
10. Radon-Nikodym derivatives

Signed measures

Let (X,M) be a measurable space. A signed measure
is a map ν from M to (−∞,∞] with the property that
if E1, E2, . . . are disjoint elements of M, then

ν(∪jEj) =

∞∑
j=1

ν(Ej).

Notice that this implies that if ν(∪jEj) <∞, then the
sum on the RHS is absolutely convergent, for otherwise
it would not be independent of the ordering of the Ej.
Sometimes we refer to (unsigned) measures as positive
measures to make the distinction clear.

An example of a signed measure is

ν(E) =

∫
E

fdµ

where (X,M, µ) is a measure space and f is a fixed
real-valued function such that f−, the negative part of
f , is integrable. (This ensures that ν can never take the
value −∞, which is not allowed.) In fact, we shall soon
prove that this is the only possibility.



Given a signed measure ν, we define the total variation
|ν| : M → R as follows:

|ν|(E) = sup
∞∑
j=1

|ν(Ej)|,

where we sup over all ways of decomposing E into a
countable disjoint union of measurable sets Ej.

Proposition 10.1. The total variation |ν| is a pos-
itive measure satisfying

ν ≤ |ν|.

Proof: We need to show that

|ν|(E) ≤
∞∑
j=1

|ν|(Ej) and |ν|(E) ≥
∞∑
j=1

|ν|(Ej)

whenever E is written as a countable disjoint union of
measurable sets Ej.

To prove ≥, we choose numbers αj < |ν|(Ej). Then,
we can find a partition Ej = ∪iFi,j into measurable sets
such that

αj ≤
∑
j

|ν(Fi,j)|.



Then ∪i,jFi,j is a partition of E, so we get∑
j

αj ≤
∑
i,j

|ν(Fi,j)| ≤ |ν|(E).

Taking the sup over all possible αj proves ≥.
To prove ≤, we take a partition of E into measurable

sets Fk. Then we have∑
k

|ν(Fk)| =
∑
k

∣∣∑
j

ν(Fk ∩ Ej)
∣∣

≤
∑
k,j

|ν(Fk ∩ Ej)| ≤
∑
j

|ν|(Ej).

Since this is true for each way of partitioning E, we find
that

|ν|(E) ≤
∑
j

|ν|(Ej)

as required.
The statement ν ≤ |ν| is obvious. □

We can then write any signed measure as the difference
of two positive measures, by writing

ν =
ν + |ν|

2
+
ν − |ν|

2
= ν+ + ν−.

We say that ν is σ-finite if |ν| is, and then ν+ and ν−
automatically are as well.



Notice that the finite signed measures on a measurable
space (X,M) form a vector space, denoted M(X).

Theorem 10.2. M(X) is a complete normed space
under the norm

∥ν∥M(X) = |ν|(X).

Proof: It is straightforward to show that ∥ · ∥M(X) is a norm.
Suppose that νj is a Cauchy sequence inM(X). Then for each
E ∈ M, |νn(E)− νm(E)| → 0 as m,n → ∞, so limn νn(E)

exists for each E. Define ν(E) to be limn νn(E). We need to
show that ν is a finite signed measure.



To show countable additivity, suppose that E = ∪iEi is a
disjoint union of measurable sets.

Lemma 10.3. For ϵ > 0 there exists an N(ϵ) so
∞∑
i=1

|νn(Ei)− νm(Ei)| < ϵ for n,m ≥ N(ϵ).

Proof: To begin, choose M(ϵ) so that ∥|νn| − |νm|∥ < ϵ/5 for
all n,m ≥M(ϵ). Then choose I(ϵ) so that |νM(ϵ)|

(
∪i≥I(ϵ)Ei

)
<

ϵ/5. Then |νm|
(
∪i≥I(ϵ)Ei

)
< 2ϵ/5 for all m ≥M(ϵ). Finally,

choose N(ϵ) ≥ M(ϵ) large enough so that
∑

i<I(ϵ) |νn(Ei) −
νm(Ei)| < ϵ/5 for all n,m ≤ N(ϵ). (This is possible pre-
cisely because it is a finite sum.) Finally then we have for all
n,m ≥ N(ϵ)∑

i

|νn(Ei)− νm(Ei)|

=
∑
i<I(ϵ)

|νn(Ei)− νm(Ei)| +
∑
i≥I(ϵ)

|νn(Ei)− νm(Ei)|

< ϵ/5 +
∑
i≥I(ϵ)

|νn(Ei)| + |νm(Ei)|

< 5ϵ/5 = ϵ. □

Certainly then, for every integer M ,
M∑
i=1

|νn(Ei)− νm(Ei)| < ϵ for n,m ≥ N(ϵ).



Taking m to infinity, we find that
M∑
i=1

|νn(Ei)− ν(Ei)| ≤ ϵ for n ≥ N(ϵ).

Since this is true for all M , we get

(10.1)
∞∑
i=1

|νn(Ei)− ν(Ei)| ≤ ϵ for n ≥ N(ϵ).

Now we can compute
|ν(E)−

∑
i

ν(Ei)| = lim
n

|νn(E)−
∑
i

ν(Ei)|

= lim
n

|
∑
i

(νn(Ei)− ν(Ei))|

≤ lim sup
n

∑
i

|νn(Ei)− ν(Ei)|

≤ ϵ

by (??). Since this is true for all ϵ, we see that ν(E) =∑
i ν(Ei), so ν is countably additive, and hence a signed

measure. Now (??) with Ei a partition of X shows that
∥νn − ν∥M(X) → 0. This shows that ν is a finite measure
and that νn → ν under the total variation norm, completing
the proof. □



Absolute continuity

Definition 10.4.
(1) We say that a signed measure µ is supported on a

set A if µ(E) = µ(E ∩ A) for all E ∈ M.
(2) Two signed measures µ and ν are mutually singular

if they are supported on disjoint subsets. This is
denoted µ ⊥ ν.

(3) If ν is a signed measure and µ a positive measure,
we say that ν is absolutely continuous w.r.t. µ if

µ(E) = 0 =⇒ ν(E) = 0.

If |ν| is a finite measure then this last condition is
equivalent to the assertion that for each ϵ > 0 there
exists δ > 0 such that

µ(E) < δ =⇒ |ν|(E) < ϵ,

while in general this is a strictly stronger assertion.
Example. Lebesgue measure, delta measures, and
E 7→

∫
E f on Rn.

Exercise. Give an example where |ν| is not finite,
and the first assertion does not imply the second.



Theorem 10.5 (Radon-Nikodym).
Let µ be a σ-finite positive measure on the measur-
able space (X,M) and ν a σ-finite signed measure.
Then we can write ν = νa + νs where νa is abso-
lutely continuous w.r.t. µ, and νs and µ are mu-
tually singular. Moreover, there exists an extended
µ-integrable function f such that

νa(E) =

∫
E

fdµ.

• A function is extended µ-integrable if its negative
part is integrable.

Proof: We first prove when µ and ν are both positive and
finite measures. Once we have done that, the general case is
then not difficult.

We use Hilbert space ideas. Consider the Hilbert space
L2(X, ρ) where ρ = µ + ν. Consider the map

L2(X, ρ) ∋ ψ 7→ l(ψ) =

∫
ψ dν.

This is a bounded linear functional, since

|l(ψ)| ≤
∫

|ψ|dν ≤
∫

|ψ|dρ ≤ ρ(X)1/2∥ψ∥L2



using Cauchy-Schwarz. Therefore l is inner product with some
element g of L2(X, ρ):

(10.2)
∫
ψ dν =

∫
ψg dρ for all ψ ∈ L2(X, ρ).

For any measurable set E, with ρ(E) > 0, set ψ = 1E. Then
we find that

ν(E) =

∫
1E dν =

∫
1Eg dρ,

so
0 ≤

∫
1Eg dρ ≤ ρ(E),

which implies that g ≤ 1 a.e. w.r.t. ρ. By changing g on a
set of ρ-measure zero, we can assume that g ≤ 1 everywhere.

Now we define A to be the set where g < 1 and B to be the
set where g = 1. Putting ψ = 1B, we find that

ν(B) =

∫
1B dν =

∫
1Bg dρ =

∫
1B dρ = ν(B) + µ(B).

Therefore, µ(B) = 0. Since µ is a positive measure, this
means that µ is supported in Bc = A. So define

νa(E) = ν(E ∩ A), νs(E) = ν(E ∩B).

We have just shown that νs and µ are mutually singular. Now
we show that νa is absolutely continuous w.r.t. µ.

First we reformulate Equation (??) as∫
ψ(1− g) dν =

∫
ψg dµ.



It is tempting to try ψ = (1− g)−1, which would then give

ν(E) =

∫
E

dν =

∫
E

(1− g)−1(1− g) dν =

∫
E

(1− g)−1gdµ

and the desired conclusion.
However, this is not allowed since (1 − g)−1 /∈ L2(X, ρ)

necessarily. Instead, we approximate, setting
ψ = (1 + g + g2 + . . . gn)1E∩A

which is bounded and therefore in L2. We obtain∫
E∩A

(1− gn+1) dν =

∫
E∩A

g
1− gn+1

1− g
dµ.

Since g < 1 on A, 1− gn+1 ↑ 1 pointwise, so by MCT we get

νa(E) = ν(E ∩ A) =
∫
E∩A

dν =

∫
E∩A

g

1− g
dµ.

This shows that νa is absolutely continuous and we may take
f = g(1−g)−1, which (by puttingE = X) the above equation
shows is integrable w.r.t. µ.

To prove for σ-finite, positive measures µ, ν, we write X
as the disjoint union of a countable family Ej of sets of finite
measure. Let µj, νj be the restrictions of µ, ν to Ej. Then we
can decompose νj as νj,a+νj,s as above. Setting νa =

∑
j νj,a

and νs =
∑

j νj,s we satisfy the conditions of the theorem. To
treat the case of a signed measure, we treat the positive and
negative parts of ν separately. □


