5. Fundamental solutions

The Fourier transform is the perfect tool for finding fundamental solutions of constant coefficient differential operators in \mathbb{R}^n .

Consider the problem of solving

$$P(D)u = f$$

in \mathbb{R}^n , where D stands for (D_1, \ldots, D_n) , $D_i = -i\partial_{x_i}$ is the partial derivative in the *i*th direction, and P is a polynomial. We suppose that $f \in \mathcal{S}(\mathbb{R}^n)$ is given and want to find a solution u. We might also want to know, for example, if $f \in L^2$ implies that $u \in L^2$.

If there is a solution, then Fourier transforming, we have

$$P(\xi)\hat{u} = \hat{f}.$$

Therefore, if $P(\xi)$ never vanishes, there is a solution $\hat{u}(\xi) = P(\xi)^{-1}\hat{f}(\xi)$ to this equation. Taking the inverse Fourier transform we get our solution u.

This works well, provided that $|P(\xi)| \geq c > 0$ everywhere for some fixed c. This implies that $P(\xi)^{-1} \in BC^{\infty}(\mathbb{R}^n)$ and hence that $\hat{u}(\xi) = P(\xi)^{-1}\hat{f}(\xi) \in \mathcal{S}(\mathbb{R}^n)$ which in turn gives $u \in \mathcal{S}(\mathbb{R}^n)$.

Moreover, using our results on convolutions, if $\hat{u}(\xi) = P(\xi)^{-1}\hat{f}(\xi)$, then $u = \mathcal{G}(P(\xi)^{-1}) * f$, so if we can compute $\mathcal{G}(P(\xi)^{-1})$ then we get a solution without explicit mention of the Fourier transform.

The Laplacian

Let's consider the most important PDE of all — Laplace's equation $-\Delta u = f$. Here Δ is the Laplacian, given by

$$\Delta f(x) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}(x).$$

If we try to solve $-\Delta u = f$ in this way, we get $\hat{u}(\xi) = |\xi|^{-2}\hat{f}(\xi)$, and the singularity at $\xi = 0$ causes some difficulties. To avoid these let me look instead at $(-\Delta + \lambda^2)u = f$ where $\lambda > 0$. Now $P(\xi) = \lambda^2 + |\xi|^2$ has no zeroes. Thus $P(\xi)^{-1} \in BC^{\infty}(\mathbb{R}^n)$. Can we compute the inverse Fourier transform of $P(\xi)^{-1}$?

Let's do this just in dimension 3, which is interesting both because it describes our physical world and because we can compute the inverse Fourier transform exactly. Note that in dimension 3, $(|\xi|^2 + \lambda^2)^{-1}$ is in L^2 , so the inverse Fourier transform is well defined, but it is not in L^1 , so it is not defined as a convergent integral. Rather, it is defined as a limit of the inverse Fourier transform of Schwartz functions.

To compute it, choose a function $\phi \in C_c^{\infty}(\mathbb{R}_{\geq 0})$ which is equal to 1 on the interval [0, 1] and is zero outside [0,2). Then the function $\phi(|\xi|/R)(|\xi|^2 + \lambda^2)^{-1}$ is in $\mathcal{S}(\mathbb{R}^3)$ for all R > 0 and converges in L^2 to $(|\xi|^2 + \lambda^2)^{-1}$ as $R \to \infty$.

Now consider the integral

$$(2\pi)^{-3} \int e^{ix \cdot \xi} \frac{\phi(|\xi|/R)}{|\xi|^2 + \lambda^2} d\xi.$$

Changing to polar coordinates, this is

$$(2\pi)^{-3} \int_{0}^{\infty} \frac{\phi(r/R)}{r^2 + \lambda^2} r^2 dr \int_{0}^{\pi} e^{i|x|r\cos\theta} \sin\theta \, d\theta \int_{0}^{2\pi} d\varphi.$$

The φ integral is trivial and gives a factor of 2π . To do the theta integral, let $u = -\cos\theta$. Then $\sin\theta d\theta = du$ and we obtain

$$-i(2\pi)^{-2}|x|^{-1}\int_0^\infty (e^{i|x|r} - e^{-i|x|r})\frac{\phi(r/R)}{r^2 + \lambda^2}r\,dr.$$

We can write this as an integral from $-\infty$ to ∞ :

$$-i(2\pi)^{-2}|x|^{-1}\int_{-\infty}^{\infty}e^{i|x|r}\frac{\phi(|r|/R)}{r^2+\lambda^2}r\,dr$$

We want the limit of this integral as $R \to \infty$. We can check that

$$v_R(x) \stackrel{\text{def}}{=} -i(2\pi)^{-2}|x|^{-1} \int_{|r|\ge R} e^{i|x|r} \frac{\phi(r/R)}{r^2 + \lambda^2} r \, dr$$

tends to zero in $L^2(\mathbb{R}^3)$ (as a function of x). In fact the integral can be bounded by $C|x|^{-1}$, or, by integrating by parts (integrate the exponential and differentiate the rest), by $C|x|^{-2}R^{-1}$. Therefore the function $v_R(x)$ can be bounded by

(5.1)
$$\begin{cases} \frac{1}{|x|}, & \text{if } |x| \le R^{-1}; \\ \frac{1}{|x|^2 R}, & \text{if } |x| \ge R^{-1} \end{cases}$$

and one can check that the L^2 norm of the RHS is $O(R^{-1/2})$, which certainly tends to zero as $R \to \infty$. Thus the limit is the same as

$$\lim_{R \to \infty} -i(2\pi)^{-2} |x|^{-1} \int_{-R}^{R} e^{i|x|r} \frac{1}{r^2 + \lambda^2} r \, dr.$$

Doing this gets rid of the ϕ terms, since this is identically 1 for $|r| \leq R$.

Next I claim that the function

$$w_R(x) \stackrel{\text{def}}{=} -i(2\pi)^{-2}|x|^{-1} \int_{\gamma} e^{i|x|r} \frac{r}{r^2 + \lambda^2} dr$$

goes to zero in $L^2(\mathbb{R}^3)$ when γ is the contour from r = R to r = -R anticlockwise along the circle |r| = R in the complex *r*-plane. In fact, we can also bound $w_R(x)$ by (5.1), using a similar argument as for v_R , from which the claim follows.

We now have a closed contour around which we integrate the analytic function $e^{i|x|r}r(r^2 + \lambda^2)^{-1}$. By Cauchy's residue theorem, the integral is given by the $2\pi i$ times the residue of the function at its unique pole in this region, which is at $r = i\lambda$. Hence the value of the integral is given by

$$-i \cdot 2\pi i \cdot |x|^{-1} (2\pi)^{-2} \cdot \frac{i\lambda e^{-\lambda|x|}}{2i\lambda} = \frac{1}{4\pi} \frac{e^{-\lambda|x|}}{|x|}.$$

We have thus shown that

$$\mathcal{G}\left((|\xi|^2 + \lambda^2)^{-1}\right) = \frac{1}{4\pi} \frac{e^{-\lambda|x|}}{|x|}.$$

So, the solution of the equation $(-\Delta + \lambda^2)u = f$ on \mathbb{R}^3 is

$$u(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{e^{-\lambda |x-y|}}{|x-y|} f(y) \, dy.$$

If we formally take the pointwise limit $\lambda \to 0$ in this integral, we obtain the putative formula

(5.2)
$$u(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|x-y|} f(y) \, dy$$

for 'the' solution to $-\Delta u = f$. This is justified when, for example, f is compactly supported and L^2 . Then u given by (5.2) is the unique solution to this equation that tends to zero at infinity. However, generally u will not be in L^2 . In fact, we will have $u(x) = c/|x| + O(|x|^{-2})$ as $x \to \infty$ with c usually $\neq 0$. Let us check directly that if $f \in C_c^2(\mathbb{R}^3)$, then u given by (5.2) satisfies $\Delta u = f$: We compute

$$\begin{split} -\Delta_x \int \frac{1}{|x-y|} f(y) \, dy &= -\Delta_x \int \frac{1}{|y|} f(x-y) \, dy \\ &= \int \frac{1}{|y|} (-\Delta_x f(x-y)) \, dy \\ &= \int \frac{1}{|y|} (-\Delta_y f(x-y)) \, dy \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^3 \setminus B(0,\epsilon)} \frac{1}{|y|} (-\Delta_y f(x-y)) \, dy \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^3 \setminus B(0,\epsilon)} \frac{\partial_{y_i} \frac{1}{|y|}}{|y|} (\partial_{y_i} f(x-y)) \, dy + O(\epsilon). \end{split}$$

The $O(\epsilon)$ term is from the boundary integral, and we discard it since we are taking the limit $\epsilon \to 0$. Now the integrand is equal to

$$(\Delta_y \frac{1}{|y|}) f(x-y) - \partial_{y_i} \left((\partial_{y_i} \frac{1}{|y|}) f(x-y) \right)$$

and the first term vanishes since $\Delta_y \frac{1}{|y|} = 0$ away from the singularity at 0, while the second term becomes a boundary term using Green's Theorem. So we get

$$= \lim_{\epsilon \to 0} \int_{\partial B(0,\epsilon)} \nu_i (\partial_{y_i} \frac{1}{|y|}) f(x-y) \, dy$$

$$= \lim_{\epsilon \to 0} \int_{\partial B(0,\epsilon)} \frac{1}{|y|^2} f(x-y) \, dy$$

$$= \lim_{\epsilon \to 0} \int_{\partial B(0,1)} f(x-\epsilon y) \, dy$$

$$= |\partial B(0,1)| f(x) = 4\pi f(x).$$

• We cannot apply the Δ_x operator directly to the 1/|x-y| term in the first line, since the second partial derivatives of 1/|x-y| are not integrable as is required by the DUTIS theorem. If you illegally did this, you would end up proving that $\Delta u = 0$, which is false!

• The second line of this derivation shows that if $f \in C^2$, with compact support, then $u \in C^2$. This can be improved to $f \in C^1 \implies u \in C^2$, but it is not true that $f \in C^0 \implies u \in C^2$ as you might expect. However, there are two analogous statements that *are* true: if $f \in L^2$, then u has all its second derivatives in L^2 ; and if $f \in C^{\alpha}$, then $u \in C^{2,\alpha}$. These statements express the 'ellipticity' of Δ .

Heat equation

The heat equation on $\mathbb{R}^n \times \mathbb{R}_+$ is the equation

$$u_t(x,t) = \Delta u(x,t), \quad x \in \mathbb{R}^n, \ t > 0$$

supplemented with the initial condition

$$u(x,0) = f(x).$$

Assume that f is a Schwartz function. Then we can find a solution that is a continuous function of t with values in Schwartz functions of x. Fourier transforming in the x variable but not the t variable (which would not make sense since the solution is only defined for $t \ge 0$) we get

$$\hat{u}_t = -|\xi|^2 \hat{u}, \quad \hat{u}(\xi, 0) = \hat{f}(\xi).$$

This is an ODE in t for each fixed ξ , and the solution is

$$\hat{u} = e^{-|\xi|^2 t} \hat{u}(\xi, 0) = e^{-|\xi|^2 t} \hat{f}(\xi).$$

Hence, the function u is given by a convolution:

$$u(x,t) = \mathcal{G}(e^{-|\xi|^2 t}) * f.$$

So we need to know the inverse Fourier transform of $e^{-|\xi|^2 t}$. But we have already worked this out, and the answer is

$$\mathcal{G}(e^{-|\xi|^2 t}) = (4\pi t)^{-n/2} e^{-|x|^2/4t}.$$

To summarize, the solution of the PDE is

$$u(x,t) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} e^{-|x-y|^2/4t} f(y) \, dy.$$

The function $(4\pi t)^{-n/2}e^{-|x-y|^2/4t}$ is called the 'heat kernel' on \mathbb{R}^n . It may be regarded as the solution to the heat equation with initial condition $f = \delta_y(x)$.