5. FUNDAMENTAL SOLUTIONS

The Fourier transform is the perfect tool for finding
fundamental solutions of constant coefficient differential
operators in R".

Consider the problem of solving
P(Dju = f
in R" where D stands for (Dy,...,D,), D; = —i0,,
is the partial derivative in the ¢th direction, and P is a
polynomial. We suppose that f € S(R") is given and
want to find a solution u. We might also want to know,
for example, if f € L? implies that u € L.
If there is a solution, then Fourier transforming, we

have

P(g)i = f.
Therefore, if P(£) never vanishes; there is a solution
W(€) = P(E)71f(£) to this equation. Taking the in-

verse Fourier transform we get our solution wu.



This works well, provided that |P(§)] > ¢ > 0 ev-
erywhere for some fixed c. This implies that P(£)™! €
BC°°(R") and hence that 4(¢) = P(£) 71 f(€) € S(R™)
which in turn gives u € S(R").

Moreover, using our results on convolutions, if 4(£) =
P(E)7Lf(€), then u = G(P(€)™ V)% f, so if we can com-
pute G(P(£)™1) then we get a solution without explicit

mention of the Fourier transform.



The Laplacian

Let’s consider the most important PDE of all — Laplace’s

equation —Au = f. Here A is the Laplacian, given by
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If we try to solve —Au = f in this way, we get u(§) =
|£]72 f (£), and the singularity at & = 0 causes some
difficulties. To avoid these let me look instead at (—A+
A)u = f where A > 0. Now P(£) = \* + |€]? has no
zeroes. Thus P(£)~! € BC™®(R™). Can we compute
the inverse Fourier transform of P(£)~1?

Let’s do this just in dimension 3, which is interest-
ing both because it describes our physical world and
because we can compute the inverse Fourier transform
exactly. Note that in dimension 3, (|£]* + A\?)~! is in
L?. so the inverse Fourier transform is well defined, but
it is not in L', so it is not defined as a convergent in-
tegral. Rather, it is defined as a limit of the inverse
Fourier transform of Schwartz functions.

To compute it, choose a function ¢ € C2°(R>() which

is equal to 1 on the interval [0, 1] and is zero outside



0,2). Then the function ¢(|&|/R)(|€]* + A*) ™! is in
S(R?) for all R > 0 and converges in L* to (|£]*+ )}
as I — oo.

Now consider the integral
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Changing to polar coordinates, this is
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The ¢ integral is trivial and gives a factor of 27. To do

the theta integral, let u = — cos 6. Then sin 6df = du

and we obtain
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We can write this as an integral from —oo to oo:
oo
—i(27T>2‘37‘1/ ez|x|r¢(‘r‘ /R) rdr.
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We want the limit of this integral as R — oco. We can
check that

def —21,.1—1 ilz|r ¢(r/R)
% d
UR(2) {2l A"|>R ) re 4 N o

tends to zero in L*(R3) (as a function of ). In fact the

integral can be bounded by Clz|™!, or, by integrating

by parts (integrate the exponential and differentiate the
rest), by C|z| ?R™!. Therefore the function vp(x) can
be bounded by
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and one can check that the L? norm of the RHS is
O(R_l/ 2), which certainly tends to zero as R — 0.

Thus the limit is the same as
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Doing this gets rid of the ¢ terms, since this is identi-
cally 1 for |r| < R.

Next I claim that the function
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goes to zero in L*(R?) when + is the contour from 7 =
R to r = — R anticlockwise along the circle |[r| = R in

the complex r-plane. In fact, we can also bound wg(x)

by (b.1)), using a similar argument as for vg, from which

the claim follows.

We now have a closed contour around which we in-
tegrate the analytic function el*I"r(r? 4 X2)~1. By
Cauchy’s residue theorem, the integral is given by the
2mi times the residue of the function at its unique pole

in this region, which is at r = ¢A. Hence the value of



the integral is given by
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We have thus shown that
1 e_Mx‘
9 2N —1
A ) _ -
G (e +20)71) = -

So, the solution of the equation (—A + A?)u = f on
R? is
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If we formally take the pointwise limit A — 0 in this

integral, we obtain the putative formula
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for ‘the’ solution to —Awu = f. This is justified when,
for example, f is compactly supported and L?. Then

u given by (5.2) is the unique solution to this equation

that tends to zero at infinity. However, generally u will
not be in L?. In fact, we will have u(x) = c¢/|z| +
O(|z|72) as x — oo with ¢ usually # 0.



Let us check directly that if f € C*(R?), then u given
by (b.2) satisfies Au = f: We compute
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The O(e€) term is from the boundary integral, and we
discard it since we are taking the limit e — 0. Now the

integrand is equal to
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and the first term vanishes since Ayﬁ = 0 away from

the singularity at 0, while the second term becomes a



boundary term using Green’s Theorem. So we get
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e We cannot apply the A, operator directly to the
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1/|x — y| term in the first line, since the second partial
derivatives of 1/|x — y| are not integrable as is required
by the DUTIS theorem. If you illegally did this, you
would end up proving that Au = 0, which is false!

e The second line of this derivation shows that if f €
C?, with compact support, then v € C?. This can
be improved to f € C' = wu € C?, but it is not
true that f € C' = u € C? as you might expect.
However, there are two analogous statements that are
true: if f € L?, then u has all its second derivatives in
L? and if f € C% then u € C*®. These statements
express the ‘ellipticity’ of A.

Heat equation



The heat equation on R" x R is the equation
w(x,t) = Au(zx,t), x€R" t>0
supplemented with the initial condition

u(x,0) = f(x).

Assume that f is a Schwartz function. Then we can
find a solution that is a continuous function of ¢ with
values in Schwartz functions of . Fourier transforming
in the & variable but not the ¢ variable (which would not
make sense since the solution is only defined for ¢ > 0)

we get

AN

= —|&|*a,  al€,0) = £(§).
This is an ODE in ¢ for each fixed &, and the solution

is
i =e (e, 0) = e T f(6).
Hence, the function w is given by a convolution:
w(z,t) = Ge 1 « f.
So we need to know the inverse Fourier transform of

e 1€t But we have already worked this out, and the

answer 1s

G(e 1ty = (agp) =7/ 2e P /A,



To summarize, the solution of the PDE is

u(z, t) = (dmt) /2 / e VU f () dy,

The function (4t)~"/2e~1#=¥*/4 ig called the ‘heat ker-
nel’ on R”. It may be regarded as the solution to the

heat equation with initial condition f = d,(z).
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