2. COMPACT OPERATORS ON HILBERT SPACE

There is a class of bounded linear transformation on a
Hilbert space H that is closely analogous to linear trans-
formations between finite-dimensional spaces — the com-
pact operators. Throughout, we will take H to be sepa-
rable and infinite dimensional. Recall that there is only
‘one such H’ up to unitary equivalence.

Let us define the closed unit ball B C H to be

B={feH]||fl<1.

Notice that B is not compact. Indeed, if e, es,... is
an orthonormal basis of H, then this is a sequence in B
with no convergent subsequence, since ||le; — ;|| = v/2
ifi+#j.

Definition 2.1. A BLT T : H — H is compact if
the closure of T(B) is compact in H. Equivalently,
T is compact if, for every bounded sequence f,, T f,

contains a convergent subsequence.

Thus, the identity operator on H is not compact. Here
are some examples of compact operators:
e Finite rank operators. A BLT is said to be of finite

rank if its range is finite dimensional. Let F' be a finite

Properties of compact operators

Proposition 2.2 (Proposition 6.1 of SS). Let T be a
bounded linear operator on H.

(i) If S is a compact operator on H, then ST and
TS are compact.

(ii) Suppose that there exists a sequence T), of com-
pact operators such that |T — T,|| — 0 as n — oo.
Then T is compact.

(iii) Every compact operator T is the norm limit
of a sequence of finite rank operators.

(iv) T is compact iff T* is compact.

rank BLT. Then F(B) is a bounded set contained in a
finite dimensional subspace of H. Its closure is there-
fore compact (since closed, bounded subsets of C" are
compact).

Exercise. If F is finite rank, let n = dimran(F).
Show that there are n vectors fi, ..., f, so that, with
S =span(fi,..., fn), H=Ker(F)®S. Hence, show
that F' has the form

Fk=Y " gifi,k).
i=1

o Integral operators. If H = L?([0,1]), let the opera-
tor T" be defined by

1
Tfa) = [ Kla) ) do
Then if K (x,y) is L? on [0, 1], then T is compact. We

will show this shortly.

Remarks on the proof:

o (i) uses some standard point-set topology.

o (ii) uses a diagonal argument.

e (iii) is proved using a family of projection operators
associated to an ONB.

o (iv) follows readily from (ii).

Proof: The proof of ) i« ctraightforward. Let (f,) ke a kounded
Sequence. Then T'f, i€ anotrer kounded <equence, and hence ST f,
has a convergent cubcequence. Hence ST i€ compact. Mco, we note tHhat
S f” has a convergent <ubSequence S fh, and <nce T & contnuous,
TSfJ»" & convergent. Therefore TS i€ compact,

() Let f, ke a kounded <equence. Then since Ty & compact trerre i<
a <ucequence ) Such that T\ fy ) converges. Siuce Ty & compact
there i€ a Cukcequence fy of fy ;. Such that Thfy; converges. And
Co o wWe thu< generate a famly of nected <ueequence< f, . Let
Gr. = [ Then g € eventually a <uceguerce of #e nth Sukcequence
Jar €0 Thgp converges as k. — oo for each n. We now daim that
Tgj € a Caudy <equence, and hence convergent. To <ee thic we

white
”T(g/» - gl)H < HTg/\ - ng/vH + ”Tm<g/\' - gl)H

+||ngl - Tng
which ic vald for ang m. Let M ke an uper bound on te || gyl
Then the furct and dird terms are kounded by N[ HT — TmH Which <



cmall provided 1, i€ chosen large enough. Fixing any <ufficiently large
me the Second term & <mald f ]4"] are large enough.

(w) Chooce an orthonormal kacic eq ey, ... and let P, ke the
orthogonal projection onto the <pan of the firct q bacic Vectors, and
Q, =1d-P, Then ||QUT f || € a noninereasing function of m, <o
thevefore HQ”TH & nomncreacing i n. I HQ”TH = HP”T —
T|| — O then the ctaterent i proved, <o ascume, for a contradiction,
that HQ”TH > ¢ for all p. Chooce f,, H/”H = 1, Such #hat
1QuTFl = ¢/2]l
SUbCequence Such Hhat T fk,, — g for <ome g. Then HQ,\,”T fk”H <
1@k, gll +11Qx, (9 = T )ll < Qe gl + llg = Tfi || lene Qy,

always has norm 1), and both the tevms on the RHS converge to zero,

| for each n. By corpactness of T there i< a

which i€ ow de<ired contradiction.
V) The follows from partc () and (), and from the dentity

||A]| = [|A*|| for att BLT A O

Spectral theorem for compact operators

The following important theorem is a direct analogue
of the spectral theorem for real symmetric matrices. Be-
fore stating it we give some more examples.

Example. Diagonal or ‘multiplier’ operators. Let
e1, €9, ... bean orthonormal basis of a Hilbert space H,
and let A1, Ag,... be a bounded sequence of complex
numbers. Define (if possible) the operator T' by T'e; =
A;e; for all 7. Show that

(1) there is a unique bounded operator T with this
property, and ||T’|| = sup; |-

(2) Show that T is compact iff A\; — 0 as i — oco.

Definition 2.4. We say that an operator T : H — H
is self-adjoint, or symmetric, if 7' = T, or equivalently,

Corollary 2.3. Let E' be a measurable subset of R".
Let T be an integral operator on L*(E) with kernel
K(z,y). Assume that K € L*(E®). Then T is a
bounded operator with ||T'|| < ||K||r2(g2). Moreover,
T is compact.

Sketch: Approximate [ by linear combinations of funckions y 4(x)x p(y)
for A and B meacwrable <etc wm [. The corvesponding integral
operators are funte vark, and approximate T. O
The kook give< a diffevent proof.
An abstraction of this class of operators is the class
of Hilbert-Schmidt operators; see SS, p187. A Hilbert-
Schmidt operator is one with finite “Hilbert-Schmidt”

norm,
1AIGs = > Il Al

Later we'll be able to show thlat for every Hilbert-Schmidt
operator T': H — H, there is a measure space E, an
integral operator S in L*(E), and a unitary U : H —
L*(E) so that

T =U"TxU.

Example. Orthogonal projections are self-adjoint.
The operator on L2([0,1]) mapping f(x) to zf(z) is
self-adjoint. The operator mapping f(z) to e f(z) is
not self-adjoint. Nor is f(x) — [ f(s)ds self-adjoint.
(What are the adjoints?)

Exercise. Let K(x,y) be a continuous function

on [a,b] X [a,b]. Show that the integral operator on
L?([a, b])

b
f(x) / K(z,y)f(y) dy

is self-adjoint exactly if K (z,y) = K(y,x). (If K(x,y)
is only bounded and measurable, then the same result
holds for a.e. (z,y).)

It turns out that for self-adjoint compact operators,

the diagonal example above is in fact the general case:



Theorem 2.5. Let T be a compact self-adjoint op-
erator on H. Then there is an orthonormal ba-
sis e1,eo, ... of H consisting of eigenvectors of T.
Thus Te; = \e;, and we have \; € R and \; — 0
as 1 — 00.

e This is the analogue in infinite dimensions of the
fact that a real symmetric matrix is diagonalizable via

an orthogonal matrix.

Steps in the proof:

L. Show that ||T'|| = supy =1 [(T'f, f)I-

2. Show that the quantity on the RHS takes a maximum
value at some f which is an eigenvector of T'.

3. Eigenspaces of T' corresponding to distinct eigenval-
ues are orthogonal.

4. The operator T restricts to a compact self-adjoint
operator T' |71 whenever V' is an eigenspace, or direct
sum of eigenspaces.

5. Thus the direct sum of all eigenspaces must be the

whole space.

With
(Tf/h ,fn) - M

T daim that

”(T - ﬂ)fn“ — 0.
To <ee the, we Sguare the LHS and compute

0< (T - l”)fu”z = HTf,,HQ = 20T f, fu) + .“'2
S 2/”(” - (Tfm fn)) =0

which Verifies the clam  Now we exploit compactness of T: the
cequence (Tf,) has a <uscequence converging, <ay to yf. Paccing
to the <Cubequence we may accume that the <equence (T'f,) i<elf

converges. Then f“ converges to f, e

1o = 110 < 07 (T = Al + 1T, = 1) = 0.
By continuty of To T'f =lim, T(f,) = uf-
Thue we have found an eigenvector f of T.

3. IF Tv = Avs and Tw = puws #en we have

(v,w) = A" HTw,w) = X" (v, Tw) = pXA " (v, w),
<o (7)7uV) =( wlesc \ = .

4. Whenever a <elf-adioint opevator pre<erves a <ukSpace, e
T(v) €V for every v €V, then & alco precerves the orthogonal
complement, <ince (ng./ 1)) = (17 T@). Certanly T preserves each
eigencpace, and Hus T reStricts to an operator on the orthogonal

complement of all eigencpaces. Tt< eacy to <ee that it & <tlh compact

and <elf-adjont theve.

Proof: 1. Clam: For any <elf-adiont operator T (compact or not),
Tl = sup [(TF, f)]-
[ll=1
To Cee the, we ue the characterization
1T = sup [(Tf g)l
£l lgll=1
Son with M = sup s [(Tf, )]s we have ||T|| > M. To prove
IT|| < M. we write ucing the <elf-adjontness of T

ARe(Tf,9) = (T(f+9),f+9) = (T(f—9).f —g).

Then, we get

A Re(Tf,9)| < M(If + gl + |1 = g1,

and the ‘parallelogram law/ give<

1F + gl + 1Lf = gl = 20117 + llgl*) = 4.
So | Re(Tf, g)| < M- Replacing g oy e'’g we can moke | Re(T'f, g)| =
[(Tf,qg)| and the proof ic corplete.

2., Therefore, either T = (), i1 which cace the theorem & trvial, or
[(Tf,f)] >0 for come f with ||f|| =1 B replacing T with —T
i nececcary, we can as<ume that trere exctc f with (T'f f) >0
lnote that by self-adjointress, (T f, f) ic veal for all f).

Concider 4ne problem of maximzng (Tf, f) ac f vange< over the
wit ball of H. By 1., the <et of value< (T,ﬂ f) f € B, has a

|f7IH = 1

supremum 1 = ||T|| > 0. S0 we may take a cequence f,,,

5. Fmnally, we See that the orthogonald complement of ald eigencpace<
muct ke the zero <ulpace. otherwice, by the dvove, T veltrict< to it

and has eigenvector therel O

Example. Be warned: the situation for nonself-
adjoint compact operators is quite different. For ex-
ample, consider the operator UT where T" maps e; to
ei/i and U maps e; to ;1. This is compact, but it has

no eigenvectors at all.



Applications of the spectral theorem

There are many applications of this result. One [ want
to mention here is to showing that orthonormal sets are
actually bases. For example, suppose we want to show
that the orthonormal set of functions

(271_)—1/267'(%1/2)9’ nez.
as elements of L2([0, 27]), form an ONB. We can do this
by manufacturing a compact self-adjoint operator T" for
which these functions are the eigenfunctions! Which op-
erator? You might think of T' = id/d6, but this doesn’t
work because it is not bounded, let alone compact. In-
stead, we use integration.

Check that the operator

i 4 27
10) > 5( [ g5 = [ ras)
is compact and self-adjoint, and that its eigenfunctions
are precisely the set (2m)~1/2e/(+1/20 1 € 7.

¢—(b) # 0. Otherwise, compute
b
0= [ éula)Lo- (o) do
ab
= [[o-@( = )+ atwro- @) do
b
— [[6.@)* + @) 6-0)) da

a

Here we integrated by parts and used the boundary con-
ditions, ¢—_(a) = ¢_(b) = 0 to eliminate the boundary
term (which is ¢_(b)¢’_(b) —¢_(a)¢’ (a)). Because we
assumed that ¢ > 0, this can only be if ¢_ is identically
zero, which contradicts the condition ¢’ (a) = 1.

We next conclude that ¢_ and ¢, are linearly inde-
pendent; otherwise ¢_(b) = 0.

Recall from ODE theory that the Wronskian,

W(z) = ¢+ (2)¢"(z) — ¢_(2)¢), (z)
is constant in x. Evaluating at x = b we see that it is
nonzero. We write W = W (b).
Now I claim that the integral operator T" with kernel
O—(x)+(y)/W, x <y

K(z,y) =
OO oo, w2y

Sturm-Liouville operators

A Sturm-Liouville operator is an operator L : C?([a, b]) —

C([a, b]) of the form

Lf(x) = —f"(x) + q(x)f(x)

where ¢(x) is a continuous function. Here we will as-
sume that g(x) > 0. We will prove that there is a
complete set of eigenfunctions of L in L?([a,b]), that

is, functions ¢, (x) such that

L¢7L(x) = #ngbn(x) .

Notice that if ¢(z) = 1, and [a,b] = [0, 7], then a
complete set of eigenfunctions is the set sinnx, n =
1,2,.... The result can then be viewed as a general-
ized, ‘variable coeflicient’ version of Fourier series.

As before, the operator L cannot be bounded on L2,
since it involves derivatives. The idea is to construct the
inverse operator to L. This can be done is a surprisingly
explicit way. What we do is look for two solutions ¢_ ()
and ¢, (z) of the equation L¢ = 0. These are specified
by their initial conditions: we require that ¢_(a) = 0,

¢ (a) = 1, while ¢ (b) = 0, ¢, (b) = 1. I claim that

is an bounded operator on L*([a,b]). An interesting
computation shows that, for all continuous f € C/(a, b]),
Tfis C* and
L(Tf)=f.

(Do it!) However, T is a self-adjoint compact operator,
and hence has a complete set of eigenfunctions ¢, (x)
such that T'¢,(x) = Ap¢n(x). Tt is not hard to check
that the range of T' consists of continuous functions, so
each ¢, (z) is continuous, and hence C?. Tt follows that
Lo (x) = X\, Y, (). This shows that L has a complete

set of eigenfunctions, as claimed.



Remark. Sturm-Liouville operators, and the corre-
sponding differential equations, are very important in
physics and applied mathematics. As an example, the
(time independent) Schrodinger equation describing the
quantum mechanical behaviour of a particle moving on
a interval with potential ¢(x) is exactly the equation
—f"(z) + q(x)f(x) = Af(x). For a particle moving
in R rather than a bounded interval [a, b], the analysis
above does not apply, and in general the eigenvectors
do not form a basis.

Remark. Even though L is not bounded, it can still
be understood as a self-adjoint operator on L?([a, b]).
There are two technicalities: first, we must restrict the
domain to functions whose second derivative lies in L2,
and second, for self-adjointness, we must impose suit-
able boundary conditions on the functions.

Notice that, from the ODE point of view, in order to
solve Lu = f uniquely for a given f, say in C([a, b]),
we need to specify two values of u, since there are two
arbitrary constants in the solution of a second order
ODE. You might think it would be natural to specify
say u(a) and u/(a), but this does not give a self-adjoint

problem. Instead we impose one condition at x = a
and one at x = b.

To see this, compute for smooth enough functions

(Lf,g)—(f, Lg)

dx
/ ( () 7 )
P @)@ — f(x)g )|,
= f'(b)g(b) — f(b)g'(b) — f'(a)g(a) + f(a)g(a)

(
(b
This vanishes, for example, if we require that f and g

vanish at @ and b. (Another suitable condition is that
f"and ¢’ vanish at @ and b. )



