10. RADON-NIKODYM DERIVATIVES

Signed measures

Let (X, M) be a measurable space. A signed measure
is a map v from M to (—oo, oo| with the property that
if By, E>, ... are disjoint elements of M, then

0

V(B = Y v(E)).
j=1
Notice that this implies that if v(U;E;) < oo, then the
sum on the RHS is absolutely convergent, for otherwise
it would not be independent of the ordering of the £.
Sometimes we refer to (unsigned) measures as positive
measures to make the distinction clear.

An example of a signed measure is

E) = [ fan

where (X, M, ) is a measure space and f is a fixed
real-valued function such that f_, the negative part of
f, is integrable. (This ensures that v can never take the
value —oo, which is not allowed.) In fact, we shall soon

prove that this is the only possibility.



Given a signed measure v, we define the total variation
lv| : M — R as follows:

©,@)

VI(E) = sup > [v(E))],

j=1
where we sup over all ways of decomposing E into a

countable disjoint union of measurable sets L.

Proposition 10.1. The total variation |v| is a pos-

itive measure satisfying

v <|v|.
Proof: We need to show that

V|(F) < ZM ) and |v|(E Z

whenever F is written as a countable disjoint union of
measurable sets E;.
To prove >, we choose numbers «; < |v|(E;). Then,

we can find a partition £; = U;F; ; into measurable sets

such that
a; <Y u(Fy)
J



Then Uj; ; F; ; is a partition of E, so we get
Dy <Y W(EF)] < I(E).
J 1,

Taking the sup over all possible a; proves >.
To prove <, we take a partition of £ into measurable

sets Fr.. Then we have

S WwE) =) v(FNE))

< Z v(Fp N E;)| < Z V[(E)).

Since this is true for each way of partitioning £/, we find
that

VI(E) <Y IvI(E)
J
as required.

The statement v < |v| is obvious. ]

We can then write any signed measure as the difference

of two positive measures, by writing

—V+|V|+V_|V|—V + v
2 0 TP TT

We say that v is o-finite if |v| is, and then v, and v_

v

automatically are as well.



Notice that the finite signed measures on a measurable
space (X, M) form a vector space, denoted M (X).

Theorem 10.2. M (X) is a complete normed space

under the norm

1l arx)y = [v[(X).

Proof: It is straightforward to show that || - || 3/(x) is a norm.
Suppose that v; is a Cauchy sequence in M (X'). Then for each
Ee M, |v,(E)—vyu(E)| = 0as m,n — oo, so lim, v,(F)
exists for each E. Define v(F) to be lim, v,(£). We need to

show that v is a finite signed measure.



To show countable additivity, suppose that £ = U, E; is a

disjoint union of measurable sets.

Lemma 10.3. For € > 0 there exists an N(€) so
Z\I/n ) — vm(E;)| < € forn,m > N(e).

Proof: To begin, choose M (¢€) so that |||v,]| — |vw]|| < €/5 for
alln, m > M{(e). Then choose I(€) so that [y o)| (Uis1(0Ei) <
e/5. Then |v,| (Uis1(oE;) < 2€/5 for all m > M(e). Finally,
choose N (€) > M(e) large enough so that >, ;. [vn(E;) —
vm(E;)| < €/5 for all n,m < N(e). (This is possﬂale pre-
cisely because it is a finite sum.) Finally then we have for all
n,m > N(e)

S Il B2) — ()
Z vn(Ei) — )|+ Z v (E;) — E;)|

i<I(e i>1(e
< 6/5+ Z ()| + [vm (£ )\
i>1(e
< 5e/5 = e. O

Certainly then, for every integer M,

Z\Vn — Un(E;)| < € for n,m > Ne).



Taking m to inﬁnity, we find that

Z\Vn — v(E;)| < eforn > N(e).

Since this is true for all M, we get

(10.1) Zm — v(E;)| < e for n > Nie).

Now we can compute

ZI/ \—hm|un ZV

by (??). Since this is true for all €, we see that v(E) =
> v(E;), so v is countably additive, and hence a signed
measure. Now (?7) with F; a partition of X shows that
v — v|[amxy — 0. This shows that v is a finite measure

and that v, — v under the total variation norm, completing
the proof. []



Absolute continuity

Definition 10.4.

(1) We say that a signed measure pu is supported on a
set Aif u(F)=pu(ENA)foral Fe M.

(2) Two signed measures p and v are mutually singular
if they are supported on disjoint subsets. This is
denoted p L v.

(3) If v is a signed measure and p a positive measure,

we say that v is absolutely continuous w.r.t. p if

WE)=0 = v(E)=0.

If |v| is a finite measure then this last condition is
equivalent to the assertion that for each ¢ > 0 there
exists 0 > 0 such that

pE) <o = [V|(E) <¢

while in general this is a strictly stronger assertion.
Example. Lebesgue measure, delta measures, and
Ew [ rJ on R"
Exercise. Give an example where |v| is not finite,

and the first assertion does not imply the second.



Theorem 10.5 (Radon-Nikodym).

Let 1 be a o-finite positive measure on the measur-
able space (X, M) and v a o-finite signed measure.
Then we can write v = v, + vy where v, 1s abso-
lutely continuous w.r.t. wu, and vy and p are mu-
tually singular. Moreover, there exists an extended

p-integrable function f such that
va(E) = / fdp.
E

e A function is extended p-integrable if its negative

part is integrable.

Proof: We first prove when p and v are both positive and
finite measures. Once we have done that, the general case is
then not difficult.

We use Hilbert space ideas. Consider the Hilbert space
L*(X, p) where p = i+ v. Consider the map

L(X,p) 3 & s 1(1) = / bdv.

This is a bounded linear functional, since

()] < / ldy < / ldp < p(3) V2]l



using Cauchy-Schwarz. Therefore [ is inner product with some
element g of L*(X, p):

(10.2) /wdu = /ng dp for all ¢ € L*(X, p).

For any measurable set E, with p(E) > 0, set ¢ = 1g. Then

we find that
V(E)z/lEdyzflEgdp,

0< /1E9d,0 < p(L&),

which implies that ¢ < 1 a.e. w.r.t. p. By changing g on a

SO

set of p-measure zero, we can assume that g < 1 everywhere.
Now we define A to be the set where g < 1 and B to be the
set where g = 1. Putting ¢ = 1p, we find that

V(B):/IBdV:/1Bgdp:/13dp:V(B)+,u(B).

Therefore, u(B) = 0. Since p is a positive measure, this

means that p is supported in B¢ = A. So define
v (E)=v(ENA), v(FE)=v(ENB).

We have just shown that v, and pu are mutually singular. Now
we show that v, is absolutely continuous w.r.t. p.

First we reformulate Equation (??) as

[ot-gar= [vgan



It is tempting to try ¢ = ) ! which would then give

/du—/ 1—g )dy—/E(l—g)lgd,u

and the desired conclusion.
However, this is not allowed since (1 — ¢g)~! ¢ L*(X, p)

necessarily. Instead, we approximate, setting

¢:(1+g+92+...g”)1EﬁA
which is bounded and therefore in L?. We obtain

/ (1—g¢" ) dv = / gl_—gnH du.
ENA A 1—g

Since g < 1on A, 1 — ¢"™ 1 1 pointwise, so by MCT we get

Va(E):V(EﬂA):/ dl/:/ fdu
ENA ENA 9

This shows that v, is absolutely continuous and we may take
f =g(1—g)~t which (by putting £ = X) the above equation
shows is integrable w.r.t. u.

To prove for o-finite, positive measures p,r, we write X
as the disjoint union of a countable family F; of sets of finite
measure. Let p;, v; be the restrictions of p, v to E;. Then we
can decompose v; as v; ,+v; s as above. Setting v, = ) iVja
and vg =) jVjs We satisfy the conditions of the theorem. To
treat the case of a signed measure, we treat the positive and

negative parts of v separately. ]



