
5. Fundamental solutions

The Fourier transform is the perfect tool for finding
fundamental solutions of constant coefficient differential
operators in Rn.

Consider the problem of solving
P (D)u = f

in Rn, where D stands for (D1, . . . , Dn), Di = −i∂xi
is the partial derivative in the ith direction, and P is a
polynomial. We suppose that f ∈ S(Rn) is given and
want to find a solution u. We might also want to know,
for example, if f ∈ L2 implies that u ∈ L2.

If there is a solution, then Fourier transforming, we
have

P (ξ)û = f̂ .

Therefore, if P (ξ) never vanishes, there is a solution
û(ξ) = P (ξ)−1f̂ (ξ) to this equation. Taking the in-
verse Fourier transform we get our solution u.
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This works well, provided that |P (ξ)| ≥ c > 0 ev-
erywhere for some fixed c. This implies that P (ξ)−1 ∈
BC∞(Rn) and hence that û(ξ) = P (ξ)−1f̂ (ξ) ∈ S(Rn)

which in turn gives u ∈ S(Rn).
Moreover, using our results on convolutions, if û(ξ) =

P (ξ)−1f̂ (ξ), then u = G(P (ξ)−1)∗f , so if we can com-
pute G(P (ξ)−1) then we get a solution without explicit
mention of the Fourier transform.



The Laplacian

Let’s consider the most important PDE of all — Laplace’s
equation −∆u = f . Here ∆ is the Laplacian, given by

∆f (x) =
n∑

i=1

∂2f

∂x2i
(x).

If we try to solve −∆u = f in this way, we get û(ξ) =
|ξ|−2f̂ (ξ), and the singularity at ξ = 0 causes some
difficulties. To avoid these let me look instead at (−∆+

λ2)u = f where λ > 0. Now P (ξ) = λ2 + |ξ|2 has no
zeroes. Thus P (ξ)−1 ∈ BC∞(Rn). Can we compute
the inverse Fourier transform of P (ξ)−1?

Let’s do this just in dimension 3, which is interest-
ing both because it describes our physical world and
because we can compute the inverse Fourier transform
exactly. Note that in dimension 3, (|ξ|2 + λ2)−1 is in
L2, so the inverse Fourier transform is well defined, but
it is not in L1, so it is not defined as a convergent in-
tegral. Rather, it is defined as a limit of the inverse
Fourier transform of Schwartz functions.

To compute it, choose a function ϕ ∈ C∞
c (R≥0) which

is equal to 1 on the interval [0, 1] and is zero outside



[0, 2). Then the function ϕ(|ξ|/R)(|ξ|2 + λ2)−1 is in
S(R3) for all R > 0 and converges in L2 to (|ξ|2+λ2)−1

as R → ∞.
Now consider the integral

(2π)−3

∫
eix·ξ

ϕ(|ξ|/R)

|ξ|2 + λ2
dξ.



Changing to polar coordinates, this is

(2π)−3

∞∫
0

ϕ(r/R)

r2 + λ2
r2dr

π∫
0

ei|x|r cos θ sin θ dθ
2π∫
0

dφ.

The φ integral is trivial and gives a factor of 2π. To do
the theta integral, let u = − cos θ. Then sin θdθ = du

and we obtain

−i(2π)−2|x|−1

∫ ∞

0
(ei|x|r − e−i|x|r)

ϕ(r/R)

r2 + λ2
r dr.

We can write this as an integral from −∞ to ∞:

−i(2π)−2|x|−1

∫ ∞

−∞
ei|x|r

ϕ(|r| /R)

r2 + λ2
r dr.

We want the limit of this integral as R → ∞. We can
check that

vR(x)
def
= −i(2π)−2|x|−1

∫
|r|≥R

ei|x|r
ϕ(r/R)

r2 + λ2
r dr

tends to zero in L2(R3) (as a function of x). In fact the
integral can be bounded by C|x|−1, or, by integrating
by parts (integrate the exponential and differentiate the
rest), by C|x|−2R−1. Therefore the function vR(x) can
be bounded by

(5.1)

 1
|x|, if |x| ≤ R−1;

1
|x|2R, if |x| ≥ R−1



and one can check that the L2 norm of the RHS is
O(R−1/2), which certainly tends to zero as R → ∞.
Thus the limit is the same as

lim
R→∞

−i(2π)−2|x|−1

∫ R

−R
ei|x|r

1

r2 + λ2
r dr.

Doing this gets rid of the ϕ terms, since this is identi-
cally 1 for |r| ≤ R.

Next I claim that the function

wR(x)
def
= −i(2π)−2|x|−1

∫
γ
ei|x|r

r

r2 + λ2
dr

goes to zero in L2(R3) when γ is the contour from r =

R to r = −R anticlockwise along the circle |r| = R in
the complex r-plane. In fact, we can also bound wR(x)

by (5.1), using a similar argument as for vR, from which
the claim follows.

We now have a closed contour around which we in-
tegrate the analytic function ei|x|rr(r2 + λ2)−1. By
Cauchy’s residue theorem, the integral is given by the
2πi times the residue of the function at its unique pole
in this region, which is at r = iλ. Hence the value of



the integral is given by

−i · 2πi · |x|−1(2π)−2 · iλe
−λ|x|

2iλ
=

1

4π

e−λ|x|

|x|
.

We have thus shown that

G
(
(|ξ|2 + λ2)−1

)
=

1

4π

e−λ|x|

|x|
.

So, the solution of the equation (−∆ + λ2)u = f on
R3 is

u(x) =
1

4π

∫
R3

e−λ|x−y|

|x− y|
f (y) dy.

If we formally take the pointwise limit λ → 0 in this
integral, we obtain the putative formula

(5.2) u(x) =
1

4π

∫
R3

1

|x− y|
f (y) dy

for ‘the’ solution to −∆u = f . This is justified when,
for example, f is compactly supported and L2. Then
u given by (5.2) is the unique solution to this equation
that tends to zero at infinity. However, generally u will
not be in L2. In fact, we will have u(x) = c/|x| +
O(|x|−2) as x → ∞ with c usually ̸= 0.



Let us check directly that if f ∈ C2
c (R3), then u given

by (5.2) satisfies ∆u = f : We compute

−∆x

∫
1

|x− y|
f (y) dy = −∆x

∫
1

|y|
f (x− y) dy

=

∫
1

|y|
(−∆xf (x− y)) dy

=

∫
1

|y|
(−∆yf (x− y)) dy

= lim
ϵ→0

∫
R3\B(0,ϵ)

1

|y|
(−∆yf (x− y)) dy

= lim
ϵ→0

∫
R3\B(0,ϵ)

∂yi
1

|y|
(∂yif (x− y)) dy +O(ϵ).

The O(ϵ) term is from the boundary integral, and we
discard it since we are taking the limit ϵ → 0. Now the
integrand is equal to

(∆y
1

|y|
)f (x− y)− ∂yi

(
(∂yi

1

|y|
)f (x− y)

)

and the first term vanishes since ∆y
1
|y| = 0 away from

the singularity at 0, while the second term becomes a



boundary term using Green’s Theorem. So we get

= lim
ϵ→0

∫
∂B(0,ϵ)

νi(∂yi
1

|y|
)f (x− y) dy

= lim
ϵ→0

∫
∂B(0,ϵ)

1

|y|2
f (x− y) dy

= lim
ϵ→0

∫
∂B(0,1)

f (x− ϵy) dy

= |∂B(0, 1)|f (x) = 4πf (x).

• We cannot apply the ∆x operator directly to the
1/|x− y| term in the first line, since the second partial
derivatives of 1/|x−y| are not integrable as is required
by the DUTIS theorem. If you illegally did this, you
would end up proving that ∆u = 0, which is false!
• The second line of this derivation shows that if f ∈

C2, with compact support, then u ∈ C2. This can
be improved to f ∈ C1 =⇒ u ∈ C2, but it is not
true that f ∈ C0 =⇒ u ∈ C2 as you might expect.
However, there are two analogous statements that are
true: if f ∈ L2, then u has all its second derivatives in
L2; and if f ∈ Cα, then u ∈ C2,α. These statements
express the ‘ellipticity’ of ∆.

Heat equation



The heat equation on Rn × R+ is the equation

ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0

supplemented with the initial condition

u(x, 0) = f (x).

Assume that f is a Schwartz function. Then we can
find a solution that is a continuous function of t with
values in Schwartz functions of x. Fourier transforming
in the x variable but not the t variable (which would not
make sense since the solution is only defined for t ≥ 0)
we get

ût = −|ξ|2û, û(ξ, 0) = f̂ (ξ).

This is an ODE in t for each fixed ξ, and the solution
is

û = e−|ξ|2tû(ξ, 0) = e−|ξ|2tf̂ (ξ).

Hence, the function u is given by a convolution:

u(x, t) = G(e−|ξ|2t) ∗ f.

So we need to know the inverse Fourier transform of
e−|ξ|2t. But we have already worked this out, and the
answer is

G(e−|ξ|2t) = (4πt)−n/2e−|x|2/4t.



To summarize, the solution of the PDE is

u(x, t) = (4πt)−n/2

∫
Rn

e−|x−y|2/4tf (y) dy.

The function (4πt)−n/2e−|x−y|2/4t is called the ‘heat ker-
nel’ on Rn. It may be regarded as the solution to the
heat equation with initial condition f = δy(x).
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