composed by non-identity simple diagrams linearly. Then

jnjn = jn(a1n + gn)

= ajn1n + jngn

= ajn
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since gn is a sum of non-identity simple diagrams and relation 2.2 we then have

a = 1 as we want.

Proposition 2.23. (Absorption law) For Jones-Wenzl idempotent jn,

(jn ⊗ 11) ◦ jn+1 = jn+1 ◦ (jn ⊗ 11) = jn+1

Proof. By Lemma 2.22, jn = 1n + gn, where gn is a linear combination of non-

identity simple diagrams. Let gn =
∑

i aihi be a linear combination where each

hi is non-identity simple diagram. Then we have:

jn

· · ·

· · ·

jn+1

· · ·

=

1n

· · ·

· · ·

jn+1

· · ·

+
∑

i ai

hi

· · ·

· · ·

jn+1

· · ·

Then we observe that for any non-identity simple diagram hi, it must contain at

least one cap at the bottom. By relation (2.2), Ci,n+1jn+1 = 0, then (hi ⊗ 11) ◦
jn+1 = 0.

Then,

jn

· · ·

· · ·

jn+1

· · ·

=

1n

· · ·

· · ·

jn+1

· · ·

=

· · ·

jn+1

· · ·

Use a similar method we have jn+1 ◦ (jn ⊗ 11) = 0

We are going to prove the Jones-Wenzl idempotents theorem by induction.

Proof. The Jones-Wenzl idempotents j0 and j1 obviously agree with the Wenzl

recurrence formula. They also satisfy jn 6= 0 and jnjn = jn while Ci,n and Ci,n

do not exist for n < 2. For arbitrary n ≥ 1, assume jn−1 and jn satisfy relations

(2.2) while jn−1, jn and jn+1 all derived from the Wenzl recurrence formula 2.3.
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It is enough to show jn+1 also satisfies relations (2.2).

(i) To show jn+1 6= 0:

By the induction hypothesis, jn satisfies relations (2.2). Then by Lemma 2.22, jn

has an identity component 1n+1 with coefficient 1, so is the first term in the Wenzl

recurrence formula 2.3. For the second term, observe that there is a multiplicative

generator en between the dashed lines:

jn

· · ·

· · ·

jn

· · ·

en

where en has n− 1 through strings. The second term is a composition including

en. By Corollary 2.18, this term has at most n− 1 through strings which cannot

contain the identity component 1n+1. Thus the coefficient of 1 in jn+1 is exactly

1 and jn+1 cannot be zero.

(ii) To show j2
n+1 = jn+1:

According to Wenzl’s formula, we have

j2
n+1=

jn

· · ·

jn

· · ·

· · · - [n]
[n+1]

jn

· · ·

· · ·

jn

· · ·

· · ·

jn

· · ·
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- [n]
[n+1]

jn

· · ·

· · ·

jn

· · ·

· · ·

jn

· · ·

+ [n]2

[n+1]2

jn

· · ·

· · ·

jn

· · ·

jn

· · ·

· · ·

jn

· · ·

Then by the induction hypothesis, j2
n = jn

j2
n+1= jn

· · ·

· · ·

- 2[n]
[n+1]

· · ·

jn

· · ·

· · ·

jn

· · ·

+ [n]2

[n+1]2 jn

· · ·

jn

· · ·

jn

· · ·

· · ·

The TL diagram in dashed box is a 1-strand trace tr1(jn) by definition. Using

the induction hypothesis, jn follows from Wenzl’s formula.

tr1(jn) = jn

· · ·

· · ·
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= jn−1

· · ·

· · ·

− [n− 1]

[n]

jn−1

· · ·

· · ·

jn−1

· · ·

Then j2
n−1 = jn−1 according to induction hypothesis gives

tr1(jn) =[2] jn−1

· · ·

· · ·

− [n− 1]

n
jn−1

· · ·

· · ·

=

(
[2]− [n− 1]

[n]

)
jn−1

=

(
[2][n]− [n− 1]

[n]

)
jn−1

=

(
[n+ 1]

[n]

)
jn−1

by lemma 2.2. Then substitute this into the equation of jn+1 we get

j2
n+1= jn

· · ·

· · ·

- 2[n]
[n+1]

· · ·

jn

· · ·

· · ·

jn

· · ·

+ [n]2

[n+1]2
[n+1]

[n]
jn−1

· · ·

jn

· · ·

jn

· · ·

· · ·

Then by the absorption law,



2.3. JONES-WENZL IDEMPOTENTS 23

j2
n+1= jn

· · ·

· · ·

+

(
−2[n]+[n]

[n+1]

)
· · ·

jn

· · ·

· · ·

jn

· · ·

Then by Wenzl’s formula, the equation gives

j2
n+1 = jn+1

(iii) We now need to show Ci,n+1jn+1 = jn+1C
i,n+1 = 0:

After Ci,n+1jn+1 = 0 has been proved, it is easy to prove jn+1C
i,n+1 = 0. To show

Ci,n+1jn+1 = 0, two different cases need to be considered.

For Ci,n+1, if i = n, Ci,n+1jn+1 = 0 by Wenzl’s formula:

Cn,n+1jn+1 =

· · ·

jn

· · ·

- [n]
[n+1]

· · ·

jn

· · ·

jn

· · ·

In (ii) we calculated the 1-strand trace tr1(jn). Substituting it into Cn,n+1jn+1

we then have

Cn,n+1jn+1 =

· · ·

jn

· · ·

- [n]
[n+1]

[n+1]
[n]

· · ·

jn−1

· · ·

jn

· · ·
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By the absorption law

Cn,n+1jn+1 =

· · ·

jn

· · ·

−

· · ·

jn

· · ·

=0

If i 6= n, then 1 ≤ i ≤ n− 1 which gives

Ci,n+1jn+1= jn

· · ·

· · ·

- [n]
[n+1]

· · ·

jn

· · ·

jn

· · ·

By the induction hypothesis, Ci,njn = 0. Both the first term and the second term

are the zero diagram. Therefore we conclude that Ci,n+1jn+1 = 0. The same

method then proves that jn+1Ci,n+1 = 0.

At the end, we need to show the uniqueness of idempotents.

Suppose that there are two Jones-Wenzl idempotents jn and j′n in Hom(n → n)

satisfies relations (2.2). By Lemma 2.22, let jn = 1n + gn and j′n = 1n + g′n.

Then we have j′ngn = jng
′
n = 0 as gn and g′n are both linear combinations of

non-identity simple diagrams. Thus

jn =jn1n

=jn1n + jng
′
n

=jn(1n + g′n)

=(1n + gn)j′n

=1nj
′
n

=j′n

Therefore Jones-Wenzl idempotents jn is unique for each n.
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Remark 2.24. In the proof of the Jones-Wenzl idempotent theorem, we proved

and used the proposition

tr1(jn) =
[n+ 1]

[n]
jn−1

This proposition can be extend to the complete Markov trace of jn.

tr(jn) = [n+ 1].

This theorem is easily proved by induction. For the empty TL diagram j0,

tr(j0) = [2]0 = [1].

Then assume tr(jn) = [n+ 1] is true for n ≤ k, Then for k + 1

tr(jk+1) = jk+1

· · ·

· · ·

= jk+1

· · ·· · ·

· · ·· · ·

=
[k + 2]

[k + 1]
jk
· · ·

· · ·

=
[k + 2]

[k + 1]
tr(jk)

=
[k + 2]

[k + 1]
[k + 1]

=[k + 2]

The simple diagram in dashed box is tr1(jk+1) which is substituted by [n+1]
[n]

jn−1.
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Chapter 3

Karoubi envelope and its

semisimplicity

3.1 Karoubi envelope

After proving the existence of Jones-Wenzl idempotents, we would like to con-

struct a new category in which the Jones-Wenzl idempotents are included as

objects. So we need to define and take the Karoubi envelope.

One important property for the Temperley-Lieb idempotents jn is j2
n = jn. Recall

that if an endomorphism p satisfies p2 = p, p is an idempotent. Thus Temperley-

Lieb idempotents are idempotents. If p itself is an idempotent then 1− p would

be idempotent at the same time.

For any category, the definition of idempotent p always make sense. Then in any

additive category 1−p also make sense. However, the image of p and 1−p does not

make sense in some category, even the category is additive. The Karoubi envelope

of a category C ensures that no matter whether the image of p in the original cate-

gory C exists or not, every idempotent in the Karoubi envelop p :∈ Hom(X → X)

where X ∈ Obj(C) has an image and if C is additive then X ∼= Im(p)⊕ Im(1−p).
Thus by using the Karoubi envelope, we can decompose objects which are not

able to be decomposed in the original category C.

Definition 3.1. Given an arbitrary category C, the Karoubi envelope Kar(C)
is constructed with properties:

1. The objects in Karoubi envelope Kar(C) are ordered pairs (X, p) where X

is an arbitrary object in category C with p ∈ Hom(X → X) an idempotent.

2. Let (X, p) and (Y, q) be objects in Kar(C) then the set of morphisms

27
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Hom((X, p) → (Y, q)) is a collection of all morphisms f ∈ Hom(X → Y )

such that fp = f = qf . The composition is the same as in the category C.

The identity morphism 1p for an object (X, p) is p itself. Consider an embed-

ding functor F : C → Kar(C) such that for any object X in C, F(X) = (X,1X).

Recall that identity morphism is obviously an idempotent. Then for any pair

of objects X, Y ∈ Obj(C), the corresponding morphism in Karoubi envelope is

HomKar(C)((X,1X) → (Y,1Y )). By definition HomKar(C)((X,1X) → (Y,1Y )) is

the collection of f ∈ HomC(X → Y ) such that f1X = f = 1Y f , which is equiv-

alent to every f in HomC(X → Y ). Therefore HomKar(C)((X,1X) → (Y,1Y )) =

HomC(X → Y ) and the functor F is faithful.

Lemma 3.2. Suppose we have an arbitrary category C and the corresponding

Karoubi envelope Kar(C), then for any pair of idempotents p, q with p : X → X

and q : Y → Y where X, Y ∈ Obj(C), there is a surjective map between the

morphisms

g : HomC(X → Y )→ HomKar(C)((X, p)→ (Y, q))

defined by for each f ∈ HomC(X → Y ),

g(f) = qfp.

Proof. Let f be an arbitrary morphism in HomKar(C)((X, p) → (Y, q)). Then by

definition, f ∈ HomC(X → Y ) and fp = f = qf . So f = qfp, so g is surjective.

Then we need to show such g(f) defines a map from HomC(X → Y ) to HomKar(C)((X, p)→
(Y, q)).

Let f be an arbitrary morphism in HomC(X → Y ). Then g(f) = qfp is still a

morphism from X to Y , so g(f) ∈ HomC(X → Y ). Then by calculation

g(f)p = qfpp = qfp = g(f)

and

qg(f) = qqfp = qfp = g(f)

Therefore g(f) ∈ HomKar(C)((X, p)→ (Y, q)) as we need.

So combining with this lemma, the category C is embedded fully and faithfully

into Kar(C).
The Karoubi envelope of a category C ensure that for such category, all idem-

potent morphisms split in Kar(C). Now we assume that the category C is an
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additive category and the direct sum is defined in C, then we have the following

properties.

Proposition 3.3. Suppose we have an additive category C and p : X → X is an

endomorphism for some object X in C.

1. Suppose p is an idempotent on X then 1− p is also an idempotent.

2. In Kar(C), we have (X,1X) ∼= (X, p)⊕ (X, 1− p).

Proof. (1) In general to show 1 − p is an idempotent, we just need to show

(1− p)2 = (1− p). Then

(1− p)2 = 1− 2p+ p2

= 1− 2p+ p

= 1− p

(2) To show there is an isomorphism between Kar(C), (X,1X) and (X, p)⊕(X, 1−
p), we just need to define f : Kar(C), (X,1X)→ (X, p)⊕(X, 1−p) and its inverse

g : (X, p)⊕ (X, 1− p)→ (X,1X) such that both fg and gf give identity maps.

Define f =

[
p

1− p

]
and g =

[
p 1− p

]
Then

fg =

[
p

1− p

] [
p 1− p

]
=

[
p2 p(1− p)

(1− p)p (1− p)2

]

=

[
p 0

0 1− p

]
As p and 1 − p are identity morphisms on objects (X, p) and (X, 1 − p), fg is

then identity morphism on (X, p)⊕ (X, 1− p).

gf =
[
p 1− p

] [ p

1− p

]
= p2 + (1− p)2

= p+ 1− p
= 1

which is the identity morphism on (X,1X). Therefore (X,1X) ∼= (X, p)⊕ (X, 1−
p).
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Then consider the Karoubi envelope of the Temperley-Lieb categoryKar(T L).

By definitions shown above, the objects in Kar(T L) are of the form (n, p) where

n is an object in TL and p is an idempotent (not necessary to be Jones-Wenzl) for

n points. The morphisms between a pair of objects (n, p) and (m, q) are formal

TL diagrams f : n→ m with property fp = f = qf .

Proposition 3.4. The Karoubi envelope is a strict K-linear monoidal category

with tensor product ⊗.

Proof. From property 2.6, the Temperley-Lieb category is a strict monoidal cate-

gory and it equips a tensor product ⊗. Such tensor product then can be extended

to Karoubi envelop Kar(T L). Tensor product defined in TL preserves idempo-

tent, so for objects (n, p) and (m, q) in Kar(T L), we have (n, p) ⊗ (m, q) =

(n+m, p⊗ q) which gives that the tensor product of two objects in Kar(T L) is

still an object in Kar(T L). The zero TL diagram is the identity for tensor prod-

uct and ⊗ is strictly associative for TL diagrams, and so the coherence conditions

of tensor product hold.

For any morphisms f, g : n→ m in Mor(Kar(T L)) and a, b ∈ K, af+bg : n→ m

still satisfies (af + bg)p = (af + bg) = q(af + bg). Since ⊗ is bilinear, we have

the Karoubi envelope is a strict K-linear monoidal category.

3.2 Semisimplicity of Kar(T L)

As we already shown that all idempotent morphisms split in the Karoubi envelope

Kar(C), all idempotent morphism in Kar(T L) also split. To find such decompo-

sition as a direct sum, let us consider Theorem 2.21 of Jones-Wenzl idempotents.

Theorem 3.5. In the Karoubi envelope Kar(T L), let jn be the n-th Jones-Wenzl

idempotent. There is an isomorphism (n, jn)⊗(1, j1) ∼= (n+1, jn+1)⊕(n−1, jn−1)

which can be representatively shown as

jn

· · ·

· · ·

∼= jn+1

· · ·

· · ·

⊕ jn−1

· · ·

· · ·
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with

f =



jn

· · ·

jn+1

· · ·

· · ·

· · ·

jn−1

· · ·

jn

· · ·



and g =



jn

· · ·

· · ·

jn+1

· · ·

[n]
[n+1]

jn−1

· · ·

jn

· · ·

· · ·



such that f : jn⊗j1 → jn+1⊕jn−1 and g : jn+1⊕jn−1 → jn⊗j1 are isomorphisms

Remark 3.6. For objects in Karoubi envelope Kar(T L), jn is used instead of

(n, jn) for convenience. This is permitted since the morphisms in the Karoubi

envelope Kar(T L) are actually all formal TL diagrams.

Proof. To show (n, jn)⊗ (1, j1) ∼= (n+ 1, jn+1)⊕ (n− 1, jn−1) with defined f and

g, it is enough to show both fg and gf are identity morphisms.
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Then by given definition

fg =



jn

· · ·

· · ·

jn+1

· · ·

jn+1

· · ·

· · ·

jn

· · · [n]
[n+1]

jn

· · ·

· · ·

jn−1

· · ·

jn+1

· · ·

· · ·

jn

· · ·

jn

· · ·

· · ·

jn+1

· · ·

jn−1

· · ·

· · ·

jn

· · · [n]
[n+1]

jn

· · ·

· · ·

jn−1

· · ·

jn−1

· · ·

· · ·

jn

· · ·



It is easy to simplify the first matrix entries by using the property of idempotent

that j2
n = jn for every jn and the absorption law 2.23. For the last matrix entry,

after applying property j2
n = jn and absorption law, it is then [n]

[n+1]
tr1(jn) which
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still is not simple enough. Recall that tr1(jn) = [n+1]
[n]

jn−1. Therefore fg becomes

fg =



jn+1

· · ·

· · ·

0

0 jn−1

· · ·

· · ·


which is the identity map on (n+ 1, jn+1)⊕ (n− 1, jn−1). For gf ,

gf =

jn+1

· · ·

jn

· · ·

jn

· · ·

· · ·

jn+1

· · ·

+

jn−1

· · ·

jn

· · ·

jn

· · ·

· · ·

jn−1

· · ·

= jn+1

· · ·

· · ·

+
[n]

[n+ 1]

jn

· · ·

· · ·

jn

· · ·

Then according to the Jones-Wenzl idempotent theorem 2.21,
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gf = jn

· · ·

· · ·

which is the identity map on (n, jn)⊗(1, j1). Therefore f and g are isomorphisms

and (n, jn)⊗ (1, j1) ∼= (n+ 1, jn+1)⊕ (n− 1, jn−1).

We are going to talk about the morphisms f : ja ⊗ jb → jc in general. New

notations will be introduced.

Definition 3.7. If (a, b, c) with a, b, c ∈ N satisfies triangle inequalities a+ b ≥ c,

b+ c ≥ a+ c ≥ b and a+ b+ c ≡ 0 mod 2, then the triple is called admissible.

The admissible triples inKar(T L) have good properties which showsKar(T L)

is semisimple. Before showing the semisimplicity property, we need to define sim-

ple object.

Definition 3.8. A simple object X in a K-linear category C is an object in

Obj(C) with HomK(X → X) = spanK(1X). If for any pair of objects X and Y

in S ⊂ C, HomK(X → Y ) = 0, then all objects in S are called disjoint simple

objects.

Theorem 3.9. In Karoubi envelope Kar(T L), if (a, b, c) is an admissible triple,

the dimension of the morphism space dim(HomKar(T L)(ja ⊗ jb → jc)) = 1, other-

wise dim(HomKar(T L)(ja ⊗ jb → jc)) = 0

Proof. Recall that a formal TL diagram is just a linear combination of simple TL

diagrams. From lemma 3.2, without loss of generality define f = jc ◦ g ◦ (ja⊗ jb)
with morphisms g ∈ HomTL(a + b → c) as simple TL diagrams without loops.

we need to show that f is zero when triple (a,b,c) is not admissible for all TL

diagrams as the linear combination of simple TL diagrams g and when triple

(a,b,c) is admissible f is non zero for one unique g.

1. Suppose a+ b+ c is odd, by definition of Temperley-Lieb category there is

no such g. Then f as the composition f = jc ◦ g ◦ (ja ⊗ jb) does not exists

and HomKar(T L)(ja ⊗ jb, jc) only contains the zero map.
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2. Suppose a + b + c is even and a + b < c. Then the simple diagram g has

at most a + b through strings while there are c points at the top. It then

has at least one cup at the top edge. Then jc ◦ f = 0 by property of the

Jones-Wenzl idempotents. So f = jc◦g◦(ja⊗jb) = 0 is the only permissible

morphism.

3. Suppose a+ b+ c is even and a+ b ≥ c. If the simple diagram g has fewer

than c strings, there will be cups at the top edge again, then jc ◦ g = 0 and

consequently f = jc ◦ g ◦ (ja⊗ jb) = 0. Then g must have exactly c through

strings as it has at most c strings. There will be a+b−c
2

caps at the bottom

edge. If any cap connects two strand of ja, then f ◦ (ja ⊗ jb) = 0, so is for

jb. Therefore, for a+b−c
2

caps at the bottom edge of g, they must connect

exactly the a+b−c
2

right strands of ja and the a+b−c
2

left strands of jb without

intersection between any pairs of caps. Then g is unique up to isotopy, with
a+b−c

2
caps, a+c−b

2
through strings connecting the a+c−b

2
left strands of both

ja and jc and b+c−a
2

through strings connecting the b+c−a
2

right strands of

both jb and jc.

a+c−b
2

b+c−a
2

a+b−c
2

· · ·
· · ·

· · ·

ja jb

jc

· · · · · ·

· · ·

Figure 3.1: Nonzero morphism f as the composition f = jcg(ja ⊗ jb).

The permissible f is shown in Fig. 3.1 where the simple TL diagram between

dashed lines is corresponding g. From the figure, g exists requires that

a ≥ a+c−b
2

a ≥ a+b−c
2

b ≥ a+b−c
2

b ≥ b+c−a
2

c ≥ a+c−b
2

c ≥ b+c−a
2

and there are equivalent to

a+ b ≥ c, b+ c ≥ a and a+ c ≥ b.
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Thus (a, b, c) is a admissible triple. After define the unique g as above, the rest

is to test that f = jcg(ja ⊗ jb) is non-zero.

Recall lemma 2.22, every Jones-Wenzl idepotent jn = 1n + pn. Thus we have

ja = 1a + pa, jb = 1b + pb and jc = 1c + pc and f then becomes

f = jcg(ja ⊗ jb)
= g + g(pa ⊗ 1b) + g(1a ⊗ pb) + g(1a ⊗ 1b) + pcf(ja ⊗ jb)

(3.1)

To show f is non-zero, it is enough to show the coefficient of g in f is non-zero.

In face the coefficient is 1 here. Define A to be the group of a left points at

bottom edge of g, B be the group of b right points at bottom edge and C the c

points at top edge. The figure 3.1 shows that every string in g connects points

in different group. However, all simple diagram components in pa, pb and pc have

caps and cups. Then their composition with g connects points in same group A,

B or C which do not contain components as g. Since every term beside the first

one in (3.1) contains pa, pb or pc, so there is no component g in these terms. The

coefficient of g in f is 1.

Since permissible g is unique, dim(HomKar(T L)(ja ⊗ jb, jc)) = 1.

In order to show the Karoubi envelop Kar(T L) is a semisimple category, we

need to find simple objects first, which are Jones-Wenzl idempotents. By using

Theorem 3.9, we can prove Jones-Wenzl idempotents are simple.

Corollary 3.10. The Jones-Wenzl idempotents are simple objects and the col-

lection of (n, jn) is a collection of disjoint simple objects in Kar(T L).

Proof. For any Jones-Wenzl idempotent jn, jn ⊗ j0 = j0 since j0 is identity in

tensor product. Then HomKar(T L)(jn, jn) = HomKar(T L)(jn⊗j0, jn), where by the-

orem 3.9 and the triple (n,0,n) is always admissible for any n ∈ N HomKar(T L)(jn⊗
j0, jn is 1 dimensional. Then HomKar(T L)(jn, jn) is the space spanned by jn1njn =

jn which is the identity in HomKar(T L)(jn, jn). Jones-Wenzl idempotents jn are

simple objects.

For n 6= m, HomKar(T L)(jn, jm) = HomKar(T L)(jn ⊗ j0, jm). The triple (n, 0,m)

is not admissible, so HomKar(T L)(jn, jm) = {0} and the collection of (n, jn) is a

collection of disjoint simple objects in Kar(T L).

After we find enough simple objects in Kar(T L) to form a collection of disjoint

simple objects, to show the Karoubi envelop Kar(T K) is (object) semisiple, it

is equivalent to show every object in Kar(T L) is isomorphic to a direct sum of

simple objects.
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Theorem 3.11. Any object (n, p) ∈ Kar(T L) with p ∈ HomTL(n → n) is iso-

morphic to some direct sum of Jones-Wenzl idempotents:

(n, p) ∼=
n⊕
i=0

mi(i, ji)

Proof. We start from showing for an arbitrary natural number n, (n,1n) is iso-

morphic to a direct sum of (i, ji)’s, that is:

(n,1n) ∼=
n⊕
i=0

mi(i, ji), for some mi ∈ N

Using induction:

1. we have that (0,10) ∼= (0, j0) where j0 = 10 by definition.

2. Suppose that (k−1,1k−1) ∼=
⊕k−1

i=0 mi(i, ji) is true. Then for k, by distribu-

tive property of ⊗ and ⊕ and theorem 3.5

(k,1k) ∼=(k − 1,1k−1)⊗ (1, j1)

∼=(
k−1⊕
i=0

mi(i, ji))⊗ (1, j1)

∼=
k−1⊕
i=0

mi((i, ji)⊗ (1, j1))

∼=m0(1, j1)⊕
k−1⊕
i=1

mi((i+ 1, ji+1)⊕ (i− 1, ji−1))

Then by induction (n,1n) ∼=
⊕n

i=0mi(i, ji). is proved. Therefore we can define

such function for each n ∈ N:

φn : (n,1n)→
n⊕
i=0

mi(i, ji)

the function φn is an isomorphism. Now consider a new category Kar(Kar(T L)).

Then we claim:

((n,1n), p) ∼=

(
n⊕
i=0

mi(i, ji), φnpφ
−1
n

)
(3.2)

where both ((n,1n), p) and (
⊕n

i=0mi(i, ji), φnpφ
−1
n ) are objects in the double

Karoubi envelop Kar(Kar(T L)).
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For ((n,1n), p), it is required that (n,1n) is an object in Kar(T L) and p ∈
Hom((n,1n) → (n,1n)) is an idempotent. Since 1n is an idempotent, we have

(n,1n) ∈ Kar(T L). By definition, the morphism p ∈ Hom((n,1n) → (n,1n)) is

just p ∈ Hom(n→ n) and p1n = p = 1np, which is true for p.

Similarly, for (
⊕n

i=0 mi(i, ji), φnpφ
−1
n ), we have

⊕n
i=0 mi(i, ji) so it is an object in

Kar(T L). Then by definition of φn, the morphism is φnpφ
−1
n :

⊕n
i=0mi(i, ji) →⊕n

i=0mi(i, ji) and (φnpφ
−1
n )2 = φnpφ

−1
n φnpφ

−1
n = φnpφ

−1
n as p is an idempotent.

Then as φn(p(n,1n)) = φnpφ
−1
n (
⊕n

i=0 mi(i, ji)) we have the isomorphic relation

3.2.

For
⊕n

i=0mi(i, ji), the endomorphism φnpφ
−1
n may be represented as a matrix

of morphisms between the summands of its source and target. Observe that

φnpφ
−1
n maps

⊕n
i=0mi(i, ji) to itself, then φnpφ

−1
n can be represented as a block

diagonal matrix. Each i-th block is a mi×mi matrix and it represents a morphism

(φnpφ
−1
n )i, mi is the coefficient of (i, ji) and each entry in the i-th block is a map

(i, ji) → (i, ji) which is just a scalar. The block diagonal matrix is shown as

below:

[
M0 ∈Mm0×m0(C)

]
0 0 0

0
[
M1 ∈Mm1×m1(C)

]
0 0

0 0 · · · 0

0 0 0
[
Mn ∈Mmn×mn(C)

]


Since φnpφ

−1
n is an idempotent, the block diagonal matrix and every block in it

are also idempotents, which is MiMi = Mi. Since the trace of an idempotent

matrix is the same as its rank, then we claim

(
n⊕
i=0

mi(i, ji), φnpφ
−1
n ) ∼= (

n⊕
i=0

tr(Mi)(i, ji),1) (3.3)

The identity maps are always idempotents. To show such isomorphism ex-

ists, we need to build up suitable functions. Since φnpφ
−1
n :

⊕n
i=0 mi(i, ji) →⊕n

i=0mi(i, ji) is an idempotent, we can choose a basis {bi,j} for the image of

φnpφ
−1
n , where i is corresponding to i-th block matrix Mi which represents the

map (φnpφ
−1
n )i. Let Ji be the dimension of (φnpφ

−1
n )i, so j ∈ (1, 2, · · · , Ji).

If we can show that for each fixed i,

(mi(i, ji), (φnpφ
−1
n )i) ∼= (tr(Mi)(i, ji),1i)

then equation 3.3 is derived.

After i is fixed, let {ei,j}tr(Mi)
j=1 be the basis for Im(1i). The basis for Im(φnpφ

−1
n )i
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is {bi,j}Jij=1. Then Ji = tr(Mi) since Mi is idempotent. Define function f such

that f(ei,j) = fi,j where i ≤ tr(Mi).

Recall prop 3.3, the morphism (φnpφ
−1
n )i is an idempotent, and it gives:

mi(i, ji) ∼= (φnpφ
−1
n )imi(i, ji)⊕ (1− (φnpφ

−1
n )i)mi(i, ji).

For any element x ∈ Im(φnpφ
−1
n )i, it can be represented as a linear sum of basis

elements x =
∑tr(Mi)

j=1 aibi. Then we define function g such that

g(x) =

g(
∑tr(Mi)

j=1 aibi) =
∑tr(Mi)

j=1 aiei x ∈ Im((φnpφ
−1
n )i)

0 x ∈ Im(1− (φnpφ
−1
n )i)

Then we have fg and gf are identity maps for x ∈ Im((φnpφ
−1
n )i) and x ∈ Im(1i),

then we need to check whether they are well-defined morphisms. It is equivalent

to show

(φnpφ
−1
n )ig = g = g1i

and

1if = f = f(φnpφ
−1
n )i

It is true that g = g1. Then for x ∈ Im((φnpφ
−1
n )i), φnpφ

−1
n is identity morphism

and for x ∈ Im(1− (φnpφ
−1
n )i), φnpφ

−1
n is zero morphism. Thus (φnpφ

−1
n )ig = g =

g1i. The proof for 1if = f = f(φnpφ
−1
n )i is similar. Therefore relation 3.3 holds.

For any idempotent p such that (n, p) is an object in Kar(T L), then ((n,1n), p)

is an object in Kar(Kar(T L)) since p ∈ Hom(X → X) is an idempotent and

p1n = p = 1np. Similarly, if ((n,1n), p) is an object in Kar(Kar(T L)), then we

get (n, p) is an object in Kar(T L). We then define an isomorphism:

ψ : ((n,1n), p)→ (n, p)

. Combining with relation 3.2 and 3.3, we have:

(n, p) ∼= (
n⊕
i=0

tr(Mi)(i, ji),1)

It gives an isomorphism to a direct sum of Jones-Wenzl idempotents.
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Chapter 4

At root of unity

The Karoubi envelope Kar(T L) has infinitely many simple objects (n, jn) in

general. If we label diagrams in toric code with simple objects in Kar(T L) ,it

becomes infinite-dimensional.

To find a suitable category derived from Kar(T L) such that there are only finitely

many simple objects, we consider the Karoubi envelops Kar(T L) at a root of

unity and quotient out negligible elements (introduced later).

4.1 Pivotal category

To analyse some special properties of the Temperley-Lieb category, we are going

to introduce some new definitions here.

Definition 4.1. A pivotal category [Müg08] C is a rigid category with a monoidal

structure on the functor ν : X → X∗ and a natural isomorphism τ : X → X∗∗.

A strict pivotal category is a strict rigid category with a monoidal structure

on the functor ν : X → X∗ and a natural isomorphism τ : X → X∗∗ which is

identity.

Remark 4.2. In fact there is a theorem states that every pivotal category

is equivalent to a strict pivotal category. For proof in details please refer to

[BNRW13].

Theorem 4.3. The Temperley-Lieb category TL is a strict pivotal category.

Proof. The Temperley-Lieb category TL is already proved to be strict monoidal.

For any object n ∈ Obj(TL) the dual of n is n∗ = n. For any morphism f , the

41
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definition of the dual f ∗ is given by 2.12. It is not hard to check τ : n → n∗∗

and the associated natural isomorphisms γ : (m∗) ⊗ (n∗) → (n ⊗ m)∗, where

n,m ∈ N, are identities. The coevaluation morphism coε(n) : 1→ n⊗ n∗ is then

just a n-fold cups and so coε(n) ∈ Hom(1→ 2n). Correspondingly, the evaluation

morphism ε(n) : n ⊗ n∗ → 1 is a n-fold caps and ε(n) ∈ Hom(2n → 1), then we

have the monoidal structure.

In the Temperley-Lieb category trace of endomorphisms f is defined. Gener-

ally, any strict pivotal category has trace maps constructed by composing with

evaluation and coevaluation morphisms.

Definition 4.4. The right trace of a endomorphism f : X → X in a strict

pivotal category C is a composition:

trR(f) = coε(X)(f ⊗ 1)coε(X)∗

and the left trace is a composition:

trL(f) = coε(X∗)(1⊗ f)coε(X∗)∗

For trace map in Temperley-Lieb category, the only simple TL diagram in

Hom(0 → 0) without loops is 10, so Hom(0 → 0) ∼= K where K is the ground

field. Then we canonically consider the trace as a map tr(f) : Hom(n→ n)→ K
given by [2]d where d is the number of loops in tr(f). By isotopy, the number of

loops does not depend on which side we trace off. Thus the right trace and left

trace for f are the same.

Lemma 4.5. For any TL morphisms f : n→ m and g : m→ n:

tr(gf) = tr(fg)

Proof. The trace of TL diagrams are preseved by isotopies.

f

g

· · ·

· · ·

· · · = f g∗

· · ·

· · ·

=

g

f

· · ·

· · ·

· · ·
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Therefore tr(gf) = tr(fg).

Definition 4.6. A Spherical category C is a category such that for any mor-

phism f ,

trr(f) = tr(g).

Using spherical category, we can then define a collection of morphisms called

negligible morphisms.

Definition 4.7. A morphism f : X → Y in a spherical category is negligible if

for any morphism g : Y → X,

tr(gf) = 0.

A good property of negligible morphisms is that they actually form an tensor

ideal which enable us to make a quotient over negligible morphisms.

Lemma 4.8. Let N eg(TL) be the set of all negligible morphisms in Temperley-

Lieb category. Then N eg(TL) forms a tensor ideal and is called the negligible

ideal.

The proof is not hard. By using Lemma 4.5, it is easy to show that if f ∈
N eg(TL) for f : n → m then gf ∈ N eg(TL) and fh ∈ N eg(TL). For tensor

multiplication we just use the property that trace of TL diagrams is invariant

under isotopies.

4.2 Quantum parameter

Let’s consider the quantum integer [n]. Recall the Wenzl’s recurrence formula

2.3, it gives that for Jones-Wenzl idempotent jn+1 the coefficient of the second

term is [n]
[n+1]

. If [k] = 0 then the coefficient [k]
[k+1]

is not defined, so jk does not

exist and so are the all Jones-Wenzl idempotents jn for n ≥ k. It then gives a

finite many Jones-Wenzl idempotents ji where 0 ≤ i ≤ k− 1 which also form the

collection of simple objects. Finite simple objects make the category simpler and

there will be some special properties we would expect.

For [n] = 0, we have by definition:

qn − q−n

q − q−1
= 0

To ensure such fraction make sense, it is then required that q − q−1 6= 0 which is

q 6= 0 & ± 1 and then:

qn − q−n = 0⇔ q2n = 1
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where q is then a 2n-th root of unity. The ground field is K = C(q). After the

parameter becomes a fixed value, K = C so the Temperley-Lieb category is a

C-linear category.

Definition 4.9. For any a ∈ C and a given Temperley-Lieb category TL, the

category TL(q = a) is the specialization of the Temperley-Lieb category

at q = a. It is obtained by replacing the quantum parameter q by a. The objects

are the same as TL. The set of morphisms is the C-linear space with simple

TL diagrams as basis. Composition and tensor product are induced from TL.

Specifically, if a is a 2n-th root of unity, such category is called specialization

of the Temperley-Lieb category evaluated at a 2n-th root of unity q = a.

Observe that if we evaluate TL at a 2n-th root of unity, the Jones-Wenzl

idempotent jn−1 becomes negligible. Then we have the following lemma.

Lemma 4.10. If q = ekπi/n where 1 ≤ k < n is a 2n-th root of unity. Then

TL(q) has only finite many Jones-Wenzl idempotents ji where 0 ≤ i ≤ n− 1 and

jn−1 is the unique negligible Jones-Wenzl idempotent.

Proof. From Wenzl’s recurrence formula 2.3, if q = ekπi/n then q2n − 1 = 0, so

[k] = 0. We then have [k−1]
[k]

does not exists, so jn is not defined. Thus ji are not

defined for i ≥ n recursively.

To show jn is the unique negligible Jones-Wenzl idempotent, we recall the def-

inition of negligible morphism that for a negligible morphism f : X → Y , the

trace tr(gf) = 0 for arbitrary morphism g : Y → X. For ji, let f : i → i be an

arbitrary morphism. Then f can be represented as a composition f = a1i + g

where g is a sum of non-identity morphisms. Then by relations 2.2:

fji = aji

By Remark 2.24:

tr(fji) =tr(aji)

=a[i+ 1]

If tr(fji) = 0 for arbitrary f , it is required that [i + 1] = 0. As 0 ≤ i ≤ (n− 1),

jn−1 is the unique Jones-Wenzl idempotent satisfies the conditions.

From Lemma 4.8, the collection of negligible morphisms for Temperley-Lieb

category evaluated at q = ekπi/n is N eg(TL(q = ekπi/n)), which forms an ideal.
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From the work of Goodman and Wenzl [GW93], the ideal of negligible morphisms

in TL(q = ekπi/n) is exactly generated by the idempotent jn−1. Therefore we

produce a quotient Temperley-Lieb category.

Definition 4.11. For a specialization of the Temperley-Lieb category at a 2n-th

root of unity TL(q = ekπi/n) with negligible ideal N eg(TL(q = ekπi/n)) generated

by jn−1(q = ekπi/n), we define a new pivotal C category TLN(q = ekπi/n). The

object set of new category is N, the set of morphisms from n to m where n,m ∈ N
is

HomTLN (n→ m) = HomTL(n→ m)/N eg(n→ m)

where N eg(n→ m) is the set of negligible morphisms from n to m. The compo-

sition, tensor product and pivotal structure are induced from TL(q = ekπi/n).

Remark 4.12. Given that the generator of N eg(TL(q = ekπi/n)) is jn−1(q =

ekπi/n), then the set of morphisms Mor(TLN(q = ekπi/n) is just the morphism set

of TL(q = ekπi/n) with jn−1 = 0.

4.3 Skein module

Consider a special case of evaluated Temperley-Lieb category. Let us define a

parameter δ := q + q−1. If we set δ = 1, then q = e±πi/3. Thus in this case, q

is a root of q6 = 1 and the corresponding specialization of the Temperley-Lieb

category TL(δ = 1) only has Jones-Wenzl idempontents j0, j1 and j2 by Lemma

4.10.

For Jones-Wenzl idempotent j2, from Wenzl’s recurrence formula we then have

j2 = − [1]

[2]

= −

In the quotient category TLN(δ = 1), the Jones-Wenzl idempotent j2 = 0 give

the relation:

= (4.1)
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in category TLN(δ = 1).

Then let us consider the skein module of the category TLN(δ = 1). The definition

of skein module for a 3-manifold based on bradied tensor category is introduced

in Chapter 12 of [Tur16]. The general picture, of a skein module for a n-manifold

based on a disklike n-category is described in [MW10]. The generalized skein

module S(X) for n-manifold X is S(X) := C(X)/U(X) where C is a system of

fields , U(X) is the space of local relations in C(X). These terms are not introduce

in this thesis. In this chapter, we only deal with a simple case TL(δ = 1). For

more details please see [MW10]. Refer to the generalized skein module, we then

define a simple and specific skein module of TL.

Definition 4.13. The skein module of any surface Σ associated to a specialization

of the Temperley-Lieb category TL(δ = 1) and is just a linear combination of

closed loops drawn on Σ modulo the local relations in TL(δ = 1):

SΣ(TL(δ = 1)) = C{ closed loops on Σ over Z/2Z}/U(TL(δ = 1)) (4.2)

Where U(TL(δ = 1)) is the space of local relation in TL(δ = 1) which is

{isotopy, closed loop replaced by coefficient 1, δ = 1 and j2 = 0}.

From the definition we can then explicitly calculate the skein modules for any

surface Σ and the specialization of the Temperley-Lieb TL(δ = 1).

Theorem 4.14. The skein module of any surface Σ associated to specialization

of the Temperley-Lieb category TL(δ = 1) is the same as the linear expansion of

the first homology group of surface Σ over Z/2Z:

SΣ(TL(δ = 1)) = C{H1(Σ;Z/2Z)} (4.3)

Proof. By definition of homology group,

H1(Σ;Z/2Z) =
Ker(∂C1(Σ;Z/2Z))

Im(∂C2(Σ;Z/2Z))

For Ker(∂C1(Σ;Z/2Z)), it is just 1-cycle of Σ over Z/2Z, which is a sum of

1-chains. Recall any surface is triangularble, so the basis for the 1-chains is 1-

simplexes. Then a basis for the 1-cycles is the set of sums of 1-simplexes which

form oriented closed loops with vertexes. In general, a 1-simplex has orientations

in H1 with relation:

= −
In H1(Σ;Z/2Z), we have −1 = 1. Then:
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=

Thus orientations do not matter and we won’t include orientations in following

graphs.

For vertices in 1-chains, consider the relation in general H1(Σ;Z/2Z):

=

which is true since by overlapping right hand side to left hand side we then get

a 2-simplex whose image of function ∂ is zero in H1(Σ;Z/2Z). Thus we have all

1-chains with different vertices (non-zero) only are in the same homology class in

H1(Σ;Z/2Z) and such equivalence class can be described by a closed loop without

vertices even though this loop itself is not in H1(Σ;Z/2Z).

Let us then consider Im(∂C2(Σ;Z/2Z), which is the collection of all boundaries

of 2-chains in Σ. Therefore quotient by Im(∂C2(Σ;Z/2Z) gives:

= =


 = 0

where the third term is the equivalence class.

For any n-simplex S over Z/2Z, we have S + S = (1 + 1)S = 0. Now consider

two curves:

= = =

which is given by cancellation of repeat elements over Z/2Z and quotient by

Im(∂C2(Σ;Z/2Z). This relation is equivalent to relations δ = 1 and j2 = 0 by

4.1 in Temperley-Lieb category.

Inversely, in the skein module SΣ(TL(δ = 1)), we have the relation that every

closed loop is replaced by an coefficient [2] and [2] = 1 when δ = 1:

= 1

which is equivalent to quotient out 1-boundaries in H1(Σ;Z/2Z).

Now we can define an injective map f : C{H1(Σ;Z/2Z)} → SΣ(TL(δ = 1))

by mapping each equivalence class element in H1(Σ;Z/2Z) to closed loops in

the skein module, and extending this linearly. As we prove that each equivalence

class in H1(Σ;Z/2Z) can be represented by a closed loop, such map is well defined
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and it is injective since all local relations in skein module are equivalent to some

equivalence relations inH1(Σ;Z/2Z) and in Z/2Z the orientation does not matter.

We can also define an injective map g : SΣ(TL(δ = 1)) → C{H1(Σ;Z/2Z)} by

mapping each element in skein module to an equivalence class in H1(Σ;Z/2Z).

By what we have shown, this map is well defined and injective. The theorem just

follows.



Chapter 5

Levin-Wen models

5.1 General introduction to Levin-Wen models

Before introduce Levin-wen model, we first introduce the idea of cellulation which

will be used later.

Definition 5.1. Let Σ be a surface, a cellulation Γ ⊂ Σ is a graph embedded

in the surface so every connected component of Σ \ Γ is a topological disc.

Remark 5.2. The cellulation is usually set to be a square lattice for convenience.

The Levin-Wen model provides an explicit Hamiltonian formulation of Turaev-

Viro TQFTs.In this thesis we only study the 2-dimensional part of the Turaev-

Viro invariant, that is, the skein module for a surface. we do not address the

3-dimensional numerical invariant, or how it relates to the Levin-Wen model.

For a semisimple spherical monoidal category C, IrrC is just a collection of simple

objects in C. Then for each cellulation Γ, we often refer to Γ as a graph in Σ by

thinking about the 1-skeleton of Γ.

We then assign each edge E in cellulation a vector space:

HE = CIrrC

which is just labelling each edge a simple object in IrrC.
Each n-valent vertex V is a vector space:

Hn(V ) =
⊕

ways to labelling the
adjacent edges to
V by Xi∈IrrC

HomC(1→
n⊗
i=1

Xi)

49
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F

E

Figure 5.1: A cellulation of surface Σ. The edge V and face F are highlighted.

There are many cellulations for surfaces, but they share some properties which

can help us make analysis. In the following sections, this cellulation will be used

as it is easy to draw.

For each edge E, we will define a projection (introduce in details later):

HE : Hn(V ) ⊗HE ⊗Hn(V ′) → Hn(V ) ⊗HE ⊗Hn(V ′)

where V and V ′ are two vertices adjacent to edge E. For each face F , we will

define a projection:

HF :
⊗

V ′s adjacent
to F

Hn(v) ⊗
⊗

E′s adjacent
to F

HE →
⊗

V ′s adjacent
to F

Hn(v) ⊗
⊗

E′s adjacent
to F

HE

Then for any surface Σ, with a cellulation Γ on it we have a Hilbert space:

HΓ =
⊗

edges E∈Γ

⊗
⊗

vertices V ∈Γ

Hn(V )

with a Hamiltonian:

H : HΓ → HΓ

given by:

H =
∑

edges E

HE +
∑

faces F

HF

In physics, the ground state for a Hamiltonian is the lowest eigenstate of such

Hamiltonian. The Levin-Wen model then gives such Hilbert spaceHΓ and Hamil-

tonian H satisfy the following theorem:
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Theorem 5.3. The ground state of the Hamiltonian HΓ does not depends on the

cellulation Γ but just depends on the surface Σ. The ground state is the skein

module SΣ(C) where C is a spherical fusion cateogry which the Hilbert space HΓ

based on.

Remark 5.4. We can also define a Hamiltonian HΓ = H =
∑

vertices V HV +∑
faces F HF over HΓ where HV is a projection over vertex V and edges adjacent

to V . In fact, both projections
∑
HE and

∑
HV have the same kernel and

therefore the kernel of H and HΓ are same. The details won’t be introduced in

this thesis.

However we are not going to prove this theorem in general. The theorem in a

specific case called toric code will be proved in next chapter. Our aim in the rest

of this chapter is to show:

Ker(H) = (
⋂
E

Ker(HE)) ∩ (
⋂
F

Ker(HF ))

for all Levin-Wen models. Before the proof, we will analysis the properties of

projections HE for edges and HF for faces, which will help us derive the ground

state of H.

5.2 Projection HE

Let us define the projection HE for edges E ∈ Γ. Suppose f⊗X⊗g is an element

in Hn(V ) ⊗HE ⊗Hn(V ′) where we set:

HE(f ⊗X ⊗ g) = (f − ΠX(f))⊗X ⊗ (g − ΠX(g)) (5.1)

where ΠX is the projection to summands with the edge is labelled by X.

Remark 5.5. The reason for using I − ΠX instead of ΠX as the projection is

that we wish the corresponding eigenvalue to ground state is 0.

The morphism HE is a projection since both ΠX and identity morphism are

projections. The eigenvalue of HE is 0 or 1 by definition. Since we are intending

to find the ground state, the kernel of HE is what we interest.

Proposition 5.6. For any pair of edges E and E ′ in cellulation Γ, the projection

HE and HE′ commutes.
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Proof. If edges E and E ′ are different and do not share any vertices, then each

projection acts on different Hilbert space, so they commute.

Now suppose the Hilbert space where the projections HE and HE′ act is:

Hn(V1) ⊗HE ⊗Hn(V2) ⊗HE′ ⊗Hn(V3)

Every element of this Hilbert space is a sum of elements of the form:

f ⊗X ⊗ g ⊗X ′ ⊗ h (5.2)

where f ∈ Hn(V1), f ∈ Hn(V2), h ∈ Hn(V3), X is the labelled edge adjacent to V1

and V2, X ′ is the labelled edge adjacent to both V2 and V3.

Apply HEHE′ to 5.2, we then have:

HEHE′(f ⊗X ⊗ g ⊗X ′ ⊗ h)

=HE(f ⊗X ⊗ (g − ΠX′(g))⊗X ′ ⊗ (h− ΠX′(h)))

=(f − ΠX(f))⊗X ⊗ (g − ΠX(g))(g − ΠX′(g))⊗X ′ ⊗ (h− ΠX′(h))

=HE′(f − ΠX(f))⊗X ⊗ (g − ΠX(g))⊗X ′⊗
=HE′HE(f ⊗X ⊗ g ⊗X ′ ⊗ h)

Therefore they commute.

By Proposition above, the sum
∑
HE is diagonalisable with eigenvalues in N.

Proposition 5.7. The kernel of ΣE∈ΓHE satisfies:

Ker(ΣE∈ΓHE) =
⊕

ways to label
all edges by IrrC

⊗
V ∈Γ

HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi) (5.3)

By the definition of HE, f ⊗X ⊗ g is in its kernel if and only if both f and

g are supported in the summands where the edge labels agree with X. Then in

the kernel Ker(ΣE∈ΓHE), when the edges of Γ are labelled, the morphism f at

each vertex can only be in HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi), which gives the formula

above.

5.3 Grothendieck group and graphical calculus

5.3.1 Grothendieck group

We need the following concepts to define the Hamiltonian for faces HF .
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Definition 5.8. Let C be an additive category. The split Grothendieck group

K0(C) of C is the abelian group generated by isomorphism classes [A] of objects

in C modulo the relations [A⊕B] = [A] + [B] for any A,B ∈ Obj(C).

Remark 5.9. In general the Grothendieck group (without split) of an abelian

category C is the same abelian group defined above but modulo the relation

[C] = [A] + [B] for every exact sequence:

0→ A→ C → B → 0

For semisimple category, its Grothendieck group can be used to represent its

objects.

Theorem 5.10. Suppose C is a semisimple category with collection of all isomor-

phism classes of simple objects {Xi}, then in Grothendieck group K0(C), since the

objects in Grothendieck group are isomorphism classes we have:

A ∼=
⊕
i

niXi ⇔ [A] =
∑
i

ni[Xi]

where ni ∈ N.

Proof. “⇒”:

For A ∼=
⊕

i niXi
∼= n1X1 ⊕ n2X2 ⊕ n3X3 ⊕ · · · where ni ∈ N, we get:

[A] =[n1X1 ⊕ (n2X2 ⊕ n3X3 ⊕ · · · )]
=[n1X1] + [n2X2 ⊕ (n3X3 ⊕ · · · )]
· · ·

=
∑
i

[niXi]

=
∑
i

ni[Xi]

in K0(C) inductively.

“⇐”:

On the Grothendieck group K0(C), for any pair of classes [X], [Y ] let us define

an inner product:

〈[X], [Y ]〉 := dim HomC(X → Y ). (5.4)

Firstly we want to show this inner product is well-defined:
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1. For X ∼= X ′, they are both in the same isomorphism class [X] in K0(C), we

need dim HomC(X → Y ) = dim HomC(X
′ → Y ) for any Y .

Since X ∼= X ′, there is an isomorphism g : X → X ′ such that for any f ∈
HomC(X → Y ) there is a unique morphism f ′ = f ◦ g ∈ HomC(X

′ → Y ).

Similarly, for any f ′ ∈ HomC(X
′ → Y ), f = f ′ ◦ g−1 is uniquely defined.

Therefore dim HomC(X → Y ) = dim HomC(X
′ → Y ).

For dim HomC(X → Y ) = dim HomC(X → Y ′) since there is also an iso-

morphism j : Y → Y ′ such that for any i ∈ HomC(X → Y ) there is a

unique i′ = j ◦ i in HomC(X → Y ′).

2. We need to show dim HomC(X⊕Y → Z) = dim HomC(X → Z)+dim HomC(Y →
Z) for any X, Y, Z ∈ K0(C).
By definition:

dim HomC(X ⊕ Y → Z) =〈[X ⊕ Y ], [Z]〉
=〈[X] + [Y ], [Z]〉

by linearlity of inner product

=〈[X], [Z]〉+ 〈[Y ], [Z]〉
= dim HomC(X → Z) + dim HomC(Y → Z)

Then we have 〈·, ·〉 is a well-defined inner production. Since C is semisimple with

the collection of all simple object {Xi}, {[Xi]} forms an orthonormal basis w.r.t

the inner product 〈·, ·〉. Suppose [A] =
∑

i ni[Xi] in K0(C), as C is semisimple

then A ∼=
⊕

imiXi for some mi ∈ N. Then 〈[A], [Xi]〉 = ni is uniquely defined

for each [Xi] by the inner product. Therefore mi = ni for each i.

5.3.2 Graphic calculus

We are going to use string diagram calculus and it is valid in fusion category

which the Levin-Wen model based on [HP16].

Definition 5.11. In graphical calculus, objects are denoted by strands and mor-

phisms are denoted by vertices or discs. The dimension of a dualizable object

X ∈ C is given by:

dX := coε∗(X) ◦ coε(X) = ε(X) ◦ ε∗(X)
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where coε : 1 → X ⊗ X∗ is the coevaluation function and ε : X∗ ⊗ X → 1

is the evaluation function and dX ∈ R≥0. The term NZ
X,Y is the dimension of

HomC(X ⊗ Y → Z).

Then Henriques and Penneys give some important lemmas in their paper,

which will be used to define the Hamiltonian HV . Proof in details is in the chap-

ter 2 of [HP16].

In this lemma, same colour vertex in each graph does not represent same mor-

phisms. They are actually the conjugation of each other. Recall the anti-

involution of a morphism f ∈ HomC(X → Y ) is f̄ ∈ HomC(Y → X) which

is an anti-linear map.

We define:

x y

z

y∗ x∗

z∗

=
∑

i
ei ēi

Then we have the lemma.

Lemma 5.12. The following graphic calculus relations hold:

z

yx

z

=
√
dxdyd−1

z ·N z
x,y

z

(Bigon 1)

z

yx

z

⊗

x y

z

⊗

x y

z

=
√
dxdyd−1

z ·

z

⊗

x y

z

⊗

x y

z

(Bigon 2)
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∑
z∈Irr(C)

√
dz

x y

x y

z =
√
dxdy ·

x y

(Fusion)

∑
v∈Irr(C)

x w

y z

v ⊗

w∗ x∗

z∗ y∗

v∗ =
∑

u∈Irr(C)

w

z

x

y

u
⊗

x∗

y∗

w∗

z∗

u∗
(I=H)

In each relation, it is a summations of morphisms at each vertex and vertices

with different colour have different summations. For example, the relation (I =

H) interpreted by summations is:

∑
v∈Irr(C)

∑
i

∑
j

ei

ej

⊗
ēi

ēj

=
∑

u∈Irr(C)

∑
i

∑
j

ei ej
⊗

ēj ēi

(5.5)

5.4 Projection HF

If X, Y, Z are simple objects X, Y, Z ∈ IrrC, let γX,Y,Z be an orthonormal basis

for HomC(1→ X⊗Y ⊗Z). For the Hilbert space HF , we first define a projection

HF,X with X ∈ IrrC satisfies:

HF,X : HF → HF

We then introduce a graphical notation for states, writing:

n⊗
i=1

fi ⊗
n⊗
i=1

Xi)

as:
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· · ·

f1 f2

fn Xn−1

Xn

X1

X2

Now, heuristically we define:

HF,X

· · ·

f1 f2

fn Xn−1

Xn

X1

X2

by:

· · ·

f1 f2

fn Xn−1

Xn X

X1

X2

where

fi ∈ Hn(Vi) =
⊕

labelling the
edges Ei adjacent

to Vi by
Yj∈IrrC

HomC(1→
n⊗
i=1

Yj)
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The Hamiltonian HF,X defined returns 0 if such Y ′j s don’t match with X ′is. Under

these definition, we don’t need to worry about such state will be counted in kernel

of H, since such state is not in the kernel of some HE which include these vertex

and edge.

This picture doesn’t literally make sense since it is not in the Hilbert space we

defined. But it intends that we interpret the pieces in the dashed boxes around

the face via Lemma (Fusion):

Xi X =
∑

Zi∈IrrC)

√
dZi

dXi
dX

Xi X

Xi X

Zi

γ

γ̄

by which we just get

HF,X(
n⊗
i=1

fi ⊗
n⊗
i=1

Xi)

=
∑

Pi∈IrrC)

n∏
i=1

√
dPi

dXi
dX

· · ·

f1 f2

fn Pn−1

Pn

P1

P2

X

X1

Xn

X

Xn−1

Xn

X

X1

X2

We are going to show that we can build the projection HF as a certain linear

combination of the HF,X . The HF,X commute with each other and with HE and

this commutativity property is inherited by HF .

Lemma 5.13. Suppose for a face F in the cellulation, we have two Hamiltonians

HF,X and HF,Y . then we have:

HF,YHF,X =
∑
Z

NZ
X,YHF,Z (5.6)
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where NZ
X,Y is then the multiplicity of Z in X ⊗ Y .

Proof.

HF,YHF,X(
n⊗
i=1

fi ⊗
n⊗
i=1

Xi)

=
∑

Pi∈IrrC)

n∏
i=1

√
dPi

dXi
dX

(
∑

Qi∈IrrC)

n∏
i=1

√
dQi

dPi
dY

)

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

X

X1

Xn

X

Xn−1

Xn

X

X1

X2

Y

P1

Pn

Y

Pn−1

Pn

Y

P1

P2

Using Lemma (I=H) in graphs with same structure as dashed area around the

face:

=
∑

P1∈IrrC)

∑
Qi∈IrrC)

n∏
i=1

√
dQi

dXi
dXdY

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

Xn−1

Xn

Xn

X1 X1

X2

P1
Y

X
P1

P1
Y

X
P1

P1
Y

X
P1

Notice that only the P1 = P2 = · · · = Pn terms survive by using Lemma (I=H).

Denote them all by P1. Then consider Lemma (Bigon 2) in the dashed areas

above. Remark that there are three dashed boxes here since we need them all to
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apply Lemma (Bigon 2):

=
∑

P1∈IrrC)

∑
Qi∈IrrC)

n∏
i=1

√
dQi

dXi
dXdY

√
dXdY
dP1

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

Xn−1

Xn

Xn

X1 X1

X2P1

P1
Y

X
P1

P1
Y

X
P1

Then we can apply the same lemma around the face, actually n− 1 times in all:

=
∑

P1∈IrrC)

∑
Qi∈IrrC)

n∏
i=1

√
dQi

dXi
dXdY

√
dn−1
X dn−1

Y

dn−1
P1

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

Xn−1

Xn

Xn

X1 X1

X2P1

P1
Y

X
P1

P1

At the end we apply Lemma (Bigon 1) to dashed area:

=
∑

P1∈IrrC)

∑
Qi∈IrrC)

n∏
i=1

√
dQi

dXi
dXdY

√
dnXd

n
Y

dnP1

NP1
X,Y

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

Xn−1

Xn

Xn

X1 X1

X2P1 P1

P1
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Substitute P1 by Z:

=
∑

Z∈IrrC)

∑
Qi∈IrrC)

n∏
i=1

√
dQi

dXi
dZ
NZ
X,Y

· · ·

f1 f2

fn Qn−1

Qn

Q1

Q2

Xn−1

Xn

Xn

X1 X1

X2Z Z

Z

=
∑

Z∈IrrC)

NZ
X,YHF,Z(

n⊗
i=1

fi ⊗
n⊗
i=1

Xi)

which proves the proposition. In the original literature by Levin and Wen [LW05],

the proof isn’t done right. Their proof was not in the Hilbert space they defined.

Proposition 5.14. Any Hamiltonians HF,X and HF ′,Y commute and HF,X also

commutes with HE for any edge E ∈ Γ.

Proof. For Hamiltonians HF,X and HE, they either share one edge and two ver-

tices or they are not adjacent. When they are not adjacent, HE and HF,X they

just acts on different Hilbert spaces and then commute. If E is an edge around

face by definition of HE, suppose f1⊗X1⊗ f2 is share by both projections. Then

we get:

HEHF,X(
n⊗
i=1

fi ⊗
n⊗
i=1

Xi)
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=
∑

Pi∈IrrC)

n∏
i=1

√
dPi

dXi
dX

HE

· · ·

f1 f2

fn Pn−1

Pn

P1

P2

X

X1

Xn

X

Xn−1

Xn

X

X1

X2

=
∑

Pi∈IrrC)

n∏
i=1

√
dPi

dXi
dX

· · ·

f1 − ΠX1(f1) f2 − ΠX1(f2)

fn Pn−1

Pn

P1

P2

X

X1

Xn

X

Xn−1

Xn

X

X1

X2

=

· · ·

f1 − ΠX1(f1) f2 − ΠX1(f2)

fn Xn−1

Xn X

X1

X2

=HF,XHE(
n⊗
i=1

fi ⊗
n⊗
i=1

Xi)

and they commute.

For Hamiltonians HF,X and HF ′,Y , X, Y ∈ IrrC again if two faces do not adjacent,

then the Hamiltonians act on different spaces so they commute. If two faces
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adjacent, they must adjacent at one edge. Then consider:

HF ′,YHF,X(
2n−1⊗
i=1

fi ⊗
2n−1⊗
i=1

Xi)

We just need to consider the Hamiltonians acting on the sharing edge. Suppose

the sharing edge is Xn, then after applying HF,X first and then HF ′,Y , we get:

f1

fn Pn−1

Pn

P1

X

X1

Xn

X

Xn−1

Xn

Y

Xn+1

Qn

Y

X2n−1

Qn

Use Lemma (I=H) (from right hand side to left hand side).

=

f1

fn Pn−1

Pn

P1

X

X1

Xn

X

Xn−1

Xn

Y

Xn+1

Qn

Y

X2n−1

Qn

which is equivalent to apply HF ′,Y and HF,X in order. Therefore these two Hamil-

tonians commute.

Recall the definition of Grothendieck group, since C is a fusion category, it is

semisimple. Then let S = {[Xi]} be the collection of all simple objects in C, we

have the grothendieck group K0(C). Using the inner product 〈·, ·〉 defined in the

proof of Theorem 5.10, we have:

〈[Xi], [Xj]〉 = [Xi][Xj] =
∑
Xk∈S

NXk
Xi,Xj

[Xk]
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where NXk
Xi,Xj

= dim HomC(Xi ⊗Xj → Xk) which now is also the multiplicity of

[Xk] in [Xi][xj].

Combine with Lemma 5.13, we define an algebra map, for any [Xi] ∈ S:

φ : K0(C)→ C〈HF,X〉
φ([Xi]) = HF,Xi

Then by Theorem 5.10, this algebra map φF is well-defined and is an isomorphism.

Theorem 5.15. In K0(C) we can define an idempotent R by:

R =
1

D
∑

[X]∈S

d[X][X]

where d[X] = dX = ε(X) ◦ ε∗(X) is the dimension of X in C, D =
∑

Y ∈S(dY )2 is

the global dimension and S is the base of K0(C).

We need the dollowing Lemma to show such idempotent R exists.

Lemma 5.16. For [X], [Y ] ∈ K0(C),

d[X]d[Y ] =
∑
Z

NY
X,Zd[Z]

Proof. In unitary fusion category C, for object X, we have d∗X = dX .

For categorical dimension dXY = coε(XY ) ◦ coε∗(XY ) since τ : A → A∗∗ is a

natural isomorphism in fusion category. For coε(XY ):

XY (XY )∗ = X X∗Y Y ∗

Similarly for coε∗(XY ):

XY (XY )∗ = X X∗Y Y ∗

Therefore dXY = coε(XY )◦coε∗(XY ) = coε(X)coε(Y )◦coε∗(Y )◦coε∗(X) = dXdY .

Which then give us:

dXdY = dX,Y
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= d[X][Y ]

= dim(
∑
Z∈S

NZ
X,YZ)

=
∑
Z∈S

NZ
X,Y dZ

=
∑
Z∈S

dim Hom(XY → Z)dZ

=
∑
Z∈S

dim Hom(XZ∗ → Y ∗)dZ

=
∑
Z∈S

NY ∗

X,Z∗dZ

=
∑
Z∈S

NY
X,Zd[Z]

where the objects X, Y, Z are self-adjoint in unitary fusion category [Gal12].

Then we can prove the theorem.

Proof.

R2 =
1

D2

∑
[X],[Y ]∈S

d[X]d[Y ][X][Y ]

=
1

D2

∑
[X],[Y ],[Z]∈S

d[X]d[Y ]N
Z
X,Y [Z]

=
1

D2

∑
[Y ],[Z]∈S

d[Y ]d[Y ]d[Z]N
Z
X,Y [Z] (Lemma 5.16)

=
1

D
∑

[Z]∈S

NZ
X,Y d[Z][Z]

= R

So R is an idempotent in K0(C).

Recall we have algebra map φF then φF (R) = 1
D
∑

X∈IrrC dXHF,X gives an

idempotent on HF . Then we define the Hamiltonian HF as:

HF = I − 1

D
∑
X∈IrrC

dXHF,X (5.7)

where I is the identity map on HF .
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Proposition 5.17. The Hamiltonian HF is a projection and it commutes with

HF ′ and HV for any face F ′ and vertex V

Since φF (R) = 1
D
∑

X∈IrrC dXHF,X is an projection on HF , so is

I − 1
D
∑

X∈IrrC dXHF,X = HF . The commutation just inherits from HF,X .

5.5 Hamiltonian over Hilbert space H
Recall we define the Hamiltonian H as the sum of projections run over all edges

and faces over the cellulation Γ, which is:

H =
∑
E

HE +
∑
F

HF (5.8)

It is a sum of commuting projections, so it is diagonalisable with eigenvalues lying

in N. The ground state for H therefore is:

Ker(H) = (
⋂
E

Ker(HE)) ∩ (
⋂
F

Ker(HF )) (5.9)



Chapter 6

The toric code and its ground

states

Toric code introduced by Kitaev is the simplest example which contains the gen-

eral features of Levin-Wen models. It is an exactly solvable spin 1/2 model on

the lattice. In this chapter we will show that the ground states of the toric code

model are isomorphic to the skein module of the quotient category TL(δ = 1).

6.1 The toric code model

The toric code is defined on a specific cellulation of surface Γ ⊂ Σ called square

lattice with periodic boundary conditions and each edge is assigned a spin-1/2

state. A spin-1/2 model is just a model with two eigenstates. As each 1/2-spin

F

E

Figure 6.1: The toric code is defined in terms of square lattice of surface Σ. A

vertex V and face F are highlighted. Each circle is a 1/2-spin state.

67
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model only has two eigenstates, the toric code can be seen as a Levin-Wen model

based on category C = RepZ/2Z. Then we have two simple objects 1 and g

where 1 is the trivial representation and g is the sign representation. It gives the

Hilbert space of each edge:

HE = C2

In toric code, each vertex is 4-valent. The Hilbert space of each vertex is then:

HV =
⊕

labelling the
edges Ei adjacent

to V by
Xi∈IrrC

HomC(1→
4⊗
i=1

Xi)

Since Xi ∈ {1, g}, we have:

HomC(1→ X1 ⊗X2 ⊗X3 ⊗X4) =

C, if even number of Xi are g

0, otherwise

Then we get :

HV
∼=

8⊕
i=1

C ∼= C8

The Hilbert space of the whole cellulation therefore is:

HΓ =
⊗

V ∈vertices of Γ

⊗
⊗

E∈edges of Γ

HE

For each edge E and surface F , consider Hamiltonian HΓ of the form:

HΓ =
∑

vertices E of Γ

HV and +
∑

faces F of Γ

HF (6.1)

where the Hamiltonians of edges E are defined by 5.1 and the Hamiltonians of

faces F are defined by 5.4. From Proposition 5.6 and 5.14, all of these Hamilto-

nians commute. Therefore Hamiltonians HE and HF are diagonalizable.

As Hamiltonians HF and HE commute, to get the kernel of H, we have the

following relation:

Ker(H) = (
⋂
E

Ker(HE)) ∩ (
⋂
F

Ker(HF ))

= Ker(
∑
E

HE) ∩Ker(
∑
F

HF )
(6.2)

Recall when we define the Hamiltonians HF,X , if one state is not in the kernel

of HF,X , it will also not be in the kernel of some HE. therefore Ker(
∑

F HF ) ⊂
Ker(

∑
E HE). So for determining Ker(H) it is enough to determine Ker(

∑
F HF ).

But for complement, the kernel Ker(
∑

E HE) is still be determined.



6.2. KERNEL OF
∑

E HE 69

6.2 Kernel of
∑

EHE

By the general formula of Ker(
∑

E HE) in Proposition 5.7 , in toric code we have:

Ker(ΣE∈ΓHE) =
⊕

ways to label
all edges by {1,g}

⊗
V ∈Γ

HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi)

=
⊕

ways to label
all edges such that
each vertex has even
number edges are g

⊗
V ∈Γ

HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi)

⊕
⊕

ways to label
all edges such that
each vertex has odd
number edges are g

⊗
V ∈Γ

HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi)

Recall in toric code:

HomC(1→
⊗

labelled edges
Xi adjacent

to V

Xi) =

C, if even number of Xi are g

0, otherwise

Which gives Ker(ΣE∈ΓHE) has basis: all ways to label edges such that each vertex

has even number adjacent edges labelled by g.

6.3 Kernel of
∑

F HF

From equation 5.4, in toric code HF for any face F is defined as:

HF = I − 1

D
∑
X∈IrrC

(dX)HF,X

= I − 1

2
HF,1 −

1

2
HF,g

where I is the identity morphism and d1 = (dg)
2 = 1.

Lemma 6.1. The Hamiltonian HF,g in toric code model reverse labels on all edges

around F , while HF,g = I preserve the states.

Proof. Let us apply the Hamiltonian HF,g

HF,g(
4⊗
i=1

fi ⊗
4⊗
i=1

Xi)



70 CHAPTER 6. THE TORIC CODE AND ITS GROUND STATES

=

f3

f1 f2

f4 X3

X4 g

X1

X2

=
∑

Pi∈IrrC)

f3

f1 f2

f4 P3

P4

P1

P2

g

X1

X4

g

X3

X4

g

X1

X2

g

X3

X2

Consider the dashed area, since both X4 and P4 in {1, g}, there are only 4 different

states. Observe that when P4 = X4, the morphism in dashed area is zero, but

when P4 = gX4, the morphism collection HomC(X4 ⊗ g → gX4) ∼= C. Repeat

such analysis around the disc, we then have:

HF,g(
4⊗
i=1

fi ⊗
4⊗
i=1

Xi)
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=

f3

f1 f2

f4 gX3

gX4

gX1

gX2

g

X1

X4

g

X3

X4

g

X1

X2

g

X3

X2

For fi,

fi ∈
⊕

Xj∈IrrC

HomC(1→
4⊗
j=1

Xj)

When
∑4

j=1Xj = 1, HomC(1→
⊗4

j=1 Xj) ∼= C is 1-dimension, otherwise HomC(1→⊗4
j=1 Xj) is zero. Therefore fi is just a morphism over 1-dimensional vector space.

Therefore fi just a scalar α.

In Rep(Z/2Z), every morphism space HomC(
⊗

iXi →
⊗

j Yj) can only be zero

or 1-dimensional space C with identity as basis. Then for any two morphisms

β ∈ HomC(
⊗

iXi →
⊗

j Yj) with β(id) = m · idand γ ∈ HomC(
⊗

kWk →
⊗

iXi)

with γ(id) = n·id, β◦γ(id) = mn·id. For any two morphisms β ∈ HomC(
⊗

iXi →⊗
j Yj) with β(id) = n · idand γ ∈ HomC(

⊗
kWk →

⊗
l Zl) with γ(id) = n · id,

β ⊗ γ(id) = n · id.

Also we have Rep(Z/2Z) is rigid. Then we have ε(X) : X∗ ⊗ X → 1 and

coε(X) : 1 → X ⊗X∗. Since 1∗ = 1 and g∗ = g, then ε(1) = 1 so ε and coε are

all identities.

Now consider the dashed area. The green point and blue point represent two

identity morphisms and we can multiply each morphism to the scalar morphism

fi at the red vertex. Therefore we then have:

f1

gX4

gX1

g

X1

X4
=

f1

gX4

gX1
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Then apply such relation around the disc.

HF,g(
4⊗
i=1

fi ⊗
4⊗
i=1

Xi)

=

f3

f1 f2

f4 gX3

gX4

gX1

gX2

Use the same method we can get HF,1(
⊗4

i=1 fi ⊗
⊗4

i=1 Xi) =
⊗4

i=1 fi ⊗
⊗4

i=1Xi

so HF,1 = I.

The Hamiltonian of faces is then:

HF = I − 1

2
I − 1

2
V =

1

2
I − 1

2
ReF (6.3)

where we use ReF to denote the reverse function which reverse the states of all

edges around face F .

To find the kernel Ker(
∑

F HF ) we can use the projection I −HF = 1
2
I + 1

2
ReF .

When such projection apply to the ground states, it just preserves the ground

states. Thus, let us define:∏
F

(I −HF ) =
∏
F

(
1

2
I +

1

2
ReF )

which is the projection onto Ker(
∑

F HF ). Therefore the ground state x ∈ H of

H is the same as the ground state of
∑

F HF , which is the state satisfies

ReF (x) = I(x)

for every face F .

Theorem 6.2. The ground states of H in toric code model satisfies:

Ker(H) = C[H1(Σ;Z/2Z)] (6.4)
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So the ground states of toric code do not depends on the square lattice Γ ∈ Σ, but

only depends on Σ.

Proof. To show the isomorphism holds, it is enough to define two injective maps

φ : Ker(H)→ C[H1(Σ;Z/2Z)] and ψ : C[H1(Σ;Z/2Z)])→ Ker(H).

For any element in C[H1(Σ;Z/2Z)]), it is then a linear combination of 1-chains

in H1(Σ;Z/2Z), since H1(Σ;Z/2Z) modulo Im(∂C2(Σ;Z/2Z)), we define ψ′ :

C[H1(Σ;Z/2Z)]) → H which maps every 1-chain in H1(Σ;Z/2Z) to loop on

square lattice quotient by the boundaries formed by edges in lattice and the 1-

chain, and all homological equivalent 1-chains maps to the same loop on square

lattice. Then label each corresponding edge by g.

After applying the map ψ′ we then apply the projection
∏

F (I−HF ) to the image

→
g g g g

Figure 6.2: The way to map 1-chains in H1(Σ;Z/2Z) to loops on square lattice

of ψ′. then by definition of
∏

F (I−HF ), it gives a linear composition of elements

in Ker(H) which is itself also in Ker(H). Thus we define ψ =
∏

F (I −HF ) ◦ ψ′

which is injective since both ψ′ and
∏

F (I −HF ) are injective.

Inversely, recall Ker(H) = Ker(
∑

F HF ) ⊂ Ker(
∑

E HE), then there is an iden-

tity map i : Ker(H) → Ker(
∑

E HE) canonically. The basis for Ker(
∑

E HE)

is the collection of states where each states satisfies the condition that every

vertex has an even number of edges labelled by g. Then let us define a map

φ′ : Ker(
∑

E HE) → C[H1(Σ;Z/2Z)] such that each edge labelled by g transfers

to an edge assigned by 1 and each edge labelled by 1 transfers to edge assigned

by 0 in C[H1(Σ;Z/2Z)]. Since each vertex has even number of adjacent edges

labelled by g, then after apply the map φ′, the transferred vertices still have

even number of edges assigned by 1. Therefore, applying boundary map ∂1 will

give even number of 0-chains at each vertices. For any x ∈ Ker(H), we then

define φ(x) = φ′ ◦ i(x) ∈ C[H1(Σ;Z/2Z)]. For any element x ∈ Ker(H), we

have ReF (x) = x for any faces F . By the definition of ReF , it reverses the la-

belling of edges around F then φ◦ReF is the same as add an extra 2-boundary in

C[H1(Σ;Z/2Z)]. So φ◦ReF (x) = φ(x) for any faces gives φ(x) is the homological
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equivalent class. So φ is injective over Ker(H).

Then combine with Theorem 4.14, we have:

SΣ(TL(δ = 1);Z/2Z) = Ker(H)

which shows the Temperley-Lieb category TL(δ = 1) generates toric code model.
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