
2. Compact operators on Hilbert space

There is a class of bounded linear transformation on a
Hilbert space H that is closely analogous to linear trans-
formations between finite-dimensional spaces — the com-
pact operators. Throughout, we will take H to be sepa-
rable and infinite dimensional. Recall that there is only
‘one such H ’ up to unitary equivalence.

Let us define the closed unit ball B ⊂ H to be
B = {f ∈ H | ∥f∥ ≤ 1}.

Notice that B is not compact. Indeed, if e1, e2, . . . is
an orthonormal basis of H , then this is a sequence in B

with no convergent subsequence, since ∥ei − ej∥ =
√

2

if i ̸= j.

Definition 2.1. A BLT T : H → H is compact if
the closure of T (B) is compact in H . Equivalently,
T is compact if, for every bounded sequence fn, Tfn

contains a convergent subsequence.

Thus, the identity operator on H is not compact. Here
are some examples of compact operators:
• Finite rank operators. A BLT is said to be of finite

rank if its range is finite dimensional. Let F be a finite

rank BLT. Then F (B) is a bounded set contained in a
finite dimensional subspace of H . Its closure is there-
fore compact (since closed, bounded subsets of Cn are
compact).

Exercise. If F is finite rank, let n = dim ran(F ).
Show that there are n vectors f1, . . . , fn so that, with
S = span(f1, . . . , fn), H = Ker(F ) ⊕ S. Hence, show
that F has the form

Fk =
n∑

i=1

gi(fi, k).

• Integral operators. If H = L2([0, 1]), let the opera-
tor T be defined by

Tf (x) =

∫ 1

0
K(x, y)f (y) dy.

Then if K(x, y) is L2 on [0, 1]2, then T is compact. We
will show this shortly.

Properties of compact operators

Proposition 2.2 (Proposition 6.1 of SS). Let T be a
bounded linear operator on H.

(i) If S is a compact operator on H, then ST and
TS are compact.

(ii) Suppose that there exists a sequence Tn of com-
pact operators such that ∥T − Tn∥ → 0 as n → ∞.
Then T is compact.

(iii) Every compact operator T is the norm limit
of a sequence of finite rank operators.

(iv) T is compact iff T ∗ is compact.

Remarks on the proof:
• (i) uses some standard point-set topology.
• (ii) uses a diagonal argument.
• (iii) is proved using a family of projection operators

associated to an ONB.
• (iv) follows readily from (iii).

Proof: The proof of (i) is straightforward. Let (fn) be a bounded

sequence. Then Tfn is another bounded sequence, and hence STfn

has a convergent subsequence. Hence ST is compact. Also, we note that

Sfn has a convergent subsequence Sfjn , and since T is continuous,

TSfjn is convergent. Therefore TS is compact.

(ii) Let fn be a bounded sequence. Then since T1 is compact there is

a subsequence f1,k such that T1f1,k converges. Since T2 is compact

there is a subsequence f2,k of f1,k such that T2f2,k converges. And

so on; we thus generate a family of nested subsequences fn,k . Let

gk = fk,k . Then gk is eventually a subsequence of the nth subsequence

fn,k so Tngk converges as k → ∞ for each n. We now claim that

Tgk is a Cauchy sequence, and hence convergent. To see this we

write

∥T (gk − gl)∥ ≤ ∥Tgk − Tmgk∥ + ∥Tm(gk − gl)∥

+∥Tmgl − Tgl∥
which is valid for any m. Let M be an upper bound on the ∥gk∥.
Then the first and third terms are bounded by M∥T − Tm∥ which is



small provided m is chosen large enough. Fixing any sufficiently large

m, the second term is small if k, l are large enough.

(iii) Choose an orthonormal basis e1, e2, . . . and let Pn be the

orthogonal projection onto the span of the first n basis vectors, and

Qn = Id −Pn. Then ∥QnTf∥ is a nonincreasing function of n, so

therefore ∥QnT∥ is nonincreasing in n. If ∥QnT∥ = ∥PnT −
T∥ → 0 then the statement is proved, so assume, for a contradiction,

that ∥QnT∥ ≥ c for all n. Choose fn, ∥fn∥ = 1, such that

∥QnTfn∥ ≥ c/2∥fn∥ for each n. By compactness of T , there is a

subsequence such that Tfkn → g for some g. Then ∥QknTfkn∥ ≤
∥Qkng∥ + ∥Qkn(g − Tfkn)∥ ≤ ∥Qkng∥ + ∥g − Tfkn∥ (since Qkn

always has norm 1), and both the terms on the RHS converge to zero,

which is our desired contradiction.

(iv) This follows from parts (ii) and (iii), and from the identity

∥A∥ = ∥A∗∥ for all BLT A. □

Corollary 2.3. Let E be a measurable subset of Rn.
Let T be an integral operator on L2(E) with kernel
K(x, y). Assume that K ∈ L2(E2). Then T is a
bounded operator with ∥T∥ ≤ ∥K∥L2(E2). Moreover,
T is compact.

Sketch: Approximate K by linear combinations of functions χA(x)χB(y)

for A and B measurable sets in E . The corresponding integral

operators are finite rank, and approximate T . □

The book gives a different proof.

An abstraction of this class of operators is the class
of Hilbert-Schmidt operators; see SS, p187. A Hilbert-
Schmidt operator is one with finite “Hilbert-Schmidt”
norm,

∥A∥2
HS =

∑

i

∥Aei∥2 .

Later we’ll be able to show that for every Hilbert-Schmidt
operator T : H → H , there is a measure space E, an
integral operator S in L2(E), and a unitary U : H →
L2(E) so that

T = U ∗TKU.

Spectral theorem for compact operators

The following important theorem is a direct analogue
of the spectral theorem for real symmetric matrices. Be-
fore stating it we give some more examples.

Example. Diagonal or ‘multiplier’ operators. Let
e1, e2, . . . be an orthonormal basis of a Hilbert space H ,
and let λ1, λ2, . . . be a bounded sequence of complex
numbers. Define (if possible) the operator T by Tei =

λiei for all i. Show that
(1) there is a unique bounded operator T with this

property, and ∥T∥ = supi |λi|.
(2) Show that T is compact iff λi → 0 as i → ∞.

Definition 2.4. We say that an operator T : H → H

is self-adjoint, or symmetric, if T = T ∗, or equivalently,
if (Tf, g) = (f, Tg) for all f, g.

Example. Orthogonal projections are self-adjoint.
The operator on L2([0, 1]) mapping f (x) to xf (x) is
self-adjoint. The operator mapping f (x) to eixf (x) is
not self-adjoint. Nor is f (x) 7→

∫ x
0 f (s)ds self-adjoint.

(What are the adjoints?)
Exercise. Let K(x, y) be a continuous function

on [a, b] × [a, b]. Show that the integral operator on
L2([a, b])

f (x) 7→
∫ b

a
K(x, y)f (y) dy

is self-adjoint exactly if K(x, y) = K(y, x). (If K(x, y)

is only bounded and measurable, then the same result
holds for a.e. (x, y).)

It turns out that for self-adjoint compact operators,
the diagonal example above is in fact the general case:



Theorem 2.5. Let T be a compact self-adjoint op-
erator on H. Then there is an orthonormal ba-
sis e1, e2, . . . of H consisting of eigenvectors of T .
Thus Tei = λiei, and we have λi ∈ R and λi → 0

as i → ∞.

• This is the analogue in infinite dimensions of the
fact that a real symmetric matrix is diagonalizable via
an orthogonal matrix.

Steps in the proof:
1. Show that ∥T∥ = sup∥f∥=1 |(Tf, f )|.
2. Show that the quantity on the RHS takes a maximum

value at some f which is an eigenvector of T .
3. Eigenspaces of T corresponding to distinct eigenval-

ues are orthogonal.
4. The operator T restricts to a compact self-adjoint

operator T |V ⊥ whenever V is an eigenspace, or direct
sum of eigenspaces.

5. Thus the direct sum of all eigenspaces must be the
whole space.

Proof: 1. Claim: For any self-adjoint operator T (compact or not),

∥T∥ = sup
∥f∥=1

|(Tf, f )|.

To see this, we use the characterization

∥T∥ = sup
∥f∥,∥g∥=1

|(Tf, g)|.

So, with M = sup∥f∥=1 |(Tf, f )|, we have ∥T∥ ≥ M . To prove

∥T∥ ≤ M , we write using the self-adjointness of T

4 Re(Tf, g) = (T (f + g), f + g) − (T (f − g), f − g).

Then, we get

4| Re(Tf, g)| ≤ M(∥f + g∥2 + ∥f − g∥2),

and the 'parallelogram law' gives

∥f + g∥2 + ∥f − g∥2 = 2(∥f∥2 + ∥g∥2) = 4.

So | Re(Tf, g)| ≤ M . Replacing g by eiθg we can make | Re(Tf, g)| =

|(Tf, g)| and the proof is complete.

2. Therefore, either T = 0, in which case the theorem is trivial, or

|(Tf, f )| > 0 for some f with ∥f∥ = 1. By replacing T with −T

if necessary, we can assume that there exists f with (Tf, f ) > 0

(note that by self-adjointness, (Tf, f ) is real for all f ).

Consider the problem of maximizing (Tf, f ) as f ranges over the

unit ball of H . By 1., the set of values (Tf, f ), f ∈ B , has a

supremum µ = ∥T∥ > 0, so we may take a sequence fn, ∥fn∥ = 1

with

(Tfn, fn) → µ.

I claim that

∥(T − µ)fn∥ → 0.

To see this, we square the LHS and compute

0 ≤ ∥(T − µ)fn∥2 = ∥Tfn∥2 − 2µ(Tfn, fn) + µ2

≤ 2µ(µ − (Tfn, fn)) → 0

which verifies the claim. Now we exploit compactness of T : the

sequence (Tfn) has a subsequence converging, say to µf . Passing

to the subsequence we may assume that the sequence (Tfn) itself

converges. Then fn converges to f , since

∥fn − f∥ ≤ µ−1
(
∥(T − µ)fn∥ + ∥Tfn − µf∥

)
→ 0.

By continuity of T , Tf = limn T (fn) = µf .

Thus we have found an eigenvector f of T .

3. If Tv = λv, and Tw = µw, then we have

(v, w) = λ−1(Tv, w) = λ−1(v, Tw) = µλ−1(v, w),

so (v, w) = 0 unless λ = µ.

4. Whenever a self-adjoint operator preserves a subspace, i.e

T (v) ∈ V for every v ∈ V , then it also preserves the orthogonal

complement, since (Tx, v) = (x, Tv). Certainly T preserves each

eigenspace, and thus T restricts to an operator on the orthogonal

complement of all eigenspaces. It's easy to see that it is still compact

and self-adjoint there.

5. Finally, we see that the orthogonal complement of all eigenspaces

must be the zero subspace; otherwise, by the above, T restricts to it

and has eigenvector there! □

Example. Be warned: the situation for nonself-
adjoint compact operators is quite different. For ex-
ample, consider the operator UT where T maps ei to
ei/i and U maps ei to ei+1. This is compact, but it has
no eigenvectors at all.



Applications of the spectral theorem

There are many applications of this result. One I want
to mention here is to showing that orthonormal sets are
actually bases. For example, suppose we want to show
that the orthonormal set of functions

(2π)−1/2ei(n+1/2)θ, n ∈ Z,

as elements of L2([0, 2π]), form an ONB. We can do this
by manufacturing a compact self-adjoint operator T for
which these functions are the eigenfunctions! Which op-
erator? You might think of T = id/dθ, but this doesn’t
work because it is not bounded, let alone compact. In-
stead, we use integration.

Check that the operator

f (θ) 7→ i

2

( ∫ θ

0
f (s) ds −

∫ 2π

θ
f (s) ds

)

is compact and self-adjoint, and that its eigenfunctions
are precisely the set (2π)−1/2ei(n+1/2)θ, n ∈ Z.

Sturm-Liouville operators

A Sturm-Liouville operator is an operator L : C2([a, b]) →
C([a, b]) of the form

Lf (x) = −f ′′(x) + q(x)f (x)

where q(x) is a continuous function. Here we will as-
sume that q(x) ≥ 0. We will prove that there is a
complete set of eigenfunctions of L in L2([a, b]), that
is, functions ϕn(x) such that

Lϕn(x) = µnϕn(x).

Notice that if q(x) ≡ 1, and [a, b] = [0, π], then a
complete set of eigenfunctions is the set sin nx, n =

1, 2, . . . . The result can then be viewed as a general-
ized, ‘variable coefficient’ version of Fourier series.

As before, the operator L cannot be bounded on L2,
since it involves derivatives. The idea is to construct the
inverse operator to L. This can be done is a surprisingly
explicit way. What we do is look for two solutions ϕ−(x)

and ϕ+(x) of the equation Lϕ = 0. These are specified
by their initial conditions: we require that ϕ−(a) = 0,
ϕ′

−(a) = 1, while ϕ+(b) = 0, ϕ′
+(b) = 1. I claim that

ϕ−(b) ̸= 0. Otherwise, compute

0 =

∫ b

a
ϕ0(x)Lϕ−(x) dx

=

∫ b

a
ϕ−(x)

(
− ϕ′′

−(x) + q(x)ϕ−(x)
)

dx

=

∫ b

a
(ϕ′

−(x))2 + q(x)(ϕ−(x))2 dx.

Here we integrated by parts and used the boundary con-
ditions, ϕ−(a) = ϕ−(b) = 0 to eliminate the boundary
term (which is ϕ−(b)ϕ′

−(b)−ϕ−(a)ϕ′
−(a)). Because we

assumed that q ≥ 0, this can only be if ϕ− is identically
zero, which contradicts the condition ϕ′

−(a) = 1.
We next conclude that ϕ− and ϕ+ are linearly inde-

pendent; otherwise ϕ−(b) = 0.
Recall from ODE theory that the Wronskian,

W (x) = ϕ+(x)ϕ′
−(x) − ϕ−(x)ϕ′

+(x)

is constant in x. Evaluating at x = b we see that it is
nonzero. We write W = W (b).

Now I claim that the integral operator T with kernel

K(x, y) =





ϕ−(x)ϕ+(y)/W, x ≤ y

ϕ+(x)ϕ−(y)/W, x ≥ y

is an bounded operator on L2([a, b]). An interesting
computation shows that, for all continuous f ∈ C([a, b]),
Tf is C2 and

L(Tf ) = f.

(Do it!) However, T is a self-adjoint compact operator,
and hence has a complete set of eigenfunctions ϕn(x)

such that Tϕn(x) = λnϕn(x). It is not hard to check
that the range of T consists of continuous functions, so
each ϕn(x) is continuous, and hence C2. It follows that
Lϕn(x) = λ−1

n ϕn(x). This shows that L has a complete
set of eigenfunctions, as claimed.



Remark. Sturm-Liouville operators, and the corre-
sponding differential equations, are very important in
physics and applied mathematics. As an example, the
(time independent) Schrödinger equation describing the
quantum mechanical behaviour of a particle moving on
a interval with potential q(x) is exactly the equation
−f ′′(x) + q(x)f (x) = λf (x). For a particle moving
in R rather than a bounded interval [a, b], the analysis
above does not apply, and in general the eigenvectors
do not form a basis.

Remark. Even though L is not bounded, it can still
be understood as a self-adjoint operator on L2([a, b]).
There are two technicalities: first, we must restrict the
domain to functions whose second derivative lies in L2,
and second, for self-adjointness, we must impose suit-
able boundary conditions on the functions.

Notice that, from the ODE point of view, in order to
solve Lu = f uniquely for a given f , say in C([a, b]),
we need to specify two values of u, since there are two
arbitrary constants in the solution of a second order
ODE. You might think it would be natural to specify
say u(a) and u′(a), but this does not give a self-adjoint

problem. Instead we impose one condition at x = a

and one at x = b.
To see this, compute for smooth enough functions

(Lf, g) − (f, Lg)

=

∫ b

a

(
-f ′′(x) + q(x)f (x)

)
g(x)−

− f (x)
(

-g′′(x) + q(x)g(x)
)

dx

=

∫ b

a

(
− f ′′(x)g(x) + f (x)g′′(x)

)
dx

= f ′(x)g(x) − f (x)g′(x)
∣∣∣
b

a

= f ′(b)g(b) − f (b)g′(b) − f ′(a)g(a) + f (a)g′(a)

This vanishes, for example, if we require that f and g

vanish at a and b. (Another suitable condition is that
f ′ and g′ vanish at a and b. )


