
Formalizing Modal Logic in HOL

Yiming Xu

October 2019

A thesis submitted for the degree of Bachelor of Science (Honours)

of the Australian National University

For the following four supervisors/lecturers of mine:

Michael Norrish

Scott Morrison

James Borger

Vigleik Angeltveit

Declaration

The work in this thesis is my own except where otherwise stated.

Yiming Xu

Acknowledgements

Firstly, big thanks to my project main supervisor Michael Norrish and co-supervisor

Scott Morrison, as well as the two supervisors/lecturers James Borger and Vigleik

Angeltveit who have provided me significant amount of guidance on my studying.

The whole list of specific things which I need to thank you about is too long to be

displayed here. But overall, I feel that I am the luckiest person in the world for

having all of you teaching me all this interesting stuff and helping me developing

all these useful skills. I will definitely try my best in my further studying to prove

that I deserve all the good education from you. Also, I would thank Joan Licata

for being a really helpful and considerate honour convenor, and thank Amnon

Neeman for treating us so carefully in his special topic course.

Secondly, thanks to all the honours students. Special thanks to Ameilia Han,

Fredrick Yuan, Chris Hone, Mitchell Rowett, Josh Tomlin, Keeley Hoek, Michael

Howes, Kelly Maggs, Ben Leedom, Jane Tan, for both collaborating on assign-

ments and chatting.

Moreover, thanks to Robert Culling, for being my tutor from Algebra 1 to

Algebra 3, and proofreading several pages. I would also thank Zoey Chen for

feeding me.

Finally, thanks to my parents for supporting my studies through all these

years.

v

Contents

Acknowledgements v

1 Introduction 1

1.1 What is modal logic? . 1

1.2 What is HOL? . 2

1.3 Why is the combination of the two interesting? 2

1.4 What have I done? . 3

1.5 How to read this thesis . 4

2 Getting Started 5

2.1 HOL syntax . 5

2.2 The basic setup . 7

3 Invariant Results and Finite Model Property 12

3.1 Invariant results . 12

3.1.1 Generated submodels . 12

3.1.2 Bounded morphisms . 14

3.1.3 Bisimulation . 17

3.2 Finite model property . 20

4 Standard Translation 28

5 Modal Saturation via Ultrafilter Extensions 37

6 Two Characterizing Results 45

6.1 The ‘modal’ fragment of L1
τ formulas 45

6.1.1 Interlude: Countably saturated models via ultraproducts . 49

6.2 Positive existential formulas and preservation under simulations . 67

vi

Chapter 1

Introduction

There are four questions to answer in order to make sense of our title:

1.1 What is modal logic?

It is hard to find a concise answer to this question. As stated in the textbook

‘Modal Logic’ by Patrick Blackburn, Maarten de Rijke, and Yde Venema, if you

ask three modal logicians, you are likely to get at least three different answers.

Therefore, we will begin by asking what is modality. Let us consider first-order

logic for a moment. Suppose x is a person. When we say ‘x is happy’, we are

applying the predicate ‘is happy’ to the person x. But also in our daily conversa-

tion, we may say something like ‘perhaps x is happy’ or ‘x must be happy’. Here,

‘perhaps’ and ‘must’ are used to describe the ‘mode’ of the predicate ‘is happy’,

and they are examples of modalities. The modalities ‘perhaps’ and ‘must’, which

are canonically called ‘possibly’ and ‘necessarily’ in formal modal logic, are de-

noted as ‘♦’ and ‘�’ respectively. Let P denote the predicate ‘is happy’. In formal

language, we can then write ‘perhaps x is happy’ as ‘♦Px’, and write ‘x must be

happy’ as ‘�Px’.

In the above discussion, we introduced modalities by considering their seman-

tic meanings. But historically, when logicians start thinking about capturing

modalities using formal logic, they enriched propositional logic by adding some

extra symbols, called modal operators, together with some axioms describing

their behavior, but there was no satisfactory way to define a formal semantics of

those modal operators. Before they realized the usefulness of the semantic tools,

modal logicians had a hard time attempting to solve problems of distinguishing

different systems of axioms. But more than 40 years after the concept of modal

1

2 CHAPTER 1. INTRODUCTION

logic was established, the usage of Kripke models brought many interesting results

to this subject. Work on modal logic using Kripke models is conventionally called

‘modal model theory’, which is exactly what I am formalizing in this project.

Nowadays, modal logic is widely adopted in many disciplines, including, but

not limited to, mathematics, philosophy, linguistics, and economics. In partic-

ular, the development of modal logic and computer science support each other.

With the topics taken from computer science and everywhere else, modal logic

is growing rapidly, and we have great chance to see more and more interesting

application of this subject to both theoretical research and daily life.

1.2 What is HOL?

A brief overview of HOL can be found in [6]. For a short answer, HOL is an

interactive theorem prover: a computer program used to prove mathematical

theorems. We stress “interactive”: we do not expect the machine to prove the-

orems automatically. According to Gödel’s incompleteness theorem, there is no

algorithm that can determine the truth value of every mathematical statement.

Hence to prove mathematical theorems, we interact with the machine, providing

human intelligence and guidance. However, it is also important that interactive

theorem provers can and do use automatic techniques. For instance, as there are

automatic methods for both first-order logic and Presburger arithmetic, these

can be embedded in HOL, making it possible to work at a higher level when

interacting with the machine.

There are many theorem provers based on various foundational systems: HOL

is based on simple type theory, and there exist other theorem proves based on

dependent type theory (e.g. Lean, Coq) and set theory (Mizar, metamath). Each

of these systems has their advantages, but there is a trade-off: simple type theory

is widely considered as less expressive but rather easy to understand and to be

implemented, whereas for more expressive systems, it takes longer for the machine

to execute a proof step.

1.3 Why is the combination of the two interest-

ing?

As discussed above, modal model theory has a long history and many theorems in

modal model theory have been proved since the usage of Kripke models became

1.4. WHAT HAVE I DONE? 3

popular. Nevertheless, none of these theorems have been machine checked. By

formalizing modal model theory in a computer, we will make sure that we have

understood every detail of the formalized theorems, find out hidden assumptions,

and correct minor errors in their statements. And by formalizing in HOL, we

will demonstrate that although simple type theory is a rather weak foundational

system and does lack expressiveness, it is still capable of capturing most of the

theorems we are interested in. We identify where the lack of expressiveness causes

problems.

1.4 What have I done?

My project is to formalize some theorems of modal model theory, based on the

first two chapters of the textbook Modal Logic [1]. At the beginning of the

textbook, the authors give three slogans of this subject:

Slogan 1: Modal languages are simple yet expressive languages for talking about

relational structures.

Slogan 2: Modal languages provide an internal, local perspective on relational

structures.

Slogan 3: Modal languages are not isolated formal systems.

A reader will see evidence of the three slogans consecutively in this thesis.

Chapter 2 and 3 are about formalizing basic properties of modal formulas and

their semantic behaviors on models of propositional modal logic. In particular,

the locality of a modal language is proved at the end of Chapter 3. From Chapter

4 onwards, modal logic and first-order logic are linked together.

In summary:

• By now, every theorem proved in the book up to section 2.7 that can be

captured by the basic modal language and HOL is formalized. The defini-

tions, theorems and proofs are taken from the book, and their statements

in HOL are taken to be as close as possible to the original mathematical

statements appearing in the book.

• There are some results which are only used but not proved in the textbook.

Such results are all formalized, means that they are safe to be quoted for

proving things. The most significant part is the work on ultraproducts. This

4 CHAPTER 1. INTRODUCTION

piece of work depends in turn on the work of John Harrison on first-order

logic [4], which was done in 1998. The work on ultraproducts is discussed

as a interlude in this thesis when it is about to be used.

• Section 2.6 of [1] consists of two parts: characterization and definability.

The ‘definability’ part is not formalized in HOL since it is not possible to

capture its statement in HOL. Section 2.7 [1] consists of two parts as well:

simulation and safety. The ‘safety’ part is not formalized in HOL since its

statement is not purely about the basic modal language. These two parts

are not mentioned in the body of the thesis.

1.5 How to read this thesis

This thesis explains the most interesting parts of the work we have done, and

it is as self-contained as possible. We do not assume the reader knows either

modal logic or interactive theorem proving, so we will introduce both topics. The

approach we have taken to structuring the thesis is explain both topics at the

same time.

We explicitly give most of the formal definitions we use, as well as the formal

statements of constructions and theorems when necessary. For the sake of length,

we only explain the most interesting theorems, and omit those that are less inter-

esting. Though the thesis omits some proofs that are routine or not interesting

enough from the theorem-proving aspect, all proofs have been formalized in HOL.

A key role of a human reader is to verify that the formalized statements

do actually have the intended meaning. For this reason, for most of the major

theorems and definitions, we give both a “human-readable” statement, followed

by the pretty-printed statement from the HOL sources, meaning that there is

no chance of error in the transfer from checked material to LATEX. However, the

pretty-printing process does turn purely linear computer text into more agreeable

printed mathematics, complete with subscripts, superscripts and the like. A

reader who wants to fully trust my formalization should carefully compare the

English statements and the formalized statements in HOL.

For each definition and each theorem, a clickable link to the HOL sources on

Github is provided, where the formal statements can be viewed. We encourage

readers to follow at least one hyperlink to see the original text as it was provided

to HOL, so the difference between the HOL source and pretty-printed version in

the thesis will become clear.

Chapter 2

Getting Started

2.1 HOL syntax

Our theorem prover HOL is based on simple type theory. We are not going to give

a convoluted introduction on simple type theory. To read this thesis, the reader

only need to know that in simple type theory, whenever we refer to something,

it must come with its type. We write a : α to express ‘a is a term of the type

α’. For a type α, its type universe, which is the set of all the terms of type α, is

denoted U(:α).

In the process of reading this thesis, the reader will get to know how to work

with simple type theory. As mentioned in the introduction, the most obvious

advantage of simple type theory is its simplicity, which makes most statements in

HOL straightforward to read. We can read off the conjunctions, disjunctions and

implications in the statement directly. However, there is some special syntax for

HOL which is worthwhile to be explained first. While it may be helpful to read

this list now, when each instance of this syntax is used for the first time, we will

explain it there.

• Inductive types: When defining inductive types, we write bars between the

constructors of the type.

• Record types: We put the fields of a record type into ‘〈〈· · ·〉〉’, and sepa-

rate the fields using ‘;’. For instance, if we define a type with ‘Mytype =

〈〈 field1 := · · · ; field2 := · · ·〉〉’, where the ‘· · · ’ will be a type. If A is a term

of the type Mytype, we can write A.field1 to get the field1 of A.

• Function application: Unlike what we write in common mathematical text-

books, when we apply a function f of type α → β on a term a of type α,

5

6 CHAPTER 2. GETTING STARTED

we write f a instead of f(a). In turn, this means that function applications

can be chained, producing terms such as f a b, which can be read as similar

to applying f to two arguments as once, where f ’s type will be an instance

of the pattern α → β → γ. Though it is possible to write functions

applied to pairs (f (a, b)), the “curried” style is more common.

• Predicates as functions: In simple type theory, a predicate is a function to

the type bool consisting of T and F. A predicate P which takes arguments

of type α is a term of type α → β. For a of type α, we write P a or

P a ⇐⇒ T to express ‘the predicate P is true for a’.

• λ-abstraction: We can use λ-abstraction to define functions. For instance,

the function λ x . x + 2 sends x to x + 2. The function λ i . f i is the same

as the function f , since it means that ‘for each i, send i to f i’.

• Quantification: When using quantifiers in HOL, we put a dot after the thing

that we are quantifying over. For example, ∀ x . P x reads ‘for all x, we have

P x ’ and ∃ x . P x reads ‘exists an x such that P x ’, where P is a predicate.

When quantifying over multiple things, we only write one quantifier at the

very beginning. For example, ‘∀ x y . R x y ’ reads ‘for all x, for all y, we

have R x y ’ and ‘∃ x y . R x y ’ reads ‘exists x and y such that R x y ’, where

R is a relation.

• Useful functions:

– CARD: The function CARD takes a set, and gives its cardinality.

– count: The function count takes a natural number n, and gives the set

{0, 1, · · · , n− 1}.

– BIJ: The function BIJ takes a term of type f : α→ β, an α-set A and

a β-set B, and gives the boolean value T if and only if f is a bijection

form A to B, similar for the functions INJ and SURJ.

– CHOICE: The function CHOICE is just the choice function. For a

non-empty set X, the only thing we know about CHOICE X is that

CHOICE X ∈ X .

– RESTRICT: The function RESTRICT takes a relation on terms of type

α and an α-set A, and gives a relation R |A defined as for any term x

and y of type α, we have R |A x y , which reads ‘x and y are related

by the relation R |A’, if and only if x ∈ A and y ∈ A and R x y .

2.2. THE BASIC SETUP 7

– R∗ and R+: For a relation R on α-terms, we use R∗ to denote its

reflexive and transitive closure, and use R+ to denote its transitive

closure.

– MAX: The function MAX takes two natural numbers and give the

greater one.

• Lists: There are some functions which deal with lists:

– LENGTH: The function LENGTH takes a list and gives its length, which

is a natural number.

– HD: The function HD takes a list and give the first member of it.

– EL: The function EL takes a list, a natural number n, and give the

n-th member of it (counted from 0).

– LAST: The function LAST takes a list and gives the last member of it.

– MAP: The function MAP takes a function of type α→ β and an α-list

l, gives the β-list such that the n-th member is f a, where a is the

n-th member of l.

2.2 The basic setup

In our formalization, we only consider the basic modal language, in which the

only primitive modal operator is the ‘♦’. For a type α, an α-modal formula is

either of form VAR p, where p is of type α, or a disjunction φ∨ψ of two α-modal

formulas, or the falsity ⊥, or a negation ¬φ of an α-modal formula φ, or, finally,

of the form ♦φ where φ is an α-modal formula.

In HOL, we create a data type called ‘form’ of the formulas of this modal

language. To define a new inductive type, we give a list of ways to construct

terms of the type, separated with the symbol ‘|’.

Definition 2.1. [1, Definition 1.9] An α-modal formula as described above is

specified formally in HOL as an inductive type:

α form = VAR α | DISJ (α form) (α form) | ⊥ | (¬) (α form) | ♦ (α form)

Note that DISJ is of type α form→ (α form→ α form), which means that

it can be regarded as a function that takes two α-modal formulas and gives an

α-modal formula. In particular, once DISJ appears, the two arguments after it

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap1Script.sml#L13

8 CHAPTER 2. GETTING STARTED

are always α-modal formula, otherwise it does not make sense. We will write

‘φ1 ∨ φ2 ’ for ‘DISJ φ1 φ2’ afterwards. We can also regard ¬ and ♦ as functions of

type α form → α form. The functions VAR, DISJ, (¬), ♦ together with ⊥ are

called the constructors of the type of α-modal formulas. From now on, when we

talk about α-modal formula, we will call a term of type α a propositional letter.

We will just call an α-modal formula an α-formula if no confusion arises.

The non-primitive connectives, the conjunction ‘∧’, the implication ‘→’, and

the truth ‘>’, are defined in a standard way as φ1 ∧ φ2 := ¬(¬φ1 ∨ φ2), φ1 →
φ2 := ¬φ1 ∨ φ2 and > := ¬⊥ respectively.

Note that all formulas are of finite size; it is not possible to construct infinite

conjunctions or disjunctions.

We have a modal operator that is dual to the diamond: the box �φ := ¬♦¬φ,

as an analogue of the duality between the universal quantifier and the existential

quantifier, in the sense that ∃ is defined to be ¬∀¬ in classical logic.

Having defined the syntax of formulas, we can now define their semantics.

It is easy to come up with a way to interpret formulas which are no more than

combinations of propositional letters using the connectives ‘∨’ and ‘¬’. How-

ever, to interpret a modal formula that involves diamonds, we need to assign the

syntactical notation ‘♦’ an ‘actual meaning’.

To interpret modal formulas, we need a relational structure. A relational

structure consists of a set, which is called the ‘set of worlds’, and a binary relation

on it. Such a relational structure is called a frame in the rest of the thesis. If

in addition, every world of the frame is equipped with an assignment of truth

values on propositional letters, then we will have a model of modal formulas.

The formula ♦φ, where φ is a modal formula, is interpreted as ‘there exists a

world related to the current state where φ is true’. Accordingly, ‘�φ’ will be

interpreted as ‘for every point that is related to the current state, φ is true’.

For a first example, consider a two-point set {a, b}, and let the relation be

{(a, b)}. Let the propositional letter p be true on both a and b. Consider the

modal formula ♦VAR p, we say ♦VAR p is true at a, since b is a point that is

related to a, where the formula VAR p holds. On the other hand, ♦VAR p does

not hold at b, since there is no world related to b.

Returning to our formalization, we define a frame and a model as follows in

HOL:

Definition 2.2. [1, Definition 1.19] A β-frame consists of a world set and a

relation, where the world set has type β → bool and the relation has type

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap1Script.sml#L76

2.2. THE BASIC SETUP 9

(:β → β → bool). A model for modal logic is a frame together with a function

called valt. The function valt assigns truth values of propositional letters at each

world.

β frame = 〈〈 world : β → bool; rel : β → β → bool 〉〉
(α, β) model = 〈〈 frame : β frame; valt : α → β → bool 〉〉

Here the 〈〈· · ·〉〉 is the notation for defining a structure. When we say a (α, β)-

model, we mean a model for α-formulas with a β-set as its underlying set. For a

model M, its field M.valt will be called the valuation in the discussion afterwards.

In the rest of the thesis, we use the notations MW , MR and MV to denote the

world set, the relation, and the valuation of the model M.

We interpret modal formulas using the function called ‘satisfaction’.

Definition 2.3. [1, Definition 1.20] Satisfaction is a predicate inductively defined

on modal formulas, which takes a model M, a world w in the model, a modal

formula, and gives a truth value. We read ‘M,w
 φ’ as ‘φ is satisfied at the

world w in M’. For w ∈ MW , a propositional letter p is satisfied at w if

MV p w is the boolean value T. Falsity is never satisfied, a negation of a formula

φ is satisfied if φ is not satisfied, a disjunction is satisfied if at least one of its

disjuncts is satisfied, and ♦φ is satisfied if there exists a world in the model that

w is related to where φ is satisfied.

M,w
 VAR p
def
= w ∈ MW ∧ w ∈ MV p

M,w
 ⊥ def
= w ∈ MW ∧ F

M,w
 ¬φ def
= w ∈ MW ∧ M,w 6
 φ

M,w
 (φ1 ∨ φ2)
def
= M,w
 φ1 ∨ M,w
 φ2

M,w
 ♦φ
def
= w ∈ MW ∧ ∃ v .MR w v ∧ v ∈ MW ∧ M, v
 φ

Observe that instead of defining the satisfaction of VAR p at w to be w ∈
MV p, we include the extra condition that w must live in the underlying set of

M. This is because HOL allows us to write M,w
 φ, for every w of the correct

type, even if it does not belong to the underlying set of M. A reader may think

that we can define our satisfaction predicate as a function that takes a model M,

and make sure that ‘satisfaction on the model M’ is a function from the worlds

set of M and the set of modal formulas to the set { T; F } . We might do this in

a dependently typed language, but it is not possible in HOL: we cannot make the

domain and the codomain an intrinsic property of a function. The notion of a

function from an α-set A to a β-set B is not primitive. Such a function is a term

f of type α → β, with the additional property that ∀ a. a ∈ A ⇒ f a ∈ B .

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap1Script.sml#L94

10 CHAPTER 2. GETTING STARTED

Though f may satisfy this property, it still has values on elements of α that are

not part of the set A.

On each model, the truth value of each modal formula is completely deter-

mined by the truth values of the propositional letters appear in it. In HOL,

we define a function prop letters that takes a modal formula and gives the set of

propositional letters appearing in it, and prove:

Proposition 2.1. [1, Exercise 1.3.1] If two models M1 and M2 have the same

frame and agree on the valuation on all the propositional letters in φ, then φ is

satisfied at a world w in M1 if and only if φ is satisfied at w in M2.

`M1.frame = M2.frame ∧ (∀ p. p ∈ prop letters φ ⇒ MV
1 p = MV

2 p) ⇒
∀w . w ∈ MW

1 ⇒ (M1,w
 φ ⇐⇒ M2,w
 φ)

For two modal formulas using the same type of propositional letters, we have

the notion of being equivalent.

Definition 2.4 (Equivalence). If φ1 , φ2 are α formulas, φ1 ≡(:β) φ2 means for

every (α, β)-model M and every world w in it, we have M,w
 φ1 ⇐⇒
M,w
 φ2 .

(φ1 : α form) ≡(:β) (φ2 : α form)
def
=

∀ (M : (α, β) model) (w : β).M,w
 φ1 ⇐⇒ M,w
 φ2

A notable thing is that we need to refer to the type of models when talking

about equivalence of formulas. We are not allowed to omit the type parameter

(:β) in the definition, since then there will be a type, namely the type of the

underlying set of the models we are talking about, that only appears on the right-

hand side but not on the left-hand side of the definition, which is not allowed in

HOL.1 Also, we are not allowed to quantify over types, so it is also impossible to

define the equivalence to be ∀µ. φ1 ≡µ φ2 , where µ denotes a type. Therefore,

because of such a specific problem in HOL (actually, in simple type theory), this

definition is not encoding the equivalence in mathematical sense precisely, since

when we mention equivalence of formulas in usual mathematical language, we

are implicitly referring to the class of all models, but the constraint here bans us

from talking about all models of all possible types at once. Such a constraint give

rise to some problems in our formalization, as we will see in later chapters.

We can immediately prove that for every type α, if φ1 ≡(:β) φ2 then ♦φ1 ≡(:β)

♦φ2 . If we use set theory as our foundation, then the converse can be proved

1See the HOL Logic manual [3] for more details.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap1Script.sml#L621
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/IBCDNFrevisedScript.sml#L17

2.2. THE BASIC SETUP 11

very easily: If two diamond formulas ♦φ1 and ♦φ2 are equivalent, then for a

contradiction, suppose that φ1 and φ2 are not equivalent, then there exists a

model M and a world w such that w satisfies f but not g. We can add a world

v to the world set of M that is only related to w, then v will be a witness of the

fact that ♦φ1 and ♦φ2 are not equivalent. But under our definition in HOL, if

the (:β) is a finite type, the proof is blocked: since we cannot make sure that we

can come up with a world v which is not already being used by M, and hence

come up with a fresh world to add to M which is only related to w. However, for

every model, regardless of its world set is of a finite type or not, we can always

create a copy of the model in an infinite type. So it is harmless to only play with

equivalence of formulas for models whose underlying set is of an infinite type.

Proposition 2.2 (equiv0_DIAM). For two modal formulas φ1 and φ2 , φ1 and

φ2 are equivalent on models with β-world sets where β is an infinite type if and

only if ♦φ1 and ♦φ2 are equivalent on models with α-world sets.

` INFINITE U(:β) ⇒ (♦φ1 ≡(:β) ♦φ2 ⇐⇒ φ1 ≡(:β) φ2)

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L980

Chapter 3

Invariant Results and Finite

Model Property

In this chapter, we talk about some basic results about modal logic. First, we

prove some theorems about when modal satisfaction is invariant under operations

and relations. And in the second section, we prove the finite model property of

modal formulas.

3.1 Invariant results

The key concept we are interested in this section is modal equivalence.

Proposition 3.1. [1, Definition 2.1 (Modal Equivalent)] Two worlds w ∈ MW

and w ′ ∈ M′W are called to be ‘modal equivalent’ (notation: M,w ! M′,w ′)

if they satisfy the same set of modal formulas.

M,w !M′,w ′
def
= ∀φ.M,w
 φ ⇐⇒ M′,w ′
 φ

The three parts in this section are about three ways to get modal equivalence,

namely via generated submodels, bounded morphisms, and bisimulation. The

first two constructions will be proved to be special cases of the third one.

3.1.1 Generated submodels

Given a model, there is an operation that allows us to restrict our scope to a

smaller model without changing satisfaction of modal formulas, this is called the

‘generated submodel’ construction. When we say ‘M1 is a submodel of M2’, we

mean all the information of M1 is inherited from that of M2.

12

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L54

3.1. INVARIANT RESULTS 13

Definition 3.1. [1, Definition 2.5, Submodels] By submodel M1 M2, we mean:

• The world set of M1 is a subset of the world set of M2.

• For two worlds w1, w2 in M1, we have MR
1 w1 w2 iff MR

2 w1 w2.

• For every world of M1, its valuation of propositional letters is exactly the

same as that in M2.

submodel M1 M2
def
=

MW
1 ⊆ MW

2 ∧
(∀w1 w2. w1 ∈ MW

1 ∧ w2 ∈ MW
1 ⇒ (MR

1 w1 w2 ⇐⇒ MR
2 w1 w2)) ∧

∀w1. w1 ∈ MW
1 ⇒ ∀ v .MV

1 v w1 ⇐⇒ MV
2 v w1

It is not necessary that submodel construction preserves modal satisfaction.

Although the clause about relation says that for every pair of worlds w1, w2 in

M1, they are related in M1 iff they are related in M2, it can be the case that

w1, w2 are worlds in M2 such that MR
2 w1 w2, where w2 is the only world that w1

is related to, but w1 ∈ MW
1 whereas w2 /∈ MW

1 . As a consequence, if we have

M2,w2
 φ, then we will have M2,w1
 ♦φ but not M1,w1
 ♦φ since there is

no world in M1 such that w1 is related to. To avoid such situation, we can add

an extra constraint to make sure that for each world w in M2, if it is included

in the world set of M1, then every world w ′ ∈ MW
2 such that MR

2 w w ′ must

also be included to the world set of M1. A submodel which satisfies this extra

condition is called a generated submodel (notation: ‘M1 � M2’ reads ‘M1 is a

generated submodel of M2’).

Definition 3.2. [1, Definition 2.5, Generated Submodels]

M1�M2
def
=

submodel M1 M2 ∧
∀w1 w2. w1 ∈ MW

1 ∧ w2 ∈ MW
2 ∧ MR

2 w1 w2 ⇒ w2 ∈ MW
1

Note that for a generated submodel M1 of M2, for worlds w1 and w2 of w2,

if w1 is included to the world set of M1 and MR
2 w1 w2, we must include w2 to

the world set of M1 as well. But if MR
2 w1 w2 and w2 is included to M1, we

are allowed not to include w1 to M1. This is because the ‘♦’ operator in modal

formulas cannot ‘look back’, in the sense that adding extra connections or discard

connections towards a world w does not change the satisfaction of modal formulas

at w.

Generated submodels do preserve modal satisfaction:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L60
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L68

14CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

Proposition 3.2. [1, Proposition 2.6]

`M1�M2 ∧ w ∈ MW
1 ⇒ (M1,w
 φ ⇐⇒ M2,w
 φ)

3.1.2 Bounded morphisms

Just as in algebra, it is natural to investigate ‘morphisms’ between our structures

of interest. Here, these structures are the models. For instance, ‘homomorphism’

is the weakest notion of ‘structure-preserving map’:

Definition 3.3. [1, Definition 2.7 (Homomorphisms)] A homomorphism from a

model M1 to a model M2 (notation: M1
f→M2) is a function from the world set

of M1 to the world set of M2 that preserves relation and valuation.

M1
f→M2

def
=

(∀w . w ∈ MW
1 ⇒ f w ∈ MW

2 ∧ ∀ p. w ∈ MV
1 p ⇒ f w ∈ MV

2 p) ∧
∀w v . w ∈ MW

1 ∧ v ∈ MW
1 ∧ MR

1 w v ⇒ MR
2 (f w) (f v)

The second clauses only says ‘propositional letters are preserved’, and the last

clause only says ‘relations in the source model are preserved by a homomorphism’.

We are allowed to have propositional letters satisfied at the target but not at the

source, and we can have relations in the target which are not from a relation in

the source. Because of these reasons, we cannot guarantee every world and its

image in the target satisfy exactly the same set of modal formulas. Actually,

there exists more than one notion of morphisms which gives equivalences, but

most of these notions are too strong to be interesting. The only one among these

notions that we are interested in here is bounded morphism.

Definition 3.4. [1, Definition 2.10 (Bounded Morphisms)] A bounded morphism

between two models M1 and M2 is a function f between their world sets such

that:

• For every world w of M1, it satisfies the same propositional letters as f w.

• If w, v are worlds in M1 such that MR
1 w v, then we have MR

2 (f w) (f v)

in M2.

• If w ∈ MW
1 and we have MR

2 (f w) v ′ for some v ′ ∈ MW
2 , then we can

find a world v in M1 such that MR
1 w v and f v = v ′.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L75
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L120
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L213

3.1. INVARIANT RESULTS 15

In HOL:

bounded mor f M1 M2
def
=

∀w .

w ∈ MW
1 ⇒

f w ∈ MW
2 ∧ (∀ a.M1,w
 VAR a ⇐⇒ M2, f w
 VAR a) ∧

(∀ v . v ∈ MW
1 ∧ MR

1 w v ⇒ MR
2 (f w) (f v)) ∧

∀ v ′. v ′ ∈ MW
2 ∧ MR

2 (f w) v ′ ⇒ ∃ v . v ∈ MW
1 ∧ MR

1 w v ∧ f v = v ′

We read ‘bounded mor f M1 M2’ as ‘f is a bounded morphism from M1 to M2’.

From above, the notion of bounded morphism is a strengthen of homomorphism.

For a homomorphism, we only need propositional letters to be preserved, but for

bounded morphism, we strengthen the condition on propositional letters to be an

‘if and only if’. Moreover, we added a ‘backward condition’ on relations.

Bounded morphism gives modal equivalences, in the following sense:

Proposition 3.3. [1, Proposition 2.14] If f is a bounded morphism from M1 to

M2, then for each modal formula φ and each world w in M1, we have M1,w

φ ⇐⇒ M2, f w
 φ.

` bounded mor f M1 M2 ∧ w ∈ MW
1 ⇒ (M1,w
 φ ⇐⇒ M2, f w
 φ)

The above result is very useful. As an application, now we use it to prove the

tree-like property of the basic modal language. The tree-like property says that

for each formula φ satisfied on some point in some model, there exists a tree-like

model such that φ is satisfied at the root of the tree. As the name indicates, a

tree-like model is a model such that its underlying frame is a tree.

Definition 3.5. [1, Definition 1.7] The predicate tree takes a frame H and a point

r, and tree H r means that H is a tree with root r. A frame H is a tree with root

r if:

• We have r is a world in of H.

• For any world w ∈ H .world, we have r is related to w via the reflexive and

transitive closure of H .rel.

• For any world w ∈ H .world, it cannot be linked back to the root r via the

reflexive and transitive closure of H .rel.

• For any world w ∈ H .world, it has a unique predecessor.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L227
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L319

16CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

In HOL:

tree H r
def
=

r ∈ H .world ∧ (∀w . w ∈ H .world ⇒ H .rel |H .world
∗ r w) ∧

(∀w . w ∈ H .world ⇒ ¬H .rel w r) ∧
∀w . w ∈ H .world ∧ w 6= r ⇒ ∃!w0. w0 ∈ H .world ∧ H .rel w0 w

In above, for a relation R on terms of type α and an α-set A, we have R |A a b

for terms a, b of type α if and only if both a and b are in A, and R a b. We write

R∗ to denote the reflective and transitive closure of the relation R.

Every tree-like model is rooted, where rooted models are just submodel gen-

erated by a singleton set. As an instance of generated models, a rooted model

needs to be sitting in an ambient model.

Definition 3.6. [1, Definition 2.5 (Rooted Models)] The predicate ‘rooted model’

takes three parameters: The model itself, the root r, and the ambient model that

it is sitting in. We read ‘rooted model M1 r M2’ as M1 is a rooted model with

root r sitting in the ambient model M2.

rooted model M1 r M2
def
=

r ∈ MW
2 ∧ (∀ a. a ∈ MW

1 ⇐⇒ a ∈ MW
2 ∧ MR

2 |MW
2

∗ r a) ∧
(∀w1 w2. w1 ∈ MW

1 ∧ w2 ∈ MW
1 ⇒ (MR

1 w1 w2 ⇐⇒ MR
2 |MW

2
w1 w2)) ∧

∀ p w .MV
1 p w ⇐⇒ MV

2 p w

We now prove the tree-like property of modal formulas:

Proposition 3.4. [1, Proposition 2.15]

` (M1 : (α, β) model), (w : β)
 (φ : α form) ⇒
∃ (M : (α, β list) model) (r : β list). tree M.frame r ∧ M, r
 φ

Proof. Suppose M1,w
 φ. Let M2 be the rooted model generated by w ,

then M2,w
 φ by Proposition 3.2. To find a tree-like model satisfying φ, by

Proposition 3.3, it suffices to prove M2 is the image of some bounded morphism

from some tree-like model M3 where the root of the tree is mapped to w. Then

M3 will be the M we want. We construct M3 as follows: Take the set of worlds

to be the finite sequences [w;u1; · · · ;un] such that MR
1 ui ui+1 for all i. Define

M3
R [w;u1; · · · ;un] [w; v1; · · · ; vm] iff m = n+ 1, ui = vi for 1 ≤ i ≤ n, and MR

2

un vm. The valuation is given by [w;u1; · · · ;un] ∈ M3
V p iff un ∈ MV

2 p. Such a

model in HOL looks like:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L120
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_1Script.sml#L818

3.1. INVARIANT RESULTS 17

M3
def
=

〈〈frame :=

〈〈world :=

{ l |
HD l = w ∧ LENGTH l > 0 ∧
∀m. m < LENGTH l − 1 ⇒ MR

2 |MW
2

(EL m l) (EL (m + 1) l) } ;

rel :=

(λ l1 l2.

LENGTH l1 + 1 = LENGTH l2 ∧ MR
2 |MW

2
(LAST l1) (LAST l2) ∧

∀m. m < LENGTH l1 ⇒ EL m l1 = EL m l2)〉〉;
valt := (λ v n.MV

2 v (LAST n))〉〉

Here the functions HD and LAST give the first and last member of a list,

respectively. The function LENGTH gives the length of a list. The function EL

takes a natural number n and a list l , and gives the n-th member of l .

The map LAST will sends a list [w;u1; · · · ;un] in M3
W to its last member un.

We can easily check that LAST is a bounded morphism. Also, the root [w] of M3

is sent to w in M2, as desired.

3.1.3 Bisimulation

The two approaches to obtain modal equivalences have a common feature: both

of them lead to a relation on worlds in models such that related worlds satisfy

exactly the same set of propositional letters, and once we can make a transition in

one model, we can make a corresponding transition in the other. This observation

leads us to the concept of bisimulation:

Definition 3.7. [1, Definition 2.16 (Bisimulations)] A bisimulation Z between

models M1 and M2 (notation: M1

Z

- M2) is a relation between their worlds,

such that for worlds w1 ∈ MW
1 and w2 ∈ MW

2 which are related by Z, we have:

• For every propositional letter p, it is satisfied at w1 if and only if it is

satisfied at w2.

• If we have a world v1 ∈ MW
1 such that w1 is related to v1 by the relation

in M1, then we can find a world v2 in M2 such that v1 and v2 are related

by Z where w2 is related to v2 in M2.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_2Script.sml#L19

18CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

• If we have a world v2 ∈ MW
2 such that w2 is related to v2 by the relation

in M2, then we can find a world v1 in M1 such that v1 and v2 are related

by Z where w1 is related to v1 in M1.

In HOL:

M1

Z

- M2
def
=

∀w1 w2.

w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧ Z w1 w2 ⇒
(∀ p.M1,w1
 VAR p ⇐⇒ M2,w2
 VAR p) ∧
(∀ v1.

v1 ∈ MW
1 ∧ MR

1 w1 v1 ⇒
∃ v2. v2 ∈ MW

2 ∧ Z v1 v2 ∧ MR
2 w2 v2) ∧

∀ v2.

v2 ∈ MW
2 ∧ MR

2 w2 v2 ⇒
∃ v1. v1 ∈ MW

1 ∧ Z v1 v2 ∧ MR
1 w1 v1

When there exists a bisimulation relating two worlds w ∈ MW and v ∈ NW ,

we say w and v are bisimilar, and write ‘M,w - N, v ’. Both generated submodels

and bounded morphic image give rise to bisimulations:

Proposition 3.5. [1, Proposition 2.19, (iii) and (iv)]

`M1�M2 ⇒ ∀w . w ∈ MW
1 ⇒ M1,w - M2,w

`M1

f
�M2 ⇒ ∀w . w ∈ MW

1 ⇒ M1,w - M2, f w

Proof. The bisimulation relations are given by relating a world in M1 to its copy

in M2 and relating a world in M1 to its image in M2 respectively.

Bisimilar worlds are always modal equivalent.

Theorem 3.6. [1, Theorem 2.20]

`M1,w1 - M2,w2 ⇒ M1,w1!M2,w2

Now we ask if the converse of the above holds: is that the fact that a modal

equivalent worlds are always bisimilar? The answer is no, as we have proved in

HOL that:

Proposition 3.7. [1, Example 2.23]

` ∃M N w v .M,w ! N, v ∧ ¬(M,w - N, v)

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_2Script.sml#L63
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_2Script.sml#L124
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L2420

3.1. INVARIANT RESULTS 19

The models M and N used in the proof of the theorem above are defined as

the picture below, where the arrows denote relations (non-transitive). Both M

and N have infinitely many branches from their roots w , w ′ respectively. The

difference is that N has an infinitely long branch, whereas all the branches in M

are of finite length. In HOL, the worlds of M and N are captured using pairs of

natural numbers. The world w ∈ MW and w ′ ∈ NW are recorded as the pair

(0, 0). For a world in M or a world in N which is the b-th point (counted from

the root) on a finite branch of length a, it is recorded as the pair (a, b). The n-th

point on the infinite branch in N is recorded as the pair (0, n).

Let valuation in M and N both be such that at every point, there is no

propositional letter which is satisfied. The worlds w and w ′ can be shown to be

modal equivalent (using tools which will be introduced in the next section), but

they are not bisimilar. Suppose, in order to get a contradiction, that M
Z

- N and

Z w w ′, then there exists v0 ∈ MW such that Z v0 v ′0, where v ′0 is the first world

on the infinite branch in N such that NR w ′ v ′0. The branch that v0 lies on is

finitely long, say, the worlds w, v0, · · · , vn are all the worlds on this branch. Then

by clause on ‘forward condition’ in the definition of bisimulation, there are worlds

v′1, · · · , v′n on the infinite branch of N such that Z vi v
′
i for each 1 ≤ i ≤ n. The

world v′n has a successor v′n+1 in N, so the backward clause on relation requires

the existence of a world in M such that vn is related to. But such a world does

not exist since vn is at the end of the branch it lies on.

. w

...
M

. w′

...

...
N

Nonetheless, the converse of Theorem 3.6 does hold on image finite models.

Definition 3.8. [1, Page 69, image-finite] A model M is image finite if for every

world w ∈ MW , there are only finitely many worlds in M that w is related to.

image finite M
def
= ∀w . w ∈ MW ⇒ FINITE { v | v ∈ MW ∧ MR w v }

Our main theorem is called Hennessy-Milner theorem:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_2Script.sml#L158

20CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

Theorem 3.8. [1, Theorem 2.24 (Hennessy-Milner Theorem)] For image finite

models, modal equivalence and bisimulation are indeed the same thing.

` image finite M1 ∧ image finite M2 ∧ w1 ∈ MW
1 ∧ w2 ∈ MW

2 ⇒
(M1,w1!M2,w2 ⇐⇒ M1,w1 - M2,w2)

Proof. We prove the implication from left to right. The other implication is

Theorem 3.6. Given that w1 and w2 are worlds in M1 and M2 which are modal

equivalent, we prove the relation Z defined as Z v1 v2 ⇐⇒ ∀φ. M1, v1

φ ⇐⇒ M2, v2
 φ is a bisimulation. The only non-trivial thing to check is

that assuming M1, v1 !M2, v2 and MR
1 v1 v ′1 for some v ′1 ∈ MW

1 , there exists

a world v ′2 ∈ MW
2 such that MR

2 v2 v ′2 and M1, v
′
1 ! M2, v

′
2. Suppose such a

v ′2 does not exist, we derive a contradiction. Consider the set S0 = { u ′ | u ′ ∈
MW

2 ∧ MR
2 v2 u ′ } of successors of v2 , the first claim is that S0 is finite and

nonempty. Finiteness comes from the fact that M2 is image finite. Also, and if S0

is empty, then � ⊥ will be a formula satisfied at v2 but not at v1, contradicting

the modal equivalence between v1 and v2. By assumption, for each world u′ ∈ S0,

there is a formula φ such that M1, v
′
1
 φ but M2, u

′ 6
 φ. As the set S is

finite, the set of such φs is finite. Then we can take the conjunction of such φs

to obtain a formula ψ. Then we will have M1, v1
 ♦ψ but M1, v2 6
 ♦ψ,

contradiction.

3.2 Finite model property

In this section, we tell the story about Slogan 2 as stated in the introduction:

Modal formulas can only capture local information. That is, if a modal formula

is satisfied on an arbitrary model, then it can be satisfied on a finite model,

where finite model means a model whose world set is finite. Such a result is

called the finite modal property of modal logic. There are classically two methods

of building finite models for satisfiable modal formulas, namely via filtration and

selection. Although we have formalized both of them in HOL, the former is almost

a direct translation of the mathematical proof and hence is not interesting from

the formalizing aspect. We will only talk about finite model property via selection

in this section.

In this method, to build a finite model of a satisfiable modal formula φ, we

start with a model that the formula φ is satisfied, delete worlds from the model

and only leave finitely many worlds in it. The intuition behind this approach

is that every modal formula can only contain finitely many diamonds, each can

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_2Script.sml#L328

3.2. FINITE MODEL PROPERTY 21

‘see’ one step from the current state. Therefore, each formula can only capture

the information of finite depth. To make the notion of ‘depth’ precise, we define

the degree of a modal formula, which counts the number of steps that a modal

formula can ‘see’, as follows:

Definition 3.9. [1, Definition 2.28 (Degree)]

DEG (VAR p)
def
= 0

DEG ⊥ def
= 0

DEG (¬φ)
def
= DEG φ

DEG (φ1 ∨ φ2)
def
= MAX (DEG φ1) (DEG φ2)

DEG (♦φ)
def
= DEG φ + 1

In above, the function MAX takes two natural numbers and gives the greater

one.

The crucial fact we need about the degree of formulas is that for every finite

α-set Φ and every natural number n, there are only finitely many non-equivalent

modal formulas of degree up to n which only use the propositional letters in Φ.

In the textbook that we are following, the authors prove this fact basically ‘by

observation’, but the proof is long and tedious to formalize (more than 1500 lines

in HOL). We will not show the proof, but only show the statement that we have

proved in HOL:

Lemma 3.9. [1, Proposition 2.29] Let Φ be a finite α-set and β be an infinite type.

For each natural number n, if we partition the set of α-modal formulas using only

propositional letters in Φ of degree up to n using the equivalence relation ‘being

equivalent on (α, β)-models (models of α-modal formulas with β-world sets)’, then

we get finitely many equivalence class.

` FINITE Φ ∧ INFINITE U(:β) ⇒
∀ n. FINITE { φ | DEG φ ≤ n ∧ prop letters φ ⊆ Φ } /≡(:β)

Here { φ | DEG φ ≤ n ∧ prop letters φ ⊆ Φ } /≡(:β) is the set of equivalence

classes obtained by partitioning the set { φ | DEG φ ≤ n ∧ prop letters φ ⊆ Φ }
by the equivalence relation ≡(:β). We require the assumption that the universe of

β is infinite since we used Proposition 2.2 when proving the proposition above.

Recall in the last section, we have seen that a bisimulation gives rise to modal

equivalence. Modal equivalence means ‘satisfying exactly the same formulas’, but

when we are building a finite model for a formula φ, we do not care about the

satisfaction of the formulas of degree above DEG φ, since such formula cannot

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L24
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L989

22CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

affect the satisfaction of φ. Therefore, we just need some sort of relations such

that related worlds satisfy the same modal formulas up to some degree n. The

notion of ‘finite approximation of bisimulation’, which is called n-bisimulation, is

used to describe such relations. Let w1 ∈ MW
1 and w2 ∈ MW

2 , w1 and w2 are

n-bisimilar if there exists a sequence of relations Zn ⊆ · · · ⊆ Z0 such that:

• w1 and w2 are related by Zn

• If v1 ∈ MW
1 and v2 ∈ MW

2 are related by Z0, then v1 and v2 satisfy the

same propositional letters.

• For 0 ≤ i ≤ n − 1, if v1 ∈ MW
1 and v2 ∈ MW

2 are related by Zi+1 and

we have MR
1 v1 u1 for u1 ∈ MW

1 , then there exists u2 ∈ MW
2 such that

MR
2 v2 u2 with u1 and u2 related by Zi.

• For 0 ≤ i ≤ n − 1, if v1 ∈ MW
1 and v2 ∈ MW

2 are related by Zi+1 and

we have MR
2 v2 u2 for u2 ∈ MW

2 , then there exists u1 ∈ MW
1 such that

MR
1 v1 u1 with u1 and u2 related by Zi.

Such a sequence of Zi is a family of relations indexed by natural numbers from 0

to n. When the world set of M1 has type β and the world set of M2 has type γ,

we encode such a family using a function Z s of type num → β → γ → bool.

For each natural number i ≤ n, applying Z s on i gives us a relation Z s i between

terms of type β and γ. In other words, the relation Z s i is the relation Zi in the

usual mathematical notation, and M1,w1

Z s

-n M2,w2 means w1 and w2 are worlds

in M1 and M2 respectively which are n-bisimilar via the family of relations given

by Z s, as shown below.

3.2. FINITE MODEL PROPERTY 23

Definition 3.10. [1, Definition 2.30 (n-Bisimulations)]

M1,w1

Z s

-n M2,w2
def
=

w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧
(∀m a b.

a ∈ MW
1 ∧ b ∈ MW

2 ⇒
m + 1 ≤ n ⇒ Z s (m + 1) a b ⇒ Z s m a b) ∧

Z s n w1 w2 ∧
(∀ v1 v2.

v1 ∈ MW
1 ∧ v2 ∈ MW

2 ⇒
Z s 0 v1 v2 ⇒ ∀ p.M1, v1
 VAR p ⇐⇒ M2, v2
 VAR p) ∧

(∀ v1 v2 u1 i .

i + 1 ≤ n ∧ v1 ∈ MW
1 ∧ v2 ∈ MW

2 ∧ u1 ∈ MW
1 ∧ MR

1 v1 u1 ∧
Z s (i + 1) v1 v2 ⇒
∃ u2. u2 ∈ MW

2 ∧ MR
2 v2 u2 ∧ Z s i u1 u2) ∧

∀ v1 v2 u2 i .

i + 1 ≤ n ∧ v1 ∈ MW
1 ∧ v2 ∈ MW

2 ∧ u2 ∈ MW
2 ∧ MR

2 v2 u2 ∧
Z s (i + 1) v1 v2 ⇒
∃ u1. u1 ∈ MW

1 ∧ MR
1 v1 u1 ∧ Z s i u1 u2

We will use functions to capture indexed families throughout this thesis. For

a family (Aj)j∈J indexed by a set J , where the Aj’s are all of the same type, we

will capture it using a function As in HOL such that As j is Aj. Each function

which is used to capture indexing will be decorated with ‘s’ at its right upper

corner.

Note that for models M and N, and worlds w1 ∈ MW
1 and w2 ∈ MW

2 , even

if for each natural number n, we have an n-bisimulation between w1 and w2, it

does not imply that w1 and w2 are bisimilar. For the models M and N used in

3.7, the worlds w and w′ are n-bisimilar for all n. Given a natural number n, an

n-bisimulation relation Z s can be given as: for each m ≤ n, Z s m is the relation

that relating the points in M on the branches of length no more than n − m to

the copy of itself in N. In addition, for each k, the k-th point on the branch in

M of length n is related to the k-th point on the infinite branch in N. However,

as we have already proved before, the worlds w and w′ are not bisimilar.

By induction, we can prove if two worlds are n-bisimilar, then they agree on

all the modal formulas up to degree n. The statement in HOL looks like:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1059

24CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

Proposition 3.10. [1, Proposition 2.31, one direction]

`M,w
Z s

-n M′,w ′ ∧ DEG φ ≤ n ⇒ (M,w
 φ ⇐⇒ M′,w ′
 φ)

When we use set theory as foundation, if there are only finitely many proposi-

tional letters, then it is true that two worlds in two models agree on all the modal

formulas with degree up to n if and only if there exists an n-bisimulation between

them. However, we are using simple type theory as foundation in HOL, so this

‘if and only if’ statement in HOL looks a bit different. The thing we can prove

in HOL is that: Let ∆ be a finite α-set. If we restrict our scope to the set Σ of

α-formulas that only uses propositional letters in ∆. Let M1 be an (α, β)-model

and M2 be a (α, γ)-model, where both β and γ has infinite universe. For each

w1 ∈ MW
1 and w2 ∈ MW

2 , they agree on formulas in Σ up to degree n if and

only if there is an n-bisimulation relating them. For the proof of this theorem:

One direction is by the theorem shown above. The other direction is similar to the

proof of Hennessy-Milner theorem, using the n-bisimulation relation Z s defined

by Z s m w1 w2 ⇐⇒ ∀φ. DEG φ ≤ m ⇒ (M,w1
 φ ⇐⇒ M′,w2
 φ)

for each m ≤ n.

We also want a concept that measures the depth of a model. As ‘depth’ is

measuring the distance of from a fixed point to another given point, to talk about

the depth of a world w ∈ MW , we need M to be naturally equipped with a base

point. Hence the ‘height’ of a world only makes sense for rooted models. To tell

HOL about this definition, we start by defining height≤ as an inductive relation:

Definition 3.11. [1, Definition 2.32]

height≤ M r M′ r n

v ∈ MW ∃w . w ∈ MW ∧ MR w v ∧ height≤ M r M′ w n

height≤ M r M′ v (n + 1)

Recall how we defined a rooted model: when we write rooted model M r M′,

we mean ‘M is a rooted model generated by the world r in the ambient model

M′’. As height≤ is designed to only make sense for rooted models, we encode

the information about the rootedness of the model we are talking about into this

definition. Therefore, we read height≤ M r M′ w n as ‘for the rooted model M

with root r in M′, the distance from the world w to the root r is less than or

equal to n’, and we will always have an assumption on rootedness of M whence

this definition is used. The above rules mean:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1126
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1429

3.2. FINITE MODEL PROPERTY 25

• The height of the root for each rooted model is less or equal to every natural

number.

• For a world v of M, if there exists a world w of M such that w is related

to v in M, then if the height of w is no more than n, the height of v is no

more than n + 1.

We define the actual height of a world w to be the smallest natural number

n such that height≤ M r M′ w n. The height of a model is the maximum height

of its worlds.

We are particularly interested in heights of tree-like models.

Lemma 3.11 (tree_height_rel_lemma). When M is tree-like, if w ∈ MW

has height n, then every world v ∈ MW such that MR w v will have height

n+ 1.

` tree M.frame r ∧ w ∈ MW ∧ height M r M w = n ∧ MR w v ∧
v ∈ MW ⇒

height M r M v = n + 1

The restriction of a rooted model M to the height k is the submodel consisting

of all the worlds in M of height up to k.

Definition 3.12. [1, Definition 2.32 (Restriction)] We define a function hrestriction

that takes a rooted model M, its root r, the an ambient model M′ that M is sitting

in, a natural number k, and give the model obtained by restricting M to the height

k.

hrestriction M r M′ k
def
=

〈〈frame :=

〈〈world := { w | w ∈ MW ∧ height M r M′ w ≤ k } ; rel := MR〉〉;
valt := MV 〉〉

A restriction of a tree-like model is always a tree-like model. Moreover, re-

striction of every rooted model gives rise of n-bisimulation.

Lemma 3.12. [1, Lemma 2.33] If we restrict a rooted model M to height k, then

a world w in the restricted model is k−height M r M′ w-bisimilar to itself in the

original model.

` rooted model M r M′ ∧ w ∈ (hrestriction M r M′ k)W ⇒

∃Z s. hrestriction M r M′ k ,w
Z s

-k − height M r M′ w M,w

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1673
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1442
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1530

26CHAPTER 3. INVARIANT RESULTS AND FINITE MODEL PROPERTY

Proof. The k−height M r M′ w -bisimulation is given by Z s which is defined as

Z s n relates a world w1 in the restricted model hrestriction M r M′ k to a world

w2 in M iff w1 = w2 and the height of w1 is no more than k − n.

Now we can start building a finite model via selection:

Theorem 3.13. [1, Theorem 2.34]

`M1,w1
 φ ⇒ ∃M v . FINITE MW ∧ v ∈ MW ∧ M, v
 φ

Proof. Suppose M1,w1
 φ where M1 is an (α, β)-model and φ has degree k.

By Proposition 3.4, there exists a tree-like (α, β list)-model M2 with φ satisfied

at its root w2. Define M3 := hrestriction M2 w2 M2 k to be the restriction of

M2 to height k, then M3 is rooted and we have a k-bisimulation Z s such that

M3,w2

Z s

-k M2,w2 by Lemma 3.12, hence M3,w2
 φ. We can discard all the

propositional letters in M3 which does not occur in φ and obtain the model M′
3,

which looks like:

M′
3 =

〈〈frame := 〈〈world := M3
W ; rel := M3

R〉〉;
valt := (λ p v . if p ∈ prop letters φ then M3

V p v else F)〉〉.

By Proposition 2.1, if a propositional letter does not appear in φ, then it has no

effect on the satisfaction of φ. Hence we still have M′
3,w2
 φ. We will select a

finite model inductively from M′
3.

Let Φ denote the set of propositional letters used by φ, so Φ is finite. By

Lemma 3.9, there are only finitely many non-equivalent formulas of degree less or

equal to k which only use propositional letters in Φ (where equivalence is judged

with respect to (α, β list)-models). In other words, the set ∆ = { ψ | DEG ψ ≤
k ∧ prop letters ψ ⊆ Φ } / ≡(:β list) is finite. We care about the elements in ∆

which are equivalence classes of formulas starting with a ♦. For such equivalence

classes, taking the intersection with the set Γ = { ψ | ∃ψ0 . ψ = ♦ψ0 } does

not give the empty set. Take the image of ∆ under the function λ s . s ∩ Γ and

delete the empty set from the image. We obtain a set Σ of sets of formulas, where

for each set A ∈ Σ , A consists of equivalent formulas of degree less or equal to k,

only use propositional letters in Φ, and start with a diamond. For each A ∈ Σ ,

we choose a representative using the choice function CHOICE, and collect these

representatives into the set R = { CHOICE (A ∩ Γ) | A ∈ ∆ } \ { ∅ } . The

set R is finite as it is the image of a function over a finite set.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_3Script.sml#L1827

3.2. FINITE MODEL PROPERTY 27

We will construct sets S0, · · · , Sk of worlds in M′
3, where the worlds in Sn

have height n. Start with S0 := {w2}, and inductively, assume S0, · · · , Sn has

been defined, construct Sn+1 as follows: Consider an element in v ∈ Sn, for each

♦φ ∈ R such that M′
3,w2
 ♦φ, pick a world u ∈ M′

3
W such that M′

3
R v u and

M′
3, u
 φ. Do the same thing to all the v ∈ Sn, then take Sn+1 as the set of all

the such u’s which are selected in this way. The inductive definition of these S’s

are encoded in HOL as a primitive recursive function S s such that for each i ≤ k,

S s i will be our Si. By induction on i, we can prove each Si is finite, so the set

W4 :=
⋃
i≤k Si is finite. The resultant finite model we select is:

M4 = 〈〈frame := 〈〈world := W4; rel := M3
R〉〉; valt := M′

3
V 〉〉.

To prove M4,w2
 φ, it suffices to give a k-bisimulation between M4 and M′
3

relating w2 to itself. The k-bisimulation Z s is given as for each n ≤ k, Z s n is

the relation such that for a1 ∈ MW
4 and a2 ∈ M3

W , we have Z s n a1 a2 iff:

• The worlds a1 and a2 have the same height, which is no more than k − n.

• If a formula φ only contains the propositional letters in Φ and DEG φ ≤ n,

it is satisfied at a1 if and only if it is satisfied at a2.

The rest of the proof amounts to checking the above indeed gives a k-bisimulation.

The proof is again an analogue to the proof of Hennessy-Milner theorem.

As we took a detour through Proposition 3.4, this construction of the finite

model changes the type of model. If we start with an (α, β)-model, then the finite

model we build by selection will be a (α, β list)-model.

Chapter 4

Standard Translation

As claimed by Slogan 3 in the introduction, modal logic is not an isolated formal

system. In this chapter, we connect modal logic and first-order logic together

using standard translation.

For a model M, the relation MR is a binary predicate on worlds in M. For

each propositional letter p, the valuation MV gives a way of associating to p a

unary predicate on the worlds in M, called Pp. Explicitly, the predicate Pp is

defined by Pp w if and only if MV p w . We will see a modal model can also be

viewed as a model for a first-order language. A first-order language is determined

by a set of predicate symbols and a set of function symbols. Given a first-order

language L such that LF is the set of its function symbols and LP is its set of

predicate symbols, a first-order formula is called an L-formula if it only contains

function symbols in LF and predicate symbols in LP . In our case, the first-order

language that we can interpret using a modal model is the one such that the

set of function symbols is empty, and the set of predicate symbols consists of a

binary one corresponds to the relation on a modal model, and the unary ones of

the form Pp, where p is a propositional letter and Pp is the predicate which is

associated to p. This language that we are interested in is called L1
τ . A model

M of a first-order language consists of three pieces of information: a domain,

where the variable letters in first-order formulas will be sent to, for each n-ary

function symbol, an actual function that takes an n-tuple of elements in M and

gives an element in M, and for each n-ary predicate symbol, an actual predicate

that takes an n-tuple of elements in M and give a boolean value, either T or F.

In HOL, the variable symbols, the function symbols, and the predicate symbols,

are all encoded as natural numbers, hence a first-order model looks like:

28

29

Definition 4.1 (From [4], First-order model).

α folmodel = 〈〈
Dom : α → bool;

Fun : num → α list → α;

Pred : num → α list → bool

〉〉

As we can see, an α-first-order model means a first-order model with an α-set

as its domain. For an α-first-order model M and each function symbol f , where

f is a natural number, M.Fun f is the actual function which is assigned f , and

for each predicate symbol p, M.Pred p is the actual predicate which is assigned

p.

According to the above discussion, if a first-order formula φ is purely a com-

bination of some variable letters, which are to be interpreted as worlds in M,

the binary predicate symbol which is to be interpreted as MR, and some unary

predicate symbols of the form Pp, using the first-order connectives, then the in-

formation contained in a (num, β)-modal model M, where β is an arbitrary type,

is enough to interpret the formula φ. But to formally interpret a first-order for-

mula, we need to formally convert a modal model into a first-order model. The

domain of the resulting model is the world set of M. As we are not going to use

the resulting model to interpret formulas with function symbols, we do not really

need any interesting information about the function symbol, hence we send every

natural number to the constant function at an arbitrary point in MW that we

pick. We fix the symbol of the binary predicate given by MR to be 0, and for

each propositional letter p, we just use p itself to be the symbol of the predicate

Pp associated to p (that is, in our formalization, we use p itself as the symbol Pp

in the discussion above). For a modal model M, the function that converts it to

a first-order model is called mm2folm. In HOL:

https://github.com/HOL-Theorem-Prover/HOL/blob/bd3fc1cc8392c998068820cf999c73ea95f10e8f/examples/logic/folcompactness/folModelsScript.sml#L10

30 CHAPTER 4. STANDARD TRANSLATION

Definition 4.2 (Conversion from a modal model to a first-order model).

mm2folm M
def
=

〈〈Dom := MW ; Fun := (λ n l . CHOICE MW);

Pred :=

(λ p zs .

case zs of

[] ⇒ F

| [w1] ⇒ w1 ∈ MW ∧ MV p w1

| [w1; w2] ⇒ p = 0 ∧ MR w1 w2 ∧ w1 ∈ MW ∧ w2 ∈ MW

| w1 :: w2 :: w3 :: w4 ⇒ F)〉〉

Conversely, we can view a β-first-order model M as a (num, β)-modal model.

Given a first-order model, the relation on the modal model we get is given by

the binary predicate with symbol 0. The valuations of a propositional letter p

is given by the unary predicate in M with symbol p. The function converting a

first-order model into a modal model is folm2mm.

Definition 4.3 (Conversion from a first-order model into a modal model).

folm2mm M
def
=

〈〈frame :=

〈〈world := M.Dom;

rel := (λw1 w2.M.Pred 0 [w1; w2] ∧ w1 ∈ M.Dom ∧ w2 ∈ M.Dom)〉〉;
valt := (λ v w .M.Pred v [w] ∧ w ∈ M.Dom)〉〉

Whereas the conversion from a modal model into a first-order model preserves

all the information of the original model, the conversion from a general first-order

model into a modal model will omit a lot of information: we will lose all the

functions, all except for one binary predicates and all higher-arity predicates.

Now we can spell out how we formally interpret a first-order formula in the

language L1
τ . To do this, let us just spell out how to interpret a first-order formula

on a first-order model in general. In HOL, a term of first-order logic is defined

inductively. A first-order term is either a variable symbol standing alone, which

is of form fVAR x , where x is a variable symbol, or a function symbol applied on

a list of terms, which is written as fFn f l , where f is the natural number serving

as a function symbol, and l is a list of terms. A term of first-order logic should

not be confused with a term of a type (a reader should better consider them as

unrelated, for the sake of reading this thesis). A first-order formula is defined

inductively using four primitive connectives:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_4revisedScript.sml#L19
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L40

31

Definition 4.4 (From [4], First-order formulas). The primitive logical connectives

we are using here are: the falsity f⊥, a predicate symbol applied on a list of

variables, implication IMP (which will be written as the infix f→ from now on),

and the universal quantification.

folform = f⊥ | Pred num (term list) | IMP folform folform | f∀ num folform

In above, as we use natural numbers for the predicate symbols, function sym-

bols and variable symbols in first-order formulas, the current construction can

only capture countable first-order languages. The non-primitive connectives are

defined as:

Definition 4.5 (From [4], Non-primitive first-order connectives).

f¬ φ def
= φ f→ f⊥

f> def
= f¬ f⊥

φ1
f∨ φ2

def
= (φ1

f→ φ2) f→ φ2

φ1
f∧ φ2

def
= f¬ (f¬ φ1

f∨ f¬ φ2)
f∃ x φ

def
= f¬ (f∀ x (f¬ φ))

A quantified variable is called a bounded variable, otherwise, it is called

free. For instance, the 1 in fPred 4 [fVAR 1; fVAR 2] is free, whereas the 1

in f∀ 1 (fPred 4 [fVAR 1; fVAR 2]) is bounded. For a first-order formula φ,

we write FV φ for the set of all its free variables and BV φ for the set of all its

bounded variables. We also have functions form functions and form predicates which

give the set of function and predicate symbols of a first-order formula, respec-

tively. For a function symbol denoted by f , if it is applied on a list of terms

of length n, then it will be recorded as the tuple (f, n). For example, we have

form functions (fPred 1 [fFn 2 [fVAR 1; fVAR 2]; fFn 2 []]) = { (2, 2); (2, 0) }
and form functions (fPred 1 [fFn 0 []; fFn 1 []]) = { (0, 0); (1, 0) } . Similarly, a

predicate symbol denoted by natural number p followed by a list of length n is

recorded as a pair (p, n). Hence both the function form functions and form predicates

take a formula and give a set of pairs of natural numbers. The language L1
τ , as

introduced before, is defined as a predicate, where ‘L1τ φ’ reads ‘the formula φ is

in the language L1
τ ’, as follows:

Definition 4.6. [1, Definition 2.44 (The Language L1
τ)]

L1τ φ
def
=

form functions φ = ∅ ∧
form predicates φ ⊆ (0, 2) INSERT { (p, 1) | p ∈ U(:num) }

https://github.com/HOL-Theorem-Prover/HOL/blob/bd3fc1cc8392c998068820cf999c73ea95f10e8f/examples/logic/folcompactness/folLangScript.sml#L137
https://github.com/HOL-Theorem-Prover/HOL/blob/bd3fc1cc8392c998068820cf999c73ea95f10e8f/examples/logic/folcompactness/folLangScript.sml#L144
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L29

32 CHAPTER 4. STANDARD TRANSLATION

Given a first-order model M, we interpret formulas or terms by assigning

each variable symbol an element in M.Dom. As we are using natural numbers as

variable symbols, such an assignment is a function that takes a natural number.

We are only interested in the case when a function does send each natural number

to an element in M.Dom, such a function is called a valuation of M. We write

valuation M σ in this case, and read it as ‘σ is a valuation of the model M’.

Interpretation of terms and formulas are given as termval and feval. If we give

the function termval a model M, a valuation σ and a first-order term t, it will

give us the element of the domain of M that t is interpreted as. If we give the

function feval a model M, a valuation σ and a first-order formula φ, it will give us

the truth value of φ in M under the valuation σ. When φ is true in M under σ, we

write M, σ � φ. We write φ1
f≡(:α) φ2 to mean the first-order formulas φ1 and

φ2 are equivalent on α-first-order models, where equivalence between first-order

formulas is defined similarly as that of modal formulas.

If we want to use a first-model M to interpret a first-order formula φ, the

first thing to make sure is that the actual functions assigned to the function

symbols appear in φ does not send a list of elements in M out of the domain of

M. Therefore, a theorem about interpreting a formula φ in M should start with

an assumption

∀ f n l . (f , n) ∈ form functions φ ∧ LENGTH l = n ⇒ M.Fun f l ∈ M.Dom.

But we may want to use the same model to interpret formulas with various

function symbols and do not want such an assumption everywhere. Hence for our

convenience, unless we have no function symbols at all, we will always assume the

models M we are working with satisfies M.Fun f l ∈ M.Dom for every function

symbol f and list l . For such a model M, we write wffm M, meaning ‘M is a

well-formed first-order model’.

At noted before, the functions mm2folm and folm2mm are not inverses. How-

ever, we have:

Proposition 4.1 (L1tau_mm2folm_folm2mm_comm_feval). An L1
τ formula is

satisfied in M under σ if and only if it is satisfied under σ in the model we

obtain by firstly converting M to a modal model, and then back to a first-order

model.

` L1τ φ ∧ valuation M σ ⇒ (mm2folm (folm2mm M), σ � φ ⇐⇒ M, σ � φ)

Also we note:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L976

33

Proposition 4.2 (From [4], holds_valuation). For a fixed model, the truth

value of a first-order formula only depends on what a valuation sends its free

variable to.

` (∀ v . v ∈ FV φ ⇒ σ1 v = σ2 v) ⇒ (M, σ1 � φ ⇐⇒ M, σ2 � φ)

Therefore, although a valuation of M assigns every natural number an element

in M.Dom, what it effectively does is to only control where the free variables in

a formula go to. The advantage of using a valuation instead of assigning free

variables values one by one is that a valuation can simultaneously control every

number of free variables.

With the setup on basics about first-order logic and how it interacts with

modal logic, let us build intuition on how modal formulas correspond to first-

order formulas. The first thing to note is that as every symbol in a first-order

formula is represented by a natural number, without get cumbersome and com-

plicated procedure involved, we can only translate num-modal formulas into first-

order formulas. Observe that unlike modal formulas which atomic formulas are

propositional letters standing alone, even the atomic first-order formulas (except
f⊥) have variable symbols. Hence to translate a modal formula into a first-order

formula, we must introduce some variables as well. For a model M, it is natural

to regard each modal formula as a predicate to be evaluated at worlds of M, such

that this predicate is true at a world w if and only if the formula is satisfied at w.

Hence to translate a modal formula into a first-order formula, the only natural

thing to do is to get just one variable involved, and this variable will be later

assigned to some state in some model when we interpret the translated formula.

Hence for the function ST which translates a modal formula to a first-order

formula, the first parameter it takes is a variable symbol x, which is represented

by a natural number, that we introduce to mark the world we are looking at, as

discussed above. The second parameter is the num-modal formula which we want

to translate.

Definition 4.7. [1, Definition 2.45 (Standard Translation)] Here ‘STx φ’ reads

the standard translation of the modal formula φ at x. The translation is defined

as:

• A propositional letter is translated into the unary predicate symbol repre-

sented by p applied on the variable x. Here fP p (fVAR x) is the abbreviation

of fPred p [fVAR x].

https://github.com/HOL-Theorem-Prover/HOL/blob/bd3fc1cc8392c998068820cf999c73ea95f10e8f/examples/logic/folcompactness/folModelsScript.sml#L82
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_4revisedScript.sml#L58

34 CHAPTER 4. STANDARD TRANSLATION

• The falsity in modal formula is translated into the falsity in first-order for-

mula.

• Inductively, the negation of a modal formula φ is translated into the first-

order negation of the standard translation of φ.

• The disjunction of two modal formulas φ and ψ is translated into the first-

order disjunction of the standard translation of φ and the standard transla-

tion of ψ.

• A modal formula ♦φ is translated to the existential quantifier applied on the

variable symbol x + 1 and the first-order formula saying ‘fVAR x is related

to fVAR (x + 1) and STx + 1 φ’. Here fR (fVAR x) (fVAR (x + 1)) is

the abbreviation of fPred 0 [(fVAR x); (fVAR (x + 1))] (Recall that we have

fixed 0 as the predicate symbol which corresponds to relation on the modal

model). That is:

STx (VAR p)
def
= fP p (fVAR x)

STx ⊥
def
= f⊥

STx (¬φ)
def
= f¬ (STx φ)

STx (φ ∨ ψ)
def
= STx φ

f∨ STx ψ

STx (♦φ)
def
= f∃ (x + 1) (fR (fVAR x) (fVAR (x + 1)) f∧ STx + 1 φ)

For the last line, according to the semantic interpretation of the ‘♦φ’, which is

‘there exists a world related to the current state where φ is satisfied’, we translate

♦φ into the existential formula. To make sure that we use a fresh variable symbol

that is not the same as the variable x which is marking the current state, we use

x+ 1 as our new variable symbol, hence the standard translation of ♦φ at x says

exactly the same thing as how we interpret it in a modal model.

Some syntactic properties of standard translation are immediate to prove. For

instance:

• Every first-order formula obtained by standard translation is L1
τ .

• Every first-order formula obtained by standard translation has at most one

free variable.

• The negation of a standard translation is a standard translation.

• Conjunctions and disjunctions of standard translations are equivalent to

standard translations of big conjunction/disjunction formulas.

35

On the other hand, standard translations have interesting semantic behav-

ior as well. Their semantic features give a first-order reformulation of modal

satisfaction.

Proposition 4.3. [1, Theorem 2.47 (i)] A modal formula φ is satisfied at a world

in a modal model M iff its standard translation STx φ is satisfied in M viewed as

a first-order model when the free variable x is assigned this world.

`M,w
 φ ⇐⇒ mm2folm M, (λ n. w) � STx φ

There is a result corresponds to the above using folm2mm.

Proposition 4.4 (prop_2_47_i0’). The standard translation of the formula φ

using variable symbol x is true in a first-order model M under the valuation σ iff

φ is satisfied at σ x in M viewed as a modal model.

` folm2mm M,w
 φ ⇐⇒ M, (λ n. w) � STx φ

As an interesting consequence of the ‘equivalence’ between a modal formula

and its standard translation, we can prove formulas obtained by standard trans-

lation are invariant under bisimulation.

Definition 4.8. [1, Definition 2.67 (Invariant for Bisimulations)] An L1
τ formula

φ with at most one free variable x is invariant for bisimulations if for all models

M and N with w ∈ MW and v ∈ NW , if there exists a bisimulation relation

between M and N relating w and v, then φ holds at w if and only if it holds at v

when both M and N are viewed as first-order models.

invar4bisim x (:α) (:β) φ
def
=

FV φ ⊆ { x } ∧ L1τ φ ∧
∀M N v w .

M,w - N, v ⇒ (mm2folm M, (λ x . w) � φ ⇐⇒ mm2folm N, (λ x . v) � φ)

The predicate invar4bisim takes four parameters, the first one is the name of the

only free variable in φ and the last one is the formula itself. For the second and

third one. Recall the issue we met when defining equivalence of modal formulas

as in Chapter 2, it needs to take a type as a parameter since we cannot have type

variable which only appears on the right-hand side but not on the left-hand side.

For the same reason, here we need to tell HOL explicitly about the type of the

world set of the models which can serve as M and N in our definition. Although

it is possible to prove theorems for different types α and β in the above definition,

we will only consider the case that α and β are the same when proving things

afterwards.

Https://github.com/u5943321/Modal-Logic/blob/49347817c5c3a4c50c419339ce856b2f121881df/chap2_4revisedScript.sml#L307
Https://github.com/u5943321/Modal-Logic/blob/49347817c5c3a4c50c419339ce856b2f121881df/chap2_7Script.sml#L491
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L1135

36 CHAPTER 4. STANDARD TRANSLATION

Proposition 4.5. [1, Theorem 2.68, easy direction] Every L1
τ -formula with only

one variable which is equivalent to a standard translation is invariant for bisim-

ulation.

` FV δ ⊆ { x } ∧ L1τ δ ∧ δ f≡(:α) STx φ ⇒ invar4bisim x (:α) (:α) δ

Proof. By Theorem 3.6 and Proposition 4.4.

In fact, using set theory as the foundation, we can prove that every formula

which is invariant under bisimulation arises as the standard translation of a modal

formula, so an L1
τ formula with at most one free variable x is invariant under

bisimulation precisely when it is equivalent to the standard translation of some

modal formula using the variable symbol x. We can translate the set-theoretic

proof into a simple type-theoretic proof. But the proof of the other direction

requires more advanced tools, and its statement does not look the same as its

mathematical statement as in set theory in HOL. This is because of the lack of

expressiveness of simple type theory. We will leave the other direction of the

proof to the next chapter.

Https://github.com/u5943321/Modal-Logic/blob/9ef1d16d8c297791ef20b9e601415b963b00b528/chap2_6Script.sml#L1909

Chapter 5

Modal Saturation via Ultrafilter

Extensions

In Chapter 3, we have seen bisimilarity implies modal equivalence, but only

proved the converse for image finite models. In this chapter, we are interested

in another particular class of models, called M-saturated models, where modal

equivalent worlds are bisimilar. We will introduce an operation, called the ultra-

filter extension, on models, which creates M-saturated models. With the results

about M-saturated models, we will conclude this chapter by proving an elegant

result about bisimulation: If we have a modal equivalence between worlds w, v in

two models M and N, although it may not be the case that w and v are bisim-

ilar, we can find a bisimulation between the ultrafilter extension of M and the

ultrafilter extension of N.

Let us explain what is meant by ‘M-saturated’ first. Being M-saturated is a

sort of compactness property, which says ‘finite satisfaction implies satisfaction’.

We need to give three definitions consecutively to finally get M-saturation to be

formally defined in HOL.

Definition 5.1. [1, Definition 2.53 (Satisfiable)] A set of formulas Σ is called

satisfiable in a set X of worlds in a model M if there exists an element in X such

that all the formulas in Σ are satisfied.

satisfiable in Σ X M
def
= X ⊆ MW ∧ ∃w . w ∈ X ∧ ∀φ. φ ∈ Σ ⇒ M,w
 φ

Definition 5.2. [1, Definition 2.53 (Finitely Satisfiable)] A set of formulas Σ is

called finitely satisfiable if every finite subset of Σ is satisfiable.

fin satisfiable in Σ X M
def
= ∀ S . S ⊆ Σ ∧ FINITE S ⇒ satisfiable in S X M

37

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L43
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L47

38CHAPTER 5. MODAL SATURATION VIA ULTRAFILTER EXTENSIONS

Definition 5.3. [1, Definition 2.53 (M-saturation)] A model M is called M-

saturated if for every w ∈ MW , if a set Σ is finitely satisfiable in the set

of successors of w, then it is satisfiable in the set of successors of w.

M sat M
def
=

∀w Σ .

w ∈ MW ∧ fin satisfiable in Σ { v | v ∈ MW ∧ MR w v } M ⇒
satisfiable in Σ { v | v ∈ MW ∧ MR w v } M

For M-saturated models, bisimilarity implies modal equivalence.

Proposition 5.1. [1, Proposition 2.54] For two worlds w1 and w2 living in M-

saturated models M1 and M2 respectively, if w1 and w2 are modal equivalent, then

they are bisimilar.

` M sat M1 ∧ M sat M2 ∧ w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧ M1,w1!M2,w2 ⇒
M1,w1 - M2,w2

Proof. Let M1 and M2 be models. In fact, they can be (α, β), (α, γ)-models

respectively, where β and γ are not required to be the same. Under the assump-

tions, the bisimulation relation Z we need is for a ∈ MW
1 and b ∈ MW

2 , we

have Z a b ⇐⇒ ∀φ. M1, a
 φ ⇐⇒ M2, b
 φ. To prove this relation is

indeed a bisimulation, the only non-trivial clause to check is that for worlds w1, v1

of M1 and world w2 of M2 such that w1 and w2 are modal equivalent, we can

find a world v2 of M2 such that MR
2 w2 v2 and v1 and v2 are modal equivalent.

Under the assumptions above, let Σ denote the set of formulas satisfied by

v1, we will find a successor w of w2 where each formula in Σ is satisfied, then the

world w will be modal equivalent to v1. Indeed, if we find such a w , then for a

formula ψ which is not satisfied at v1, we will have ¬ψ ∈ Σ and hence ¬ψ will

be satisfied at w , which implies ψ is not satisfied at w .

As M2 is M-saturated, it suffices to prove each finite subset ∆ ⊆ Σ is

satisfied in some successor of w2. Take such a ∆, then it is satisfied at v1 by its

definition. As ∆ is finite, we can conjunct all its elements to obtain a formula

ψ. We have M1, v1
 ψ, and therefore M1,w1
 ♦ψ. By modal equivalence of

w1 and w2, we then get M2,w2
 ♦ψ, so there exists a successor w′ of w2 that

satisfies ψ. Hence w′ will satisfy every formula in ∆.

Since M-saturated models are nice, here is a natural question: How can we

get such models? In the rest of this chapter, we will see the fact the ultrafilter

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L50
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L136

39

extension of every model is M-saturated. In order to talk about ultrafilter exten-

sions, we wrote a theory about ultrafilters in HOL. Instead of showing the whole

theory here, we will just show what we need for proving the theorems we are

interested in.

As its name suggests, an ultrafilter is a special kind of filter.

Definition 5.4. [1, Definition A.12 (Filters)] Given a non-empty set J , a set L

which is a subset of the power set of J (denoted as POW J in HOL) is called filter

if it contains J itself, is closed under binary intersection, and is closed upward.

filter L J
def
=

J 6= ∅ ∧ L ⊆ POW J ∧ J ∈ L ∧
(∀X Y . X ∈ L ∧ Y ∈ L ⇒ X ∩ Y ∈ L) ∧
∀X Z . X ∈ L ∧ X ⊆ Z ∧ Z ⊆ J ⇒ Z ∈ L

By induction, closure under binary intersection implies closure under every

finite intersection.

The simplest example of a filter is the power set POW J itself. By upward

closure, if a filter on J contains the empty set, then the filter must be the whole

power set POW J . A filter which is not a power set is called a proper filter.

For a set J and an element w ∈ J , the filter generated by { w } is the set of

subsets of J that contains w, it is trivial to check it is indeed a filter. Such a filter

is called a principal filter. In HOL, we define a function that takes an element

w ∈ J and a set J , and give the principal filter generated by w, which is denoted

as πJ
w . Actually, principal filters are the simplest examples of ultrafilters.

Definition 5.5. [1, Definition A.12 (Ultrafilters)] An ultrafilter on a set J is a

proper filter U such that for every X ⊆ J , either X or its complement J \X is

in U , but not both.

ultrafilter U J
def
=

proper filter U J ∧ ∀X . X ∈ POW J ⇒ (X ∈ U ⇐⇒ J \ X /∈ U)

There are two results about ultrafilter which will be used here, the standard

proofs of both of them can be found in Chapter 7 of [5]. The first one is the

ultrafilter theorem.

Theorem 5.2. [1, Fact A.14, first half] Every proper filter is contained in an

ultrafilter.

` proper filter L J ⇒ ∃U . ultrafilter U J ∧ L ⊆ U

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L18
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L34
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L361

40CHAPTER 5. MODAL SATURATION VIA ULTRAFILTER EXTENSIONS

The other one is a corollary of the ultrafilter theorem. This corollary says

that for every subset of POW J which has finite intersection property, it can

be extended to an ultrafilter on J . In HOL, the definition of finite intersection

property is given as:

Definition 5.6. [1, Definition A.13 (Finite Intersection Property)] A subset A of

POW J has finite intersection property if once we take the intersection of a finite,

nonempty family in A, the resultant set is nonempty. We read ‘FIP A J ’ as ‘A is

a set of subsets of J with finite intersection property’.

` FIP A J ⇐⇒
A ⊆ POW J ∧ ∀B . B ⊆ A ∧ FINITE B ∧ B 6= ∅ ⇒

⋂
B 6= ∅

Note that finite intersection property is a property of subsets of power sets.

Therefore, the predicate FIP defined above takes two parameters: a set of subsets

of J , and an ambient set J . Every proper filter has finite intersection property.

And the corollary of ultrafilter theorem that we will need is stated as:

Proposition 5.3. [1, Fact A.14, second half] For every set A of subsets of a

non-empty set J with finite intersection property, there exists an ultrafilter on J

which contains A.

` FIP A J ∧ J 6= ∅ ⇒ ∃U . ultrafilter U J ∧ A ⊆ U

The proof of both ultrafilter theorem and its corollary are not technical from

the formalization aspect. So we have omitted their proof.

We can now launch on the construction of the ultrafilter extension of a model.

For a model M, the world set of the ultrafilter extension of M is simply the set

of ultrafilters on the world set of M, whereas the relation defined on the set of

ultrafilters require more explanation.

Fix a model M and a subset X of its world set, we can consider two set of

worlds determined by X:

Definition 5.7. [1, Definition 2.55 (‘Can See’ and ‘Only See’)] Given a model

M and a set X of worlds of M, we define:

• The set of worlds that ‘can see’ X (notation: M♦(X)) is the set of worlds

w of M such that there exists some v ∈ X such that MR w v.

• The set of worlds that ‘only see’ X (notation: Mδ
♦(X)) is the set of worlds

w of M such that once we have MR w v for some world v ∈ MW , we

must have v ∈ X .

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L179
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L417
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L189

41

In HOL:

M♦(X)
def
= { w | w ∈ MW ∧ ∃ v . v ∈ X ∧ MR w v }

Mδ
♦(X)

def
= { w | w ∈ MW ∧ ∀ v . v ∈ MW ∧ MR w v ⇒ v ∈ X }

By definition of satisfaction, for every model formula φ, the worlds satisfying

♦φ are exactly the ones that can see a world where φ is satisfied, and the worlds

that satisfy �φ are exactly the ones that only see the worlds where φ is satisfied.

The concept ‘can see’ and ‘only see’ are dual to each other.

Proposition 5.4. [1, Proposition 2.56] A world that can see a world in X is

precisely a world that does not only see worlds that are not in X. Similarly, a

world that can only see worlds in X is precisely a world which does not see worlds

which are not in X.

` X ⊆ MW ⇒ M♦(X) = MW \Mδ
♦(M

W \ X)

` X ⊆ MW ⇒ Mδ
♦(X) = MW \M♦(M

W \ X)

A world can see some world in the union of X and Y if and only if it can see

a world in X or a world in Y , hence M♦ distributes over union. Dually, a world

only sees the worlds in the intersection of X and Y if and only if it can only see

worlds in X and worlds in Y , therefore, Mδ
♦ distributes over intersections.

Proposition 5.5 (can_see_UNION, only_see_INTER).

`M♦(X ∪ Y) = M♦(X) ∪ M♦(Y)

`Mδ
♦(X ∩ Y) = Mδ

♦(X) ∩ Mδ
♦(Y)

Return to the discussion about the definition of relation on the ultrafilter

extension of M. We define:

Definition 5.8. [1, Proposition 2.57 (Relation of Ultrafilter Extension)] Two

ultrafilters u, v on M are related in the ultrafilter extension of M if for every

X ∈ v, the set of worlds that can see X is in u.

ueMR u v
def
=

ultrafilter u MW ∧ ultrafilter v MW ∧ ∀X . X ∈ v ⇒ M♦(X) ∈ u

By the duality between ‘can see’ and ‘only see’, this relation has a reformula-

tion:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L207
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L611
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L273
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L221

42CHAPTER 5. MODAL SATURATION VIA ULTRAFILTER EXTENSIONS

Proposition 5.6. [1, Exercise 2.5.5] Two ultrafilters u and v on MW are related

if and only if for every subset Y of MW , if the set of worlds of M that it can only

see Y is in u, then Y is in v.

` ueMR u v ⇐⇒
ultrafilter u MW ∧ ultrafilter v MW ∧
{ Y |Mδ

♦(Y) ∈ u ∧ Y ⊆ MW } ⊆ v

Proof. Suppose ueMR u v and pick a set Y of worlds such that Mδ
♦(Y) ∈

u, we will prove Y ∈ v. We have MW \ M♦(M
W \ Y) = Mδ

♦(Y) by

Proposition 5.4, so MW \M♦(M
W \ Y) ∈ u. As u is an ultrafilter, this implies

M♦(M
W \ Y) /∈ u. By definition of ueMR and the assumption ueMR u v , this

implies MW \ Y /∈ v . Hence Y ∈ v as v is an ultrafilter. The other direction

is similar.

In order to define the ultrafilter extension model, the only remaining issue is

to define the valuation. We define a propositional letter p to be satisfied at an

ultrafilter v if and only if the set of worlds in M which satisfies p is in v. Hence

the full definition of ultrafilter extension is:

Definition 5.9. [1, Definition 2.57 (Ultrafilter Extension)] The ultrafilter exten-

sion is defined as a function that takes a model and gives the extended model. We

denote the ultrafilter extension of M by ueM.

ueM
def
=

〈〈frame := 〈〈world := { u | ultrafilter u MW } ; rel := ueMR〉〉;
valt := (λ p v . ultrafilter v MW ∧ { w | w ∈ MW ∧ MV p w } ∈ v)〉〉

The ultrafilter extension also changes the type of the input model, namely,

it changes the type of worlds from β to (β → bool) → bool. Ultrafilter

extension is indeed an extension, in the sense that M is embedded in ueM as a

submodel by the function sending w ∈ MW to the principal ultrafilter πMW

w

generated by w. In general, this embedding does not necessarily give a generated

submodel, nevertheless, we have an invariance result for this embedding:

Proposition 5.7. [1, Proposition 2.59 (ii)] For every model M and every world

w of M, w is modal equivalent to the principal filter generated by w, which is a

world in the ultrafilter extension of M.

` w ∈ MW ⇒ M,w ! ueM, πMW

w

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L237
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L267
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L483

43

This is actually a special case of the following proposition, where u is taken

as πMW

w . The proposition below captures the idea that ultrafilters are used to

describe the sense of ‘most’. More explicitly, for an ultrafilter U on a set J , we

can regard U as the set of subsets of J which can be regarded as ‘most of’ the

elements in J . From this viewpoint, the closure property under intersection can

be interpreted as ‘if two subsets of J both contain most of the elements in J , then

their intersection also contains most of the elements in J ’. The upward closure

property can be regarded as ‘if a subset S of J contains most of the elements in

J , then every superset of S also contains most of the elements in J ’. Finally, if

a subset of J is regarded as ‘most of the elements in J ’, then we are regarding

its complement as ‘a small part of the elements in J ’, so its complement cannot

also be in the ultrafilter. Given this intuition, the proposition below says that a

formula φ is satisfied in an ultrafilter u on MW iff φ is satisfied at most of the

worlds in M, where the sense of ‘most’ is measured by u, as described above.

Proposition 5.8. [1, Proposition 2.59 (i)] A formula φ is satisfied at an ultrafilter

u in the ultrafilter extension of M if and only if in the unextended model, the set

of worlds in M satisfying φ is in u.

` ultrafilter u MW ⇒
({ w | w ∈ MW ∧ M,w
 φ } ∈ u ⇐⇒ ueM, u
 φ)

Proof. By induction on φ. Three cases are straightforward. The diamond case

requires some manipulation using Proposition 5.6, Proposition 5.5 (2) and Propo-

sition 5.3.

The above proposition leads to a proof of M-saturatedness of ultrafilter ex-

tensions.

Proposition 5.9. [1, Proposition 2.61] The ultrafilter extension of each model is

M-saturated.

` M sat ueM

Proof. Suppose Σ is a set of formulas which is finitely satisfiable in the set of

successors of a world u ∈ ueMW , we need to find a world u ′ ∈ ueMW such that
ueMR u u ′ and ueM, u ′
 φ for all φ ∈ Σ . By Proposition 5.6 and Proposition

5.8, it amounts to find an ultrafilter u′ on MW such that { Y |Mδ
♦(Y) ∈ u } ⊆

u ′ and { w | w ∈ MW ∧ M,w
 φ } ∈ u ′ for all φ ∈ Σ .

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L316
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L504

44CHAPTER 5. MODAL SATURATION VIA ULTRAFILTER EXTENSIONS

Consider the set ∆

{ { w | w ∈ MW ∧ ∀φ. φ ∈ s ⇒ M,w
 φ } | FINITE s ∧ s ⊆ Σ } ∪
{ Y |Mδ

♦(Y) ∈ u ∧ Y ⊆ MW } ,

we check ∆ has the finite intersection property. The only nontrivial thing to check

is that for a in the first set of the union and b in the second set of the union, we

have a ∩ b 6= ∅.
Suppose s ⊆ Σ is finite, and b is a set of worlds in M such that Mδ

♦(b) ∈ u,

we show { w | w ∈ MW ∧ ∀φ. φ ∈ s ⇒ M,w
 φ } ∩ b 6= ∅.
Recall Σ is finitely satisfiable in the set of successors of u, we have a world

u′′ such that ueMR u u ′′ and ueM, u ′′
 φ for all φ ∈ s, in other worlds,

{ w | w ∈ MW ∧ M,w
 φ } ∈ u ′′ for all φ ∈ s. Then as s is finite,

{ w | w ∈ MW ∧ ∀φ. φ ∈ s ⇒ M,w
 φ } is a big intersection of finitely

many sets in u′′, and hence is in u′′. By Proposition 5.6 again, ueMR u u ′′ gives

{ Y |Mδ
♦(Y) ∈ u ∧ Y ⊆ MW } ⊆ u ′′, so b ∈ u′′ as well. As two elements

in u′′ has a nonempty intersection, we are done.

Hence by Proposition 5.3, there exists an ultrafilter u′ contains ∆ is routine

to check u′ is what we want.

Finally, we arrive at the characterization of modal equivalence as bisimilarity

in the ultrafilter extensions:

Theorem 5.10. [1, Proposition 2.62] Given two models M1 and M2 with w1 ∈
MW

1 and w2 ∈ MW
2 , w1 and w2 are modal equivalent if and only if the principal

filters generated by w1 in the ultrafilter extension of M1 and the principal filter

generated by w2 in the ultrafilter extension of M2 are bisimilar.

` w1 ∈ MW
1 ∧ w2 ∈ MW

2 ⇒
(M1,w1!M2,w2 ⇐⇒ ueM1, π

MW
1

w1 - ueM2, π
MW

2
w2)

Proof. Bisimulation implies modal equivalence by Theorem 3.6. For the reverse

direction, if w1 ∈ MW
1 and w2 ∈ MW

2 are modal equivalent, then π
MW

1
w1 ∈

ueM1
W is modal equivalent to π

MW
2

w2 ∈ ueM2
W by Proposition 5.7. As ueM1

and ueM2 are M-saturated by Proposition 5.9, the result follows by Proposition

5.1.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_5Script.sml#L579

Chapter 6

Two Characterizing Results

In Chapter 4, we presented the definition of ‘invariant for bisimulation’, and

mentioned that if we work with set theory, then we can prove that a first-order

formula with no more than one free variable is invariant for bisimulation if and

only if it is equivalent to the standard translation of some modal formula. We

have translated one direction of the set-theoretic proof of this result there. In

the first section of this chapter, we will translate the other half of the proof into

HOL, and explain why we cannot get the double implication when working with

simple type theory. In the second section, we translate from set theory to simple

type theory the proof of a theorem saying a modal formula is preserved under

simulation if and only if it is positive existential. The two new terminologies are

to be introduced in the second section of this chapter.

6.1 The ‘modal’ fragment of L1
τ formulas

In Chapter 4, we introduced the standard translation and proved that every

modal formula is ‘equivalent to’ its standard translation. We also mentioned that

the standard translation of every modal formula is L1
τ and has at most one free

variable. However, it is not the fact that every L1
τ formula with at most one

free variable is equivalent to the standard translation of a modal formula. For

instance, the first-order formula saying ‘there exists a state that is related to the

current state’ can never be a standard translation. In HOL:

Proposition 6.1 (non_ST_exists). The formula f∃ 2 (fR (fVAR 2) (fVAR 1)) is

not a standard translation.

` ¬∃φ. ST1 φ
f≡(:num)

f∃ 2 (fR (fVAR 2) (fVAR 1))

45

Https://github.com/u5943321/Modal-Logic/blob/cb3a6b28a487e42948d1376dd583b98d2777fb56/chap2_4revisedScript.sml#L386

46 CHAPTER 6. TWO CHARACTERIZING RESULTS

Here comes a question: which L1
τ -formulas with no more than one free variable

are equivalent to a standard translation? We have already given a short answer

that works for set-theoretic foundation: such formulas are exactly the ones which

are invariant under bisimulation. We have proved one direction of this result as

Proposition 4.5. In this section, we devote to proving in HOL the other direction,

saying ‘every formula which is invariant under bisimulation is equivalent to a

standard translation’. The tools that this proof will use are centered on saturated

models, which we are introducing now.

Given a first-order model M with no information about interpretation of func-

tion symbols, we can expand the model M by adding the interpretation of some

function symbols. For our proof in this section, we are only interested in adding

the interpretation of finitely many nullary function symbols, which are also called

constants.

Definition 6.1. [1, Definition A.9 (Expansion)] We write is expansion M A M′ f

to mean that M′ is the result of adding each element in A to M as a new constant.

Further, the function f is a bijection between {0, · · · , n − 1} and A, which is

assumed to be finite, so that each nullary function symbol c will be interpreted as

f c in M′.

is expansion M A M′ f
def
=

M′.Dom = M.Dom ∧ BIJ f (count (CARD A)) A ∧
M′.Fun =

(λ c l . if c < CARD A ∧ l = [] then f c else CHOICE M.Dom) ∧
M′.Pred = M.Pred

In above, the function CARD gives the cardinality of a finite set. For each

natural number n, we have count n = {0, · · ·n− 1}. And BIJ f A B reads ‘f is a

bijection from A to B’.

If M, A and f are all fixed, then the model M′ such that is expansion M A M′ f

is unique. We define the expansion as a predicate instead of a function only for

the convenience of manipulating the theorem prover when we prove theorems

about expansion.

The only difference between a model and an expansion of it is the interpre-

tation of function symbols. Before the expansion, as there is no information

contained in M about function symbols, once a first-order term contains some

function symbol, this term will not make sense to M, hence M can be used to

interpret no formula with a function symbol. If A has cardinality m, where m is

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L65

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 47

a natural number, after the expansion, every term fFn c [] for 0 ≤ c < m makes

sense to M′, and is evaluated to the element f c. Therefore, the formulas which

only use these function symbols can be interpreted in the expanded model. The

role of f here is to assign each 0 ≤ c < m an element of A, where the term fFn c []

will be evaluated to.

A set Σ of first-order formulas is called consistent with a model M if for every

finite subset Σ0 ⊆ Σ , there exists a valuation of M such that all elements of Σ0

are satisfied, in this case, we write consistent M Σ . A set Γ of first-order formula

is an x-type if for each formula in Γ , the only free variable that may contain is

x. In this case, we write ‘ftype x Γ ’ in HOL. If Γ is an x-type, when evaluating

formulas in Γ , the valuations will only control where the only free variable x goes

to. We say Γ is realized in M if there is an element w in the domain of M such

that M, (λ v . w) � φ for all φ ∈ Γ . That is, all the elements in Γ are satisfied

at the point w. In this case, we write ‘frealizes M x Γ ’ in HOL.

Definition 6.2. [1, Definition 2.63 (Countably Saturated)] Let M be a model

and n be a natural number. For every A ⊆ M.Dom, with |A| < n and for every

f : N→ M.Dom, there is a unique M′ such that is expansion M A M′ f . If every

such M′ realizes every x-type Γ , then we say M is n-saturated. In HOL:

n saturated M n
def
=

∀A M′ Γ x f .

IMAGE f U(:num) ⊆ M.Dom ∧ FINITE A ∧ CARD A ≤ n ∧ A ⊆ M.Dom ∧
is expansion M A M′ f ∧
(∀φ. φ ∈ Γ ⇒ form functions φ ⊆ { (c, 0) | c < CARD A }) ∧ ftype x Γ ∧
consistent M′ Γ ⇒

frealizes M′ x Γ

countably saturated M
def
= ∀ n. n saturated M n

As an easy example, we have:

Proposition 6.2. [1, Example 2.64 (iii)] Let M be the model with domain N, no

functions, and the only predicates are the unary ones, such that the predicate with

symbol n is interpreted as ‘greater than n’. Then M is not countably saturated.

` ¬countably saturated

〈〈Dom := U(:num); Fun := (λ f l . CHOICE U(:num));

Pred := (λ n v . ∃ x . v = [x] ∧ n < x)〉〉

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L77
Https://github.com/u5943321/Modal-Logic/blob/49347817c5c3a4c50c419339ce856b2f121881df/chap2_6Script.sml#L1879

48 CHAPTER 6. TWO CHARACTERIZING RESULTS

Proof. Consider the set Γ of all formulas of form fP n (fVAR a), where n is a

natural number. The model M is the expansion of itself by adding an empty set

of constants. The set Γ is consistent with M: it is clearly an a-type, and every

finite subset of Γ is realized in M since there the set of all natural number is not

bounded above under the usual ordering. But Γ is not realized at any natural

number, since there is no natural number that is greater than every natural

number.

The interest in countably saturated models stems from the fact that if two

modal models M1 and M2 are both countably saturated when viewed as first-

order models, then bisimulation and modal equivalence between worlds in M1

and in M2 coincide.

Theorem 6.3. [1, Proposition 2.65, second half]

` countably saturated (mm2folm M1) ∧ countably saturated (mm2folm M2) ∧
w1 ∈ MW

1 ∧ w2 ∈ MW
2 ⇒

(M1,w1!M2,w2 ⇐⇒ M1,w1 - M2,w2)

By Proposition 5.1, to prove the above, it suffices to prove:

Theorem 6.4. [1, Theorem 2.65, first half] If a modal model is countably satu-

rated when we view it as a first-order model, then this model is M-saturated.

` countably saturated (mm2folm M) ⇒ M sat M

Proof. Suppose countably saturated (mm2folm M). Let a ∈ MW and Σ be a set

of modal formulas which is finitely satisfiable in the set of successors of a. We

find a successor of a in M realizing all the formulas in Σ .

Define Σ ′ = { fR (fFn 0 []) (fVAR x) } ∪ { STx φ | φ ∈ Σ } and let M′

be the model obtained by expanding mm2folm M by adding a constant which is

represented by 0 and corresponds to the world a. Then the term fFn 0 [] will be

evaluated to a by any valuation of M′. We claim consistent M′ Σ ′. Take a finite

set Σ0 ⊆ Σ ′, we should find an element in M′ where every formula in Σ0 is

satisfied. For each element in Σ0 which is a standard translation, choose only one

modal formula p ∈ Σ that is translated to it. We do need to choose these formulas

using the choice function since the standard translation function is not injective.

We call the set of all the formulas chosen by this way A. Then A is a finite subset

of Σ . Recall we have assumed Σ is finitely satisfiable in the set of successors of a,

hence there exists b ∈ MW and MR a b such that M, b
 p for every p ∈ A.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L407
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L168

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 49

It follows by Proposition 4.3 that no matter whether fR (fFn 0 []) (fVAR x) is in

Σ0 or not, we have Σ0 is satisfied at b in M′.

This proves consistent M′ Σ ′. Since mm2folm M is countably saturated, the

whole set Σ ′ itself is satisfied in some w in M′. The fact that fR (fFn 0 []) (fVAR x)

holds at w implies w is a successor of a in M, and { STx φ | φ ∈ Σ } holds at

w implies that M,w
 φ for every φ ∈ Σ by Proposition 4.3.

As a reader may observe, we actually only need that mm2folm M is 2-saturated

for the proof above.

Knowing the interesting properties of countably saturated models, we now

answer the question of where to obtain them. The canonical way to obtain such

models involves the usage of ultraproducts, which we will discuss in the following

interlude.

6.1.1 Interlude: Countably saturated models via ultra-

products

Although we are ultimately interested in ultraproducts on models, we will begin

by introducing the construction of ultraproducts of sets.

Definition 6.3. [1, Page 495 (Cartesian product)] Suppose J is a non-empty set

indexing the family (Aj)j∈J , where each Aj is non-empty. The Cartesian product

of the family (Aj)j∈J is the set of functions f with domain J such that for all

j ∈ J , f(j) ∈ Aj.

Cart prod J As def
= { f | ∀ j . j ∈ J ⇒ f j ∈ As j }

As before, in the definition above, the family (Aj)j∈J is encoded as a function,

and hence for j ∈ J , As j is the set Aj indexed by j.

Definition 6.4. [1, Definition 2.69 (Ultraproduct of Sets)] If U is an ultrafilter

on J , for two functions f, g in the Cartesian product Cart prod J As, we say f

and g are U-equivalent (notation: f ∼As

U g) if the set { j | j ∈ J ∧ f j = g j }
(where the values of f and g agree) is in U . For an ultrafilter U on a set J and a

family As indexed by J , ∼As

U is an equivalence relation on the Cartesian product of

the As. The ultraproduct of As modulo U is the set of equivalence classes obtained

by partitioning Cart prod J As using the relation ∼As

U .

ultraproduct U J As def
= Cart prod J As/ ∼As

U

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L20
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L23

50 CHAPTER 6. TWO CHARACTERIZING RESULTS

We will write fU to denote the equivalence class that f belongs to. In the case

where As j = A for all j ∈ J , the ultraproduct is called the ultrapower of A

modulo U .

We have notions of ultraproduct for both modal and first-order models. For

modal models:

Definition 6.5. [1, Definition 2.70 (Ultraproduct of Modal Models)] Given a

family Ms of modal models indexed by J and an ultrafilter U on J , where Ms is

encoded as a function that takes an element of J and gives a model, the ultra-

product model of Ms modulo U (notation : ΠU Ms) is described as follows:

• The world set is the ultraproduct of world sets of Ms modulo U .

• For two equivalence classes fU , gU of functions in the ultraproduct, they are

related iff there exist f0 ∈ fU , g0 ∈ gU , such that { j ∈ J | (Ms j)R (f0 j) (g0 j) }
is in U .

• For a propositional letter p and an equivalence class fU , we have p is satisfied

at fU iff there exists f0 ∈ fU such that { j | j ∈ J ∧ f0 j ∈ (Ms j)V p }
is in U .

In HOL:

ultraproduct model U J Ms def
=

〈〈frame :=

〈〈world := ultraproduct U J (worlds Ms);

rel :=

(λ fU gU .

∃ f0 g0.

f0 ∈ fU ∧ g0 ∈ gU ∧
{ j | j ∈ J ∧ (Ms j)R (f0 j) (g0 j) } ∈ U)〉〉;

valt :=

(λ p fU . ∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ f0 j ∈ (Ms j)V p } ∈ U)〉〉

Here worlds is the function that takes a family of models to the family of their

world sets:

worlds Ms def
= (λ j . (Ms j)W)

In the definition of the relation and valuation of the ultraproduct modal model,

the occurrence of the existential quantifier is used to describe the existence of

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L109

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 51

representatives of an equivalence class with a certain additional property. As

we expect, since ∼A
U is an equivalence relation for every ultrafilter, the choice of

representative does not matter: if one element in an equivalence class satisfies the

required condition, then all the elements in the equivalence class will satisfy the

condition. Therefore, if we replace all the existential quantifiers with universal

quantifiers in the above definition, the construction is still valid, and will give the

same model as the current definition.

The critical result we will need about ultraproducts of modal models is a

modal version of the fundamental theorem of ultraproducts, which is also called

 Loś’s theorem.

Theorem 6.5 (Los_modal_thm). The modal version of Loś’s theorem states that

for U , an ultrafilter on J , and Ms a family of models, a modal formula φ is

satisfied at an equivalence class fU in the ultraproduct if and only if there exists

a function f0 ∈ fU such that the set of elements j ∈ J such that Ms j , f0 j
 φ

is in U

` ultrafilter U J ∧ fU ∈ (ΠU Ms)W ⇒
(ΠU Ms, fU
 φ ⇐⇒
∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ Ms j , f0 j
 φ } ∈ U)

Proof. Given an ultrafilter U on J and a family Ms of modal models, we proceed

by induction on φ. The base case for φ = VAR p is directly by definition, and

the case for φ = ⊥ is by the fact that the empty set is not in the ultrafilter. The

cases on disjunction and negation are by basic properties of ultrafilters. We only

spell out the proof for diamond case. The induction hypothesis gives for every

equivalence fU in the ultraproduct, we have

ΠU Ms, fU
 φ ⇐⇒ ∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ Ms j , f0 j
 φ } ∈ U

Given a world fU in ΠU Ms, we will prove

ΠU Ms, fU
 ♦φ ⇐⇒ ∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ Ms j , f0 j
 ♦φ } ∈ U

Left to right: Assume the left-hand side, then there is an equivalence class gU

that is related to fU and satisfies φ. By inductive hypothesis, independence of

representatives and definition of the ultraproduct model, for the representative

f of fU and the representative g of gU , both { j | j ∈ J ∧ Ms j , g j
 φ }
and { j | j ∈ J ∧ (Ms j)R (f j) (g j) } are in U , and hence so does their

intersection M . Therefore, the set

A = { j | j ∈ J ∧ ∃ v . (Ms i)R (f j) v ∧ v ∈ (Ms j)W ∧ Ms j , v
 φ }

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L193

52 CHAPTER 6. TWO CHARACTERIZING RESULTS

is in U , as a superset of M . This proves f can be taken as the f0 that we require.

Right to left: Suppose there is an f0 ∈ fU such that

{ j | j ∈ J ∧ ∃ v . (Ms j)R (f0 j) v ∧ v ∈ (Ms j)W ∧ Ms j , v
 φ }

is in U , we need to find an equivalence class which is related to fU and satisfies

φ, which by definition of relation in the ultraproduct model, amounts to find a

representative of such an equivalence class. The representative is given by:

• For an element j ∈ J , if there exists a world v ∈ (Ms j).world such that

(Ms j)R (f0 j) v and Ms j , v
 φ, then we choose such a v to send j to.

• For an element j ∈ J , if such a world v as described above does not exists,

we send j to an arbitrary world in (Ms j)W .

In HOL, the representative described above is defined as:

λ j .

if ∃ v . (Ms j)R (f0 j) v ∧ v ∈ (Ms j)W ∧ Ms j , v
 φ then

CHOICE { v | (Ms j)R (f0 j) v ∧ v ∈ (Ms j)W ∧ Ms j , v
 φ }
else CHOICE (Ms j)W

In the case that we are taking the ultraproduct of a constant family of models

with Ms j = M for all j ∈ J , we get an ultrapower of M. Specializing Theorem

6.5 to the case of ultrapowers yields:

Corollary 6.6. [1, Proposition 2.71]

If for every j ∈ J , Ms j = M (Ms is a “constant family”), then the

equivalence class of the constant function mapping every j to a fixed world w

satisfies φ in the ultraproduct model iff w satisfies φ in the original model M.

` (∀ j . j ∈ J ⇒ Ms j = M) ∧ ultrafilter U J ⇒
∀φ w . ΠU Ms, { f | (λ j . w) ∼worlds Ms

U f }
 φ ⇐⇒ M,w
 φ

The construction of ultraproduct of first-order models is similar to the con-

struction for modal models, but a bit more complicated, since we will have pred-

icates and functions to deal with.

Definition 6.6. [1, Definition A.18 (Ultraproduct of First-Order Models)]

Given a family Ms of first-order models indexed by J and an ultrafilter U on

J , the ultraproduct model of Ms modulo U (notation : fΠU Ms) is given by:

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L490
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L551

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 53

• The domain is the ultraproduct of the domains of Ms over U on J .

• A function with its symbol denoted by the natural number n will send a list zs

of equivalence classes to the equivalence class of a function that sending j ∈
J to (Ms j).Fun n l, where the k-th member of the list l is a representative

of the k-th member (which is an equivalence class) of zs.

• A predicate with its symbol denoted by p will hold for a list zs of equivalence

classes if and only if once we have a list zr such that the k-th member is

a representative of the k-th member of zs, the set of elements j ∈ J such

that (Ms j).Pred p zr is in U .

In HOL:

fΠU Ms def
=

〈〈Dom := ultraproduct U J (Doms Ms);

Fun :=

(λ n zs .

{ y |
(∀ j . j ∈ J ⇒ y j ∈ (Ms j).Dom) ∧
{ j | j ∈ J ∧ y j = (Ms j).Fun n (MAP (λ fU . CHOICE fU j) zs) } ∈ U });

Pred := (λ p zs . { j | j ∈ J ∧ (Ms j).Pred p (MAP (λ fU . CHOICE fU j) zs) } ∈ U)〉〉

In above, the function MAP takes a function f and a list l, and gives the list

whose n-th member is the image of the n-th member of l under f .

Here we fix the representative of each equivalence class fU to be CHOICE fU .

The function Doms takes a family of first-order models to the family of their

domains. It plays the same role as the function worlds in the definition of ultra-

product of modal models.

The semantic behavior of ultraproduct models are characterized by Loś’s the-

orem, whose proof can be founded in [2].

The first part of this theorem describe how first-order ultraproduct models

interpret terms. As for all models, this interpretation is performed by the termval

function.

Theorem 6.7. [1, Theorem A.19 (Loś’s theorem) (i)] For an ultraproduct model

of the family Ms of first-order models, a valuation σ assigns each natural number

an equivalence class in the ultraproduct of the world sets of the family. A term t

will be evaluated to the equivalence class of the function that maps a index j ∈ J

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L632

54 CHAPTER 6. TWO CHARACTERIZING RESULTS

to termval (Ms j) (λ v . CHOICE (σ v) j) t .

` ultrafilter U J ∧ valuation (fΠU Ms) σ ∧ (∀ j . j ∈ J ⇒ wffm (Ms j)) ⇒
termval (fΠU Ms) σ t =

{ f | f ∼Doms Ms

U (λ j . termval (Ms j) (λ v . CHOICE (σ v) j) t) }

In above, for each j ∈ J , the function that sends a variable v (which is a

natural number) to CHOICE (σ v) j is indeed a valuation of the model Ms j .

As we can see: for each v , the representative CHOICE (σ v) of the equivalence

class σ v is an element in the Cartesian product Cart prod J (Doms Ms). By

definition of Cartesian product, this means that for each j ∈ J , we have

CHOICE (σ v) j ∈ (Ms j).Dom.

The second part of Loś’s theorem characterizes satisfaction of first-order for-

mulas on ultraproduct models:

Theorem 6.8. [1, Theorem A.19 (Loś’s theorem) (ii)] For the ultraproduct of a

family Ms of first-order models over an ultrafilter U on J , a formula φ is satisfied

under a valuation σ if and only if the set indexing the models Ms j in the family

where φ is true under the valuation λ v . CHOICE (σ v) j is in the ultrafilter U .

` ultrafilter U J ∧ valuation (fΠU Ms) σ ∧
(∀ j . j ∈ J ⇒ wffm (Ms j)) ⇒

(fΠU Ms, σ � φ ⇐⇒
{ j | j ∈ J ∧ Ms j , (λ v . CHOICE (σ v) j) � φ } ∈ U)

Proof. By induction on φ. The base case for f⊥ comes from the fact that the

empty set is not in an ultrafilter. The atomic case is a direct translation of its

mathematical proof, which uses Theorem 6.7. The implication case is trivial from

the inductive hypothesis. We only spell out the proof for the case for universal

quantifier.

The implication from right to left is straightforward. From left to right, sup-

pose f∀ x φ is satisfied under a valuation σ in the ultraproduct model for Ms. We

need { j | j ∈ J ∧Ms j ,(λ v . CHOICE (σ v) j)� f∀ x φ} ∈ U . Suppose not, then

as U is an ultrafilter, the complement of the set above, which is:

A = { j | j ∈ J ∧ Ms j , (λ v . CHOICE (σ v) j) � f∃ x (f¬ φ) }

is in U . Using choice, we define a function f by sending each j ∈ J to a cho-

sen point in (Ms j).Dom where φ is not satisfied if such a point exists, and

CHOICE (Ms j) if such a point does not exist. Using the inductive hypothesis and

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L986

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 55

the fact that A ∈ U , we can show the equivalence class represented by f does not

satisfy φ, which contradicts our assumption.

 Loś’s theorem gives a classical corollary:

Corollary 6.9. [1, Corollary A.21] For every ultrafilter U on J , every first-order

model M is embedded in its ultrapower on U by sending an element in its domain

to the equivalence class of the constant function on that element.

` ultrafilter U J ∧ (∀ j . j ∈ J ⇒ Ms j = M) ∧ wffm M ∧ valuation M σ ⇒
(M, σ � φ ⇐⇒ fΠU Ms, (λ v . { g | g ∼Doms Ms

U (λ j . σ v) }) � φ)

The above corollary is straightforward to prove once we get the following

lemma:

Lemma 6.10 (ultraproduct_rep_independence_lemma). Given a family Ms of

first-order models indexed over J and an ultrafilter U on J . Let σ be a valuation

on the ultraproduct model of Ms over U . For a first-order formula φ, let σrep be

a function assigning each free variable v of φ a representative in the equivalence

class σ v. Then the set of j ∈ J that indexing the models Ms j where φ is

satisfied under the valuation λ v . CHOICE (σ v) j is in U if and only if the set

of elements j ∈ J indexing the the models Ms j where φ is satisfied under the

valuation λ v . σrep v j is in U .

` (ultrafilter U J ∧ valuation (fΠU Ms) σ) ∧
(∀ v . v ∈ FV φ ⇒ σrep v ∈ σ v) ⇒

({ j | j ∈ J ∧ Ms j , (λ v . CHOICE (σ v) j) � φ } ∈ U ⇐⇒
{ j | j ∈ J ∧ Ms j , (λ v . σrep v j) � φ } ∈ U)

In the theorem above, if the index set J is an α-set and Ms is a family of β-

first-order models, then σrep here is of type num → α → β. This lemma is very

helpful since it enables us to be free of choice of representatives of equivalence

classes in the ultraproduct when applying Loś’s theorem.

Proposition 6.11 (ultraproduct_suffices_rep). If we want to find a valua-

tion of a ultraproduct model satisfying a first-order formula φ, instead of assigning

equivalence classes to natural numbers directly, it suffices to assign representa-

tives.
` ultrafilter U J ∧ (∀ j . j ∈ J ⇒ wffm (Ms j)) ∧

(∀ j . valuation (Ms j) (λ v . σrep v j)) ∧
{ j | j ∈ J ∧ Ms j , (λ v . σrep v j) � φ } ∈ U ⇒
fΠU Ms, (λ v . { g | g ∼Doms Ms

U σrep v }) � φ

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L1556
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L1471
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultraproductScript.sml#L1643

56 CHAPTER 6. TWO CHARACTERIZING RESULTS

All the construction we did above serves to pave a way of getting a countably

saturated model. For a family of non-empty models, we will prove that their

ultraproduct on a countably incomplete ultrafilter is countably saturated. An

ultrafilter U on J is countably incomplete if there exists a family S s such that

S s n ∈ U for each natural number n, and the intersection
⋂
n∈NS s n is empty.

In other words, a countably incomplete ultrafilter is an ultrafilter which is not

closed under infinite intersection. Countably incomplete ultrafilters do exist. To

see this, first observe that the set A of subsets of N of form N \X, where X is a

finite subset of N, has finite intersection property. Therefore, by Proposition 5.3,

there exists an ultrafilter U that contains A. The ultrafilter U will not contain

any finite set, otherwise, it will contain both a subset of N and its complement,

and hence contradict the fact that U is an ultrafilter.

Lemma 6.12. [1, Lemma 2.73] For a family of non-empty models, their ultra-

product on a countably incomplete ultrafilter is countably saturated.

` countably incomplete U J ∧ (∀ j . j ∈ J ⇒ (Ms j)W 6= ∅) ⇒
countably saturated (mm2folm (ΠU Ms))

A mathematical proof of the lemma above can be found in Section 6.1 of [2].

It requires some work to translate the mathematical proof into HOL. With all the

setup about ultraproduct models, we may expect that the lemma above will be a

consequence of Loś’s theorem. But if we take a closer look of the statement, we

will find out Loś’s theorem cannot be directly applied here. The obstacles here

will become clear when we compare what we want to prove to the statement of

 Loś’s theorem: Loś’s theorem is about ultraproducts of first-order models, and

it says nothing about expansion. But by the definition of countably saturated

models, we are required to prove a statement for a model obtained by expanding

a first-order model which is again obtained by viewing an ultraproduct of modal

models as a first-order model. However, as we shall see now, this difference cannot

stop us from applying Loś’s theorem.

The first issue is to remove the expansion on the outmost layer. The key obser-

vation is that we have an alternative approach to capture the idea of ‘constants’.

Constants are nothing more than forcing some symbols to be sent to some points

in a model under every valuation, hence rather than use nullary function symbols,

we fixed a set of variable letters, each corresponds to a function symbol, and only

consider the valuations that sends these variable letters to fixed certain points.

With this idea, we can remove all the constants in a formula, and hence change

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L1085

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 57

our scope from an expanded model back to the unexpanded model. To get rid of

the constants {0, · · · , n − 1}, we replace every VAR m with VAR (m + n), and

replace every constant fFn c [] by VAR c. This operation is done by the function

shift form which takes a natural number (the number of constants we want to

remove), and a first-order formula (where the only function symbols may appear

are the constants 0, · · · , n− 1).

As an example, if M′ is obtained by adding one constant to M corresponds

to a point a ∈ M.Dom, then after the expansion, the formulas involves the

term fFn 0 [] makes sense to M′. If we do not want to work with expansion,

given a formula where the only function symbol that may occur is (0, 0), then we

can firstly add 1 to every variable symbol that appears in the formula, and then

replace every occurrence of fFn 0 [] by fVAR 0. The formula fR (fFn 0 []) (fVAR 0)

will become fR (fVAR 0) (fVAR 1), and the formula fP p (fVAR 1) f∨ fP q (fVAR 2)

will become fP p (fVAR 2) f∨ fP q (fVAR 3). Therefore, after applying the shifting

construction to a formula, there will be no function symbol remaining. Also, if s

is the set of free variables in the formula we start with, then a free variable in the

resultant formula is either of form x + CARD A for some x ∈ s, or an element in

{0, · · · , (CARD A− 1)} that is used to capture a constant.

Now if we still want to use an arbitrary valuation to evaluate a shifted formula,

something may go wrong. Since 0, · · · , n − 1 in the shifted formula are now

designed to be sent to fixed places f 0, · · · , f (n − 1), it does not make sense

to assign these variable symbols anywhere else. Hence to talk about evaluation

of shifted formula, the first thing is to make sure that the valuations we are

considering send the variables which actually denotes constants to the right place.

Hence we shift the valuations accordingly:

Definition 6.7 (Shifting on valuations).

shift valuation n σ f
def
= (λ v . if v < n then f v else σ (v − n))

Continue with the previous example. Formerly, we can use the valuation λ n. b

where b ∈ M.Dom and b 6= a to evaluate the formula fR (fFn 0 []) (fVAR 0). But

after the shifting, it does not make sense to use the same valuation to evaluate
fR (fVAR 0) (fVAR 1). To turn this valuation into a valuation that makes sense to

the shifted formula, we need to let fVAR 0 in the shifted formula to be evaluated

to the correct place a, and let the variable symbol which is formerly sent to b to be

also sent to b. Formerly, the variable symbol 0 is sent to b, but now the variable

which plays the same role as the 0 after the shifting is the variable symbol 1, hence

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L363

58 CHAPTER 6. TWO CHARACTERIZING RESULTS

we need the 1 in the shifted formula to be sent to b, as we can check, according to

our definition, shift valuation 1 (λ v . b) (λ v . a) = (λ v . if v = 0 then a else b)

does the correct thing.

The shifting construction gives the desired semantic behavior on first-order

formulas. If M′ is a model we get by adding a bunch of constants corresponds

to elements in a set A to a model M, then for a first-order formula φ such that

the function symbols appear in φ can only be the constants that corresponds to

element in A, the formula φ is true in M under valuation σ if and only if when

we ‘shift away’ all the constants in φ and shift the valuation σ accordingly, then

the resultant formula will be true on M under the shifted valuation. For our aim

here, we are interested in expanding a model that is obtained by converting a

modal model as a first-order model, so the result we need is:

Proposition 6.13 (expansion_shift_feval).

` is expansion (mm2folm M) A M′ f ∧ valuation (mm2folm M) σ ∧
form functions φ ⊆ { (c1, 0) | c1 < CARD A } ⇒

(M′, σ � φ ⇐⇒
mm2folm M, shift valuation (CARD A) σ f � shift form (CARD A) φ)

The shifting construction gets us out of the expansion, leaving us a model

obtained by converting a ultraproduct modal model to a first-order model. To

apply Loś’s theorem on such a model, we prove:

Proposition 6.14 (ultraproduct_comm_feval). For the ultraproduct of a fam-

ily of modal models, if we view the resultant modal ultraproduct model as a first-

order model, this first-order model will satisfy the same first-order formulas with-

out function symbols as the model we obtain by firstly view each modal model

in the family as a first-order model, then take their ultraproduct as first-order

models.

` ultrafilter U J ∧ form functions φ = ∅ ∧ valuation (mm2folm (ΠU Ms)) σ ⇒
(mm2folm (ΠU Ms), σ � φ ⇐⇒ fΠU (λ j . mm2folm (Ms j)), σ � φ)

Proof. By induction on φ.

Actually, we also have:

Proposition 6.15 (ultraproduct_comm_feval’).

` ultrafilter U J ∧ L1τ φ ∧ (∀ j . j ∈ J ⇒ wffm (Ms j)) ∧
IMAGE σ U(:num) ⊆ ultraproduct U J (Doms Ms) ⇒

(fΠU Ms, σ � φ ⇐⇒ mm2folm (ΠU (λ j . folm2mm (Ms j))), σ � φ)

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L382
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L188
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L1911

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 59

In summary, the above two propositions express the fact that the order of

taking ultraproduct and converting between modal and first-order models do not

matter if we only consider the satisfaction of L1
τ -formulas.

According to the discussion above, Proposition 6.14 and Proposition 6.13

reduce our task to the following:

Lemma 6.16 (Saturation of ultraproduct model, ultraproduct_sat). Let Ms

be a family of well-formed first-order models indexed by J , a countably incomplete

ultrafilter U on J , a set ∆ of L1
τ -formulas which contain no free variables other

than the ones in the set {x} ∪ C, and a function f from C into the domain of
fΠU Ms (the function f serves to give meaning to the free variables in C, treating

them as constants). If for every finite subset ∆0 of ∆, there exists a valuation

σ that agrees with f on the elements of C (i.e., it sends the ‘constants’ to the

correct places), and all the formulas in ∆0 are satisfied in fΠU Ms under σ, then

there exists a valuation σ sending the constants to the correct places that makes

every formula in ∆ satisfied in fΠU Ms (which just means that σ assigns the only

‘real’ free variable x to a point in fΠU Ms such that all the elements in ∆ are

satisfied).

` countably incomplete U J ∧ valuation (fΠU Ms) f ∧
(∀ j . j ∈ J ⇒ wffm (Ms j)) ∧
(∀φ. φ ∈ ∆ ⇒ L1τ φ ∧ FV φ \ C ⊆ { x }) ∧
(∀∆0.

FINITE ∆0 ∧ ∆0 ⊆ ∆ ⇒
∃σ.

valuation (fΠU Ms) σ ∧
(∀ c. c ∈ C ⇒ σ c = f c) ∧
∀φ. φ ∈ ∆0 ⇒ fΠU Ms, σ � φ) ⇒

∃σ.
valuation (fΠU Ms) σ ∧ (∀ c. c ∈ C ⇒ σ c = f c) ∧
∀φ. φ ∈ ∆ ⇒ fΠU Ms, σ � φ

The above is a classical theorem on ultraproduct models. To prove it, we need

another lemma about countably incomplete ultrafilters:

Proposition 6.17 (countably_incomplete_chain). In a countably incomplete

ultrafilter U on J , we can find a chain J = J0 ⊇ J1 ⊇ J2 ⊇ · · · with each Ji in

U , such that
⋂
n∈N Jn = ∅. The J s below is a function that takes a index n, here

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/lemma2_73Script.sml#L876
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/ultrafilterScript.sml#L653

60 CHAPTER 6. TWO CHARACTERIZING RESULTS

a natural number, to the set that n is indexing.

` countably incomplete U J ⇒
∃ J s.

J s 0 = J ∧ (∀ n. J s n ∈ U ∧ J s (n + 1) ⊆ J s n) ∧⋂
{ J s n | n ∈ U(:num) } = ∅

Proof. By definition of countable incompleteness, there exists a family Xn in U

indexed by natural numbers such that
⋂
n∈NXn = ∅. Define Kn :=

⋂
m≤nXn. In

HOL, the family Kn is defined as a recursive function K s such that K s 0 is X0

and K s (n + 1) is the intersection of K s n and Xn+1. We get the desired chain

Jn by inserting J at the beginning of Kn.

Now we can prove the saturation of ultraproducts:

Proof. Under the given assumptions, if ∆ is finite, there is nothing to prove.

Hence we assume ∆ is infinite. As we are using a countable first-order language,

every infinite set of first-order formula is countable, and hence there exists a

bijection enum from the set of all natural numbers to the set ∆. It suffices to

prove the existence of a valuation σ such that σ agree with f on C and moreover,
fΠU Ms, σ � enum n for all natural number n. The σ we want is an assignment

of variables to equivalence classes. But by Proposition 6.11 and Loś’s theorem,

instead of assigning equivalence classes, it suffices to find out a function σrep

that assigning each natural number a representative of some equivalence class

satisfying the following conditions.

• ∀ v j . j ∈ J ⇒ σrep v j ∈ (Ms j).Dom

• ∀ c. c ∈ C ⇒ { g | g ∼Doms Ms

U σrep c } = f c

• ∀ k . { j | j ∈ J ∧ Ms j , (λ v . σrep v j) � conj k } ∈ U

The first item says for each free variable v, the function that σrep assigns v

must be an element in the Cartesian product. The second item says that the

equivalence class assigned free variables in C has already been fixed by f . Both

of these two are easy to be satisfied. We devote to finding a σrep satisfying the

third condition.

By Proposition 6.17, we have a chain I s where I s n ∈ U and I s (n + 1) ⊆
I s n for each n, which start with I s 0 = J . Moreover, the intersection of this

chain is empty. Let conj be the recursive function that conj 0 = f>, and conj n

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 61

is the conjunction of first-order formulas in s from enum 0 to enum (n − 1). We

define J s to be the function that takes a natural number n and gives the set:

J s k =

{ j |
j ∈ J ∧
∀σ. (∀ c. c ∈ C ⇒ σ c = CHOICE (f c) j) ⇒ Ms j , σ � f∃ x (conj k) }

Then J s 0 = J , and for n > 0, J s n is the subset of J indexing the set of

models Ms j with a point in its domain such that the conjunction from enum 0

to enum (n − 1) are satisfied. Therefore, J s is a descending chain. Since every

finite subset of ∆ is satisfied in fΠU Ms by assumption, Loś’s theorem implies

that J s n ∈ U for every n. Define for each natural number n, X s n is the

intersection I s n ∩ J s n, then X s is a descending chain in U starting with J

and the intersection of all X s n is the empty set. For such a chain, each element

j ∈ J can only belong to finitely many of the sets in the family X s. Hence there

exists a function N that send an element j to smallest set in the chain X s that j

belongs to. That is, for all j ∈ J , we have j ∈ X s (N j) and j /∈ X s a for

every a > N j .

The σrep we are looking for can be taken as the function that takes a free

variable v and an element j ∈ J to an element in the domain of Ms j , defined as:

• If v ∈ C (v is a free variable which is actually used to capture a constant),

then v it sent to CHOICE (f v) j .

• If v /∈ C (which means that v is the x in our assumption), then choose an

element a ∈ (Ms j).Dom such that the formula conj (N j) is satisfied in

Ms j under the valuation that sends a free variable n in C to CHOICE (f n) j

and sends the free variable x to a. We can choose such an element since

we can easily prove its existence from the fact that J s n is in U for every

natural number n.

The first two conditions are immediate to check. It remains to show { j | j ∈
J ∧ Ms j , (λ v . σrep v j) � conj k } ∈ U for each k. Fix an arbitrary k,

as we have known that X s k is in U , it suffices to check X s k ⊆ { j | j ∈
J ∧ Ms j , (λ v . σrep v j) � conj k } . For every j ∈ X s k , by definition of the

function N , we have k ≤ N j . As j ∈ X s (N j), in particular, j ∈ J s (N j).

From here, we can deduce Ms j , (λ v . σrep v j) � conj (N j) by the definition of

σrep and the definition of J s. As conj m implies conj n for n ≤ m, we are done.

62 CHAPTER 6. TWO CHARACTERIZING RESULTS

This is the end of the interlude.

With the help of Lemma 6.12, we yield another theorem about ‘modal equiv-

alence between two worlds implies bisimilarity of the two worlds when embedded

in some other models’.

Theorem 6.18. [1, Theorem 2.74, one direction] If two worlds w ∈ MW and

v ∈ NW are modal equivalent, then we can find an ultrafilter U on J such that in

ultrapower models of M and N on U respectively, there is a bisimulation between

the worlds corresponding to w and v.

` w ∈ MW ∧ v ∈ NW ∧ (∀φ.M,w
 φ ⇐⇒ N, v
 φ) ⇒
∃U J .

ultrafilter U J ∧
ΠU (λ j .M), { f | (λ j . w) ∼worlds (λ j .M)

U f } - ΠU (λ j . N), { g |
(λ j . v) ∼worlds (λ j . N)

U g }

Proof. The U we require here can be an arbitrary countably incomplete ultrafil-

ter. Then by Lemma 6.12, the models mm2folm (ΠU (λ j .M)), mm2folm (ΠU (λ j . N))

are countably incomplete. Hence we are done by Proposition 6.3 and Corollary

6.6.

The last ingredient we need for the main theorem we are proving is the com-

pactness theorem of first-order logic. The standard statement of compactness

theorem says that for a set Σ of modal formulas, if for each finite subset Σ0 ⊆ Σ ,

there exists a model such that all the formulas in Σ0 are satisfied, then there ex-

ists a model such that all the formulas in Σ are satisfied. This standard version

of compactness theorem is formalized in 1998 in HOL by John Harrison [4]. The

way that Harrison states the compactness theorem looks very different from the

style that we are working with. With the help of a corollary proved from Harri-

son’s work by my supervisor, we have connected Harrison’s work to our project

by proving a version of the compactness theorem for L1
τ -formulas, which is no

more than a specialization to the standard version of compactness theorem to

L1
τ -formulas. We will use this version of compactness theorem for our work. The

statement looks like:

Theorem 6.19 (compactness_thm_L1tau). If α-is an infinite type, then for each

set ∆ of L1
τ -formulas, if for every finite subset ∆0 ⊆ ∆, there exists an α-model

M and a valuation σ such that every formula in ∆0 is satisfied in M under σ,

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L439
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L1432

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 63

then there exists an α-model M and a valuation on M such that all the formulas

in ∆ are satisfied.

` INFINITE U(:α) ∧ (∀φ. φ ∈ ∆ ⇒ L1τ φ) ∧
(∀∆0.

FINITE ∆0 ∧ ∆0 ⊆ ∆ ⇒
∃M σ. valuation M σ ∧ ∀φ. φ ∈ ∆0 ⇒ M, σ � φ) ⇒

∃M σ. valuation M σ ∧ ∀φ. φ ∈ ∆ ⇒ M, σ � φ

The assumption on infiniteness of the type universe comes from similar reason

as that of 2.2. Because of this assumption, every statement which requires com-

pactness theorem will be required to include the assumption on the infiniteness

of type universe.

As a consequence of the compactness theorem, we have:

Corollary 6.20 (compactness_corollary_L1tau). Under the assumption that

the type universe of α is infinite and ∆ is a set of L1
τ formula. If for every

α-model M and valuation σ, once we have M, σ � φ for every φ ∈ ∆, then

M, σ � δ, then there exists a finite subset ∆0 of ∆ such that once every formula

in ∆0 is satisfied in an α-model M under a valuation σ, then M, σ � δ.

` INFINITE U(:α) ∧ L1τ δ ∧ (∀φ. φ ∈ ∆ ⇒ L1τ φ) ∧
(∀M σ. valuation M σ ⇒ (∀φ. φ ∈ ∆ ⇒ M, σ � φ) ⇒ M, σ � δ) ⇒
∃∆0.

FINITE ∆0 ∧ ∆0 ⊆ ∆ ∧
∀M σ. valuation M σ ⇒ (∀φ. φ ∈ ∆0 ⇒ M, σ � φ) ⇒ M, σ � δ

Proof. Under the assumptions, suppose, in order to get a contradiction, that for

every finite subset ∆0 of ∆, there exists an α-model M and a valuation σ where

all the formulas in ∆0 are satisfied by δ is not satisfied, then every finite subset

of ∆0 ∪ { f¬ δ } is satisfied on some α-model M under some valuation σ. As

δ is an L1
τ -formula, so does f¬ δ. By Theorem 6.19, this implies the whole set

∆0 ∪ { f¬ δ } is satisfied on some α-model under some valuation, contradicting

our assumption.

Now we have all the ingredient for translating the hard direction of the stan-

dard proof of Van Benthem Characterization Theorem into HOL.

Theorem 6.21. [1, Theorem 2.68 (Van Benthem Characterization Theorem),

hard direction] For an infinite type α, if δ is a first-order formula which is in-

variant for bisimulation on num → α → bool-first-order models and the

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_6Script.sml#L1482
Https://github.com/u5943321/Modal-Logic/blob/1eac09d4a4b44dc4376dfe2b7580e6901bc1b47e/chap2_6Script.sml#L1918
Https://github.com/u5943321/Modal-Logic/blob/1eac09d4a4b44dc4376dfe2b7580e6901bc1b47e/chap2_6Script.sml#L1918

64 CHAPTER 6. TWO CHARACTERIZING RESULTS

only free variable may appear in δ is x, then there exists a modal formula whose

standard translation at x is equivalent to δ on α-first-order models.

` INFINITE U(:α) ∧
invar4bisim (x : num) (:(num → α) → bool) (:(num → α) → bool)

(δ : folform) ⇒
∃ (φ : num form). δ f≡(:α) STx φ

Proof. Under the given assumptions, consider the modal consequence of δ, which

is the set of standard translations implied by δ on all first-order models with

α-sets as their domains, defined in HOL as

MOC = { STx φ | φ | ∀M v . valuation M v ⇒ M, v � δ ⇒ M, v � STx φ }

Our first claim is that it suffices to prove δ is implies by MOC . To see why it

suffices, assume it is true, then by Corollary 6.20, there exists a finite subset of

Σ0 of MOC such that once all the formulas in Σ0 are satisfied, then δ is satisfied.

Also by definition of MOC , once δ is satisfied, every formula in Σ0 is satisfied.

Hence δ will be equivalent to the big conjunction of formulas in Σ0, which is a

standard translation.

Fix a model M and suppose M, σ � ϕ for every ϕ ∈ MOC , we prove

M, σ � δ. Consider of the set Σ of formulas of the form STx φ such that

M, σ � STx φ. Pick a model N and a valuation σN satisfying each formula in

Σ ∪ { δ } . Such a model does exist: Suppose, in order to get a contradiction,

that such a model does not exist, then for every model, once all the formulas

in Σ are satisfied, the formula δ will not be satisfied. Then by Corollary 6.20,

there exists a finite subset of Σ implies f¬ δ. Taking its contrapositive, then a

implies the negation of the big conjunction ψ of finitely many elements in Σ . As a

negated big conjunction of standard translations is again a standard translation,

we have f¬ ψ ∈ MOC . Recall we have assumed M, σ � ϕ for every ϕ ∈ MOC ,

so M, σ � f¬ ψ, but also M, σ � ψ by definition of Σ . This is a contradiction.

Now let w denote σ x and v denote σN x , we claim that if we regard both

M and N as modal models, then w and v are modal equivalent. To prove this,

suppose folm2mm M,w
 φ for a modal formula φ, then STx φ ∈ Σ by

Proposition 4.3, Proposition 4.1 and the definition of Σ , hence N, σN � STx φ.

By these two propositions again, we can prove folm2mm N, v
 φ. This proves

∀φ. folm2mm M,w
 φ ⇒ folm2mm N, v
 φ. Conversely, if folm2mm M,w 6

φ, then folm2mm M,w
 ¬φ and we can deduce folm2mm N, v 6
 φ by a

symmetric argument.

6.1. THE ‘MODAL’ FRAGMENT OF L1
τ FORMULAS 65

If modal equivalence implies bisimularity, then we are done: Suppose modal

equivalence implies bisimularity, then as w ∈ (folm2mm M)W and v ∈
(folm2mm N)W are modal equivalent, there exists a bisimulation between them.

As δ is invariant for bisimulation and is satisfied at v , then it is also satisfied at

w .

Although it is not always the case that modal equivalence implies bisimu-

larity, we can take a detour with the help of Theorem 6.18. By 6.18, we ob-

tain an ultrafilter U on a set J such that for the ultraproduct models M∗ =

ΠU (λ j . folm2mm M) and N∗ = ΠU (λ j . folm2mm N), the worlds w∗ =

{ f | (λ j . w) ∼worlds (λ j . folm2mm M)
U f } and v∗ = { g | (λ j . v) ∼worlds (λ j . folm2mm N)

U

g } are bisimilar. As δ is invariant for bisimulation, δ holds at w∗ in mm2folm M∗

iff it holds at v∗ in mm2folm N∗. We are going to carry the δ from the model N

where it is satisfied at v, to the point v∗ in mm2folm N∗, then to the point w∗ in

mm2folm M∗, and finally to w in M.

To carry δ around, it suffices to prove M, σ � δ ⇐⇒ mm2folm M∗, (λ x . w∗) �

δ and N, σN � δ ⇐⇒ mm2folm N∗, (λ x . v∗) � δ under our assumptions by

hand. These two equivalence are of the same pattern, hence we prove it as a

lemma:

` L1τ δ ∧ FV δ ⊆ { x } ∧ ultrafilter U J ∧ valuation M σ ⇒
(M, σ � δ ⇐⇒

mm2folm (ΠU (λ j . folm2mm M)), (λ x .

{ f | (λ j . σ x) ∼worlds (λ j . folm2mm M)
U f }) �

δ)

The lemma holds by Proposition 6.14, 6.15 and 4.1. Hence we are done.

Now we have formalized both directions of the Van Benthem Characteriza-

tion theorem. A reader may expect we can put them together to get a double

implication. However, as we have already mentioned, we cannot get an ‘if an only

if’ result. To see the reason: given an L1
τ -formula φ with no more then one free

variable, by the result we have just proved, if φ is invariant under bisimulation

for models with (num → α) → bool-worlds, then φ is equivalent to a standard

translation on model with α-worlds. However, if we want to prove the converse

of this statement, we need to start with the assumption that φ is equivalent to

a standard translation on models with α-worlds, and prove that φ is invariant

66 CHAPTER 6. TWO CHARACTERIZING RESULTS

for bisimulation for models with (num → α) → bool-world. But according to

Proposition 4.5, we can only conclude φ is invariant for bisimulation for models

of type α. If the type universe of (num → α) → bool is small enough to be

embedded into α, then we will also done. However, the cardinality of the universe

of (num → α) → bool is larger than that of α, and hence we cannot derive φ

is invariant for bisimulation for models with (num → α) → bool-worlds from

the fact that φ is invariant for bisimulation for models with α-worlds.

We get into this situation because the statements we have proved for both

directions are not precise translations of their set-theoretic statements. Consider

the easy direction: its set-theoretic statement is that if φ is equivalent to a stan-

dard translation on models of every type, then it will be invariant for bisimulation

on models of every type, whereas in our statement ‘if φ is equivalent to a standard

translation on models of type α, then it is invariant for models of type α’. Both

the assumption and the conclusion are weakened. We cannot encode the original

statement in HOL, since we cannot quantify over types and refer to all the types

to state ‘invariant for bisimulation for models of all types’ and ‘equivalent to a

standard translation on models of all types’, just as the problem we encountered

when defining equivalence of modal formulas. If we could quantify over types (as

we could in a theorem prover based on dependent type theory), then we could

prove ‘φ is invariant for bisimulation on models of every type if and only if φ is

equivalent to a standard translation on models of every type’ using the same proof

we have written out. For the easy direction, the assumption is that φ is equivalent

to a standard translation on models of every type, and we want to conclude that

φ is invariant for bisimulation for models of type α. But under assumption, the

formula φ is equivalent to a standard translation on models of type α where α is

an arbitrary type, so we prove the result by Proposition 4.5. Conversely, for the

other direction, the assumption is that ‘φ is invariant for bisimulation on models

of every type’, and the goal is to prove φ is invariant on models of type α where α

is an arbitrary type. By assumption, the formula φ is invariant for bisimulation

on models of type (num → α) → bool, and the result follows from Theorem

6.21.

67

6.2 Positive existential formulas and preserva-

tion under simulations

There exists a concept of ‘half of a bisimulation’, which is called simulation.

In this section, we are interested in the L1
τ -formulas which are preserved under

simulation. We have a set-theoretic proof that these formulas can also be char-

acterized using their syntax. This section aims to translate this characterization

into simple type theory. For precisely the same reason as in the last section, after

we translate the proof of implications in both directions, they cannot be unified

into a double implication. Nevertheless, we will spell out our formalization of

proofs for those two directions separately.

As we expect, the clauses defining simulation is ‘half of’ the clauses for defining

a bisimulation:

Definition 6.8. [1, Definition 2.77 (Simulations)] A simulation Z between two

models M1 and M2 (notation: M1
Z→M2) is a relation between their worlds such

that for every w1 ∈ MW
1 and w2 ∈ MW

2 , if Z relates w1 and w2, then we have:

• For each propositional letter which is satisfied at w1, it is also satisfied at

w2.

• If there is a world v1 in M1 such that MR
1 w1 v1, then there exists a world

v2 in M2 such that MR
2 w2 v2, and moreover, v1 and v2 are related by Z.

M1
Z→M2

def
=

∀w1 w2.

w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧ Z w1 w2 ⇒
(∀ p. w1 ∈ MV

1 p ⇒ w2 ∈ MV
2 p) ∧

∀ v . v ∈ MW
1 ∧ MR

1 w1 v ⇒ ∃ v ′. v ′ ∈ MW
2 ∧ Z v v ′ ∧ MR

2 w2 v ′

The concept which corresponds to ‘invariant for bisimulation’ is ‘preserved

under simulation’. In contrast to that of ‘invariant for bisimulation’, the concept

‘preserved under simulation’ is about modal formula.

Definition 6.9. [1, Definition 2.77 (Preserved Under Simulations)] A modal for-

mula φ is preserved under simulation if once we have w1 ∈ MW
1 and w2 ∈ MW

2

with a simulation relating w1 to w2, then if φ is satisfied at w1, it is also satisfied

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L32
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L38

68 CHAPTER 6. ‘POSITIVE’ FORMULAS AND SIMULATION

at w2.

preserved under sim (:α) (:β) φ
def
=

∀M1 M2 Z w1 w2.

w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧ M1
Z→M2 ∧ Z w1 w2 ∧ M1,w1
 φ ⇒

M2,w2
 φ

The predicate preserved under sim takes type parameters by the same reason as

discussed when we define invar4bisim.

The rest of the section aims to translate the proof that characterizes formulas

preserved under bisimulation as positively existential formulas. A positive exis-

tential formula is a modal formula which does not contain ‘negative’ connectives.

Such a formula is built up from >, ⊥ and propositional letters using only the

connectives ‘∧’,‘∨’ or ‘♦’:

Definition 6.10. [1, Page 111 (Positive Existential)] The rules of positive exis-

tential formulas read:

• The formulas ‘⊥’ and ‘>’ are positive existential.

• A propositional letter standing alone is positive existential.

• If φ1 and φ2 are both positive existential, then both their conjunction and

their disjunction are positive existential.

• Adding a diamond before a positive existential formula gives a positive ex-

istential formula.

PE ⊥ PE > PE (VAR p)

PE φ1 PE φ2

PE (φ1 ∧ φ2)

PE φ1 PE φ2

PE (φ1 ∨ φ2)

PE φ

PE (♦φ)

By induction, every big conjunction or disjunction of positive existential for-

mulas is again a positive existential formula. We can immediately prove by in-

duction on positive existential formulas that every positive existential formula is

preserved under simulation, but the converse only holds for ‘good models’. In

Chapter 5, we introduced the concept of M-saturated models, and we have al-

ready seen that they are ‘good’ models, which gives equivalence between modal

equivalence and bisimulation. It turns out that M-saturated models do not only

give rise to nice properties about bisimulations, but also work well for simulations.

Proposition 6.22. [1, Exercise 2.7.1] Suppose w1 ∈ MW
1 and w2 ∈ MW

2

and the models M1 and M2 are both M-saturated. If for every positive existential

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L44
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L364

69

formula φ, the satisfaction of φ at w1 implies the satisfaction of φ at w2, then

there exists a simulation relation between M1 and M2 which relates w1 to w2.

` M sat M1 ∧ M sat M2 ∧ w1 ∈ MW
1 ∧ w2 ∈ MW

2 ∧
(∀φ. PE φ ⇒ M1,w1
 φ ⇒ M2,w2
 φ) ⇒
∃Z .M1

Z→M2 ∧ Z w1 w2

Proof. Under the assumptions, the relation Z defined as Z v1 v2 iff ∀φ. PE φ ∧
M1, v1
 φ ⇒ M2, v2
 φ is a simulation. Checking it is indeed a simulation

is completely analogous to the proof of Proposition 5.1.

As the last theorem that is proved in the project, we translate the proof of

the theorem that says modal formulas which are preserved under simulations

are exactly the ones which are equivalent to a positive existential formula into

HOL. This proof will use a similar idea as the characterization theorem proved in

the last section. But this time, we only need the modal version of compactness

theorem and its corollary.

Theorem 6.23 (Compactness of modal logic). If α is an infinite type, then given

a set ∆ of num-modal formulas, if for every finite subset ∆0 ⊆ ∆, there exists

a modal model M with α-world set and a world w ∈ MW such that M,w
 φ

for every φ ∈ ∆0, then there exists a model with α-world set and a world in M

which satisfies all the modal formulas in ∆.

` INFINITE U(:α) ∧
(∀∆0.

FINITE ∆0 ∧ ∆0 ⊆ ∆ ⇒
∃M w . w ∈ MW ∧ ∀φ. φ ∈ ∆0 ⇒ M,w
 φ) ⇒

∃M w . w ∈ MW ∧ ∀φ. φ ∈ ∆ ⇒ M,w
 φ

Proof. By Proposition 4.3 and Theorem 6.19.

Corollary 6.24 (modal_compactness_corollary). For α is an infinite type,

given a modal formula δ and a set ∆ of num-modal formulas, if for every modal

model M with α-world set, every world w which satisfies all the formulas in ∆

will also satisfy δ, then there exists a finite subset ∆0 ⊆ ∆ such that for a world

w in a model M with α-world set, if every formula in ∆0 is satisfied at w, then

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L206
Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L277

70 CHAPTER 6. ‘POSITIVE’ FORMULAS AND SIMULATION

a is satisfied at w.

` INFINITE U(:α) ∧
(∀M w . w ∈ MW ⇒ (∀φ. φ ∈ ∆ ⇒ M,w
 φ) ⇒ M,w
 δ) ⇒
∃∆0.

FINITE ∆0 ∧ ∆0 ⊆ ∆ ∧
∀M w . w ∈ MW ⇒ (∀φ. φ ∈ ∆0 ⇒ M,w
 φ) ⇒ M,w
 δ

Proof. Similar to the proof of Corollary 6.20.

All the modal formulas appearing in the above theorems are required to be

num-formulas. That is because we need to appeal to standard translation to

prove them, and the standard translation is only defined on num-modal formulas.

Also, we require the assumption on infiniteness of the type universe since we use

first-order compactness theorems to prove the above two theorems.

For the same reason that we did it for Theorem 6.21, we only consider simu-

lations between models of the same type here.

Theorem 6.25. [1, Theorem 2.78, hard direction] Let β be an infinite type. For

each num-modal formula φ, if φ is preserved under simulation on (num, (β →
bool) → bool)-models, then there exists a positive existential num-modal for-

mula which is equivalent to φ on (num, β)-models.

` INFINITE U(:β) ∧
preserved under sim (:(β → bool) → bool) (:(β → bool) → bool)

(φ : num form) ⇒
∃ (ϕ : num form). φ ≡(:β) ϕ ∧ PE ϕ

Proof. Suppose φ is preserved under simulation for models of (β → bool) →
bool-worlds. Consider the set PEC of positive existential formulas ϕ such that

for every (num, β)-model M and every world w ∈ MW , if all the formulas in

PEC are satisfied at w , then ϕ is satisfied at w. In HOL, the set PEC is defined

as:

PEC = { ϕ | PE ϕ ∧ ∀M w . w ∈ MW ∧ M,w
 φ ⇒ M,w
 ϕ }

By Corollary 6.24, if we can prove for every (num, β)-model M and w ∈ MW ,

M,w
 ϕ for all ϕ ∈ PEC implies M,w
 φ, then there exists a finite subset

S of PEC that entails φ. This will prove φ is equivalent to the conjunction of all

the formulas in S, which is again a positive existential formula.

Https://github.com/u5943321/Modal-Logic/blob/00d0ddde512a3b7f01e07aef05403a48a18be476/chap2_7Script.sml#L399

71

Therefore, our task is to prove the entailment from PEC to φ. Suppose

M,w
 ϕ for all ϕ ∈ PEC , we prove M,w
 φ. Define Γ = { ¬ψ | PE ψ ∧
M,w
 ¬ψ } . We claim that there exists a (num, β)-model with a world that

satisfies the set Γ ∪ { φ } . By Theorem 6.23, it suffices to prove each finite subset

of Γ ∪ { φ } is satisfied by some model. Suppose there exists a finite subset of

Γ ∪ { φ } which can be satisfied by no model, then there exists ¬ψ0, · · · ,¬ψn ∈
Γ such that for every (num, β)-model N and every world v of it, if N, v
 φ, then

there exists some 0 ≤ i ≤ n such that N, v
 ψi. As all these ψ’s are positive

existential, so does their big disjunction ψ, and hence ψ ∈ PEC . As M entails

PEC , we have M,w
 ψ, and hence M, w
 ψi for some i by definition of the

ψ. But on other hand, M, w
 ¬ψi for every ψi by definition of Γ . This is a

contradiction.

Hence we obtain a model N such that every element in Γ ∪ { φ } is satisfied at

a point v ∈ NW . For every positive existential formula ψ such that M,w 6
 ψ,

we have ¬ψ ∈ Γ , so N, v
 ¬ψ. Hence for every positive existential ψ, if

N, v
 ψ, then M,w
 ψ. Consider the ultrafilter extensions ueM and ueN,

we claim the worlds ueN, πNW

v
 ψ is related to the world ueM, πMW

w
 ψ by a

simulation. By Proposition 6.22, it suffices to prove that every positive existential

formula which is satisfied at ueN, πNW

v
 ψ is also satisfied at ueM, πMW

w
 ψ.

Consider a positive existential ψ, ueN, πNW

v
 ψ implies N, v
 ψ, by the

discussion above, it implies M,w
 φ, and hence implies ueM, πMW

w
 ψ by

Proposition 5.7 again.

As N, v
 φ, Proposition 5.7 gives ueN, πNW

v
 φ, as φ is preserved under

simulation, we have ueM, πMW

w
 φ. Again by Proposition 5.7 , it implies

M,w
 φ. This completes the proof.

Bibliography

[1] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[2] C. C. Chang and H. Jerome Keisler. Model Theory. North Holland, 1990.

[3] HOL Developers. HOL Manual: Logic. Available from http://

hol-theorem-prover.org.

[4] John Harrison. Formalizing basic first order model theory. In Theorem Prov-

ing in Higher Order Logics, 11th Internatinal Conference, Lecture Notes in

Computer Science, pages 153–170. Springer, 1998.

[5] Thomas Jech. Set Theory. Springer, 2006.

[6] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Theorem

Proving in Higher Order Logics, 21st International Conference, Lecture Notes

in Computer Science, pages 28–32. Springer, 2008.

72

http://hol-theorem-prover.org
http://hol-theorem-prover.org

	Acknowledgements
	Introduction
	What is modal logic?
	What is HOL?
	Why is the combination of the two interesting?
	What have I done?
	How to read this thesis

	Getting Started
	HOL syntax
	The basic setup

	Invariant Results and Finite Model Property
	Invariant results
	Generated submodels
	Bounded morphisms
	Bisimulation

	Finite model property

	Standard Translation
	Modal Saturation via Ultrafilter Extensions
	Two Characterizing Results
	The `modal' fragment of L_1 formulas
	Interlude: Countably saturated models via ultraproducts

	Positive existential formulas and preservation under simulations

