10. Radon-Nikodym derivatives Signed measures

Let (X, \mathcal{M}) be a measurable space. A signed measure is a map ν from \mathcal{M} to $(-\infty, \infty]$ with the property that if E_1, E_2, \ldots are disjoint elements of \mathcal{M} , then

$$\nu(\cup_j E_j) = \sum_{j=1}^{\infty} \nu(E_j).$$

Notice that this implies that if $\nu(\bigcup_j E_j) < \infty$, then the sum on the RHS is absolutely convergent, for otherwise it would not be independent of the ordering of the E_j . Sometimes we refer to (unsigned) measures as positive measures to make the distinction clear.

An example of a signed measure is

$$\nu(E) = \int_E f d\mu$$

where (X, \mathcal{M}, μ) is a measure space and f is a fixed real-valued function such that f_- , the negative part of f, is integrable. (This ensures that ν can never take the value $-\infty$, which is not allowed.) In fact, we shall soon prove that this is the only possibility. Given a signed measure ν , we define the total variation $|\nu| : \mathcal{M} \to \mathbb{R}$ as follows:

$$|\nu|(E) = \sup \sum_{j=1}^{\infty} |\nu(E_j)|,$$

where we sup over all ways of decomposing E into a countable disjoint union of measurable sets E_j .

Proposition 10.1. The total variation $|\nu|$ is a positive measure satisfying

$$\nu \leq |\nu|.$$

Proof: We need to show that

$$|\nu|(E) \le \sum_{j=1}^{\infty} |\nu|(E_j) \text{ and } |\nu|(E) \ge \sum_{j=1}^{\infty} |\nu|(E_j)|$$

whenever E is written as a countable disjoint union of measurable sets E_j .

To prove \geq , we choose numbers $\alpha_j < |\nu|(E_j)$. Then, we can find a partition $E_j = \bigcup_i F_{i,j}$ into measurable sets such that

$$\alpha_j \le \sum_j |\nu(F_{i,j})|.$$

Then $\cup_{i,j} F_{i,j}$ is a partition of E, so we get

$$\sum_{j} \alpha_{j} \leq \sum_{i,j} |\nu(F_{i,j})| \leq |\nu|(E).$$

Taking the sup over all possible α_j proves \geq .

To prove \leq , we take a partition of E into measurable sets F_k . Then we have

$$\sum_{k} |\nu(F_k)| = \sum_{k} \left| \sum_{j} \nu(F_k \cap E_j) \right|$$
$$\leq \sum_{k,j} |\nu(F_k \cap E_j)| \leq \sum_{j} |\nu|(E_j).$$

Since this is true for each way of partitioning E, we find that

$$|\nu|(E) \le \sum_j |\nu|(E_j)$$

as required.

The statement $\nu \leq |\nu|$ is obvious.

We can then write any signed measure as the difference of two positive measures, by writing

$$\nu = \frac{\nu + |\nu|}{2} + \frac{\nu - |\nu|}{2} = \nu_+ + \nu_-.$$

We say that ν is σ -finite if $|\nu|$ is, and then ν_+ and ν_- automatically are as well.

Notice that the finite signed measures on a measurable space (X, \mathcal{M}) form a vector space, denoted M(X).

Theorem 10.2. M(X) is a complete normed space under the norm

$$\|\nu\|_{M(X)} = |\nu|(X).$$

Proof: It is straightforward to show that $\|\cdot\|_{M(X)}$ is a norm. Suppose that ν_j is a Cauchy sequence in M(X). Then for each $E \in \mathcal{M}, |\nu_n(E) - \nu_m(E)| \to 0$ as $m, n \to \infty$, so $\lim_n \nu_n(E)$ exists for each E. Define $\nu(E)$ to be $\lim_n \nu_n(E)$. We need to show that ν is a finite signed measure. To show countable additivity, suppose that $E = \bigcup_i E_i$ is a disjoint union of measurable sets.

Lemma 10.3. For $\epsilon > 0$ there exists an $N(\epsilon)$ so

$$\sum_{i=1}^{\infty} |\nu_n(E_i) - \nu_m(E_i)| < \epsilon \text{ for } n, m \ge N(\epsilon).$$

Proof: To begin, choose $M(\epsilon)$ so that $|||\nu_n| - |\nu_m||| < \epsilon/5$ for all $n, m \ge M(\epsilon)$. Then choose $I(\epsilon)$ so that $|\nu_{M(\epsilon)}| (\bigcup_{i\ge I(\epsilon)} E_i) < \epsilon/5$. Then $|\nu_m| (\bigcup_{i\ge I(\epsilon)} E_i) < 2\epsilon/5$ for all $m \ge M(\epsilon)$. Finally, choose $N(\epsilon) \ge M(\epsilon)$ large enough so that $\sum_{i< I(\epsilon)} |\nu_n(E_i) - \nu_m(E_i)| < \epsilon/5$ for all $n, m \le N(\epsilon)$. (This is possible precisely because it is a finite sum.) Finally then we have for all $n, m \ge N(\epsilon)$

$$\sum_{i} |\nu_n(E_i) - \nu_m(E_i)|$$

$$= \sum_{i < I(\epsilon)} |\nu_n(E_i) - \nu_m(E_i)| + \sum_{i \ge I(\epsilon)} |\nu_n(E_i) - \nu_m(E_i)|$$

$$< \epsilon/5 + \sum_{i \ge I(\epsilon)} |\nu_n(E_i)| + |\nu_m(E_i)|$$

$$< 5\epsilon/5 = \epsilon.$$

Certainly then, for every integer M,

$$\sum_{i=1}^{M} |\nu_n(E_i) - \nu_m(E_i)| < \epsilon \text{ for } n, m \ge N(\epsilon).$$

Taking m to infinity, we find that

$$\sum_{i=1}^{M} |\nu_n(E_i) - \nu(E_i)| \le \epsilon \text{ for } n \ge N(\epsilon).$$

Since this is true for all M, we get

(10.1)
$$\sum_{i=1}^{\infty} |\nu_n(E_i) - \nu(E_i)| \le \epsilon \text{ for } n \ge N(\epsilon).$$

Now we can compute

$$|\nu(E) - \sum_{i} \nu(E_{i})| = \lim_{n} |\nu_{n}(E) - \sum_{i} \nu(E_{i})|$$
$$= \lim_{n} |\sum_{i} (\nu_{n}(E_{i}) - \nu(E_{i}))|$$
$$\leq \limsup_{n} \sum_{i} |\nu_{n}(E_{i}) - \nu(E_{i})|$$
$$\leq \epsilon$$

by (??). Since this is true for all ϵ , we see that $\nu(E) = \sum_i \nu(E_i)$, so ν is countably additive, and hence a signed measure. Now (??) with E_i a partition of X shows that $\|\nu_n - \nu\|_{M(X)} \to 0$. This shows that ν is a finite measure and that $\nu_n \to \nu$ under the total variation norm, completing the proof.

Absolute continuity

Definition 10.4.

- (1) We say that a signed measure μ is supported on a set A if $\mu(E) = \mu(E \cap A)$ for all $E \in \mathcal{M}$.
- (2) Two signed measures μ and ν are mutually singular if they are supported on disjoint subsets. This is denoted $\mu \perp \nu$.
- (3) If ν is a signed measure and μ a positive measure, we say that ν is absolutely continuous w.r.t. μ if

$$\mu(E) = 0 \implies \nu(E) = 0.$$

If $|\nu|$ is a finite measure then this last condition is equivalent to the assertion that for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\mu(E) < \delta \implies |\nu|(E) < \epsilon,$$

while in general this is a strictly stronger assertion.

Example. Lebesgue measure, delta measures, and $E \mapsto \int_E f$ on \mathbb{R}^n .

Exercise. Give an example where $|\nu|$ is not finite, and the first assertion does not imply the second.

Theorem 10.5 (Radon-Nikodym).

Let μ be a σ -finite positive measure on the measurable space (X, \mathcal{M}) and ν a σ -finite signed measure. Then we can write $\nu = \nu_a + \nu_s$ where ν_a is absolutely continuous w.r.t. μ , and ν_s and μ are mutually singular. Moreover, there exists an extended μ -integrable function f such that

$$\nu_a(E) = \int_E f d\mu.$$

• A function is extended μ -integrable if its negative part is integrable.

Proof: We first prove when μ and ν are both positive and finite measures. Once we have done that, the general case is then not difficult.

We use Hilbert space ideas. Consider the Hilbert space $L^2(X, \rho)$ where $\rho = \mu + \nu$. Consider the map

$$L^2(X,\rho) \ni \psi \mapsto l(\psi) = \int \psi \, d\nu.$$

This is a bounded linear functional, since

$$|l(\psi)| \le \int |\psi| d\nu \le \int |\psi| d\rho \le \rho(X)^{1/2} \|\psi\|_{L^2}$$

using Cauchy-Schwarz. Therefore l is inner product with some element g of $L^2(X, \rho)$:

(10.2)
$$\int \psi \, d\nu = \int \psi g \, d\rho \text{ for all } \psi \in L^2(X, \rho).$$

For any measurable set E, with $\rho(E) > 0$, set $\psi = 1_E$. Then we find that

$$\nu(E) = \int 1_E \, d\nu = \int 1_E g \, d\rho,$$

SO

$$0 \le \int 1_E g \, d\rho \le \rho(E),$$

which implies that $g \leq 1$ a.e. w.r.t. ρ . By changing g on a set of ρ -measure zero, we can assume that $g \leq 1$ everywhere.

Now we define A to be the set where g < 1 and B to be the set where g = 1. Putting $\psi = 1_B$, we find that

$$\nu(B) = \int 1_B \, d\nu = \int 1_B g \, d\rho = \int 1_B \, d\rho = \nu(B) + \mu(B).$$

Therefore, $\mu(B) = 0$. Since μ is a positive measure, this means that μ is supported in $B^c = A$. So define

$$\nu_a(E) = \nu(E \cap A), \quad \nu_s(E) = \nu(E \cap B).$$

We have just shown that ν_s and μ are mutually singular. Now we show that ν_a is absolutely continuous w.r.t. μ .

First we reformulate Equation (??) as

$$\int \psi(1-g) \, d\nu = \int \psi g \, d\mu.$$

It is tempting to try $\psi = (1 - g)^{-1}$, which would then give $\nu(E) = \int_E d\nu = \int_E (1 - g)^{-1} (1 - g) \, d\nu = \int_E (1 - g)^{-1} g d\mu$ and the desired conclusion.

However, this is not allowed since $(1-g)^{-1} \notin L^2(X,\rho)$ necessarily. Instead, we approximate, setting

$$\psi = (1 + g + g^2 + \dots g^n) \mathbf{1}_{E \cap A}$$

which is bounded and therefore in L^2 . We obtain

$$\int_{E \cap A} (1 - g^{n+1}) \, d\nu = \int_{E \cap A} g \frac{1 - g^{n+1}}{1 - g} \, d\mu.$$

Since g < 1 on A, $1 - g^{n+1} \uparrow 1$ pointwise, so by MCT we get

$$\nu_a(E) = \nu(E \cap A) = \int_{E \cap A} d\nu = \int_{E \cap A} \frac{g}{1 - g} d\mu$$

This shows that ν_a is absolutely continuous and we may take $f = g(1-g)^{-1}$, which (by putting E = X) the above equation shows is integrable w.r.t. μ .

To prove for σ -finite, positive measures μ, ν , we write X as the disjoint union of a countable family E_j of sets of finite measure. Let μ_j, ν_j be the restrictions of μ, ν to E_j . Then we can decompose ν_j as $\nu_{j,a} + \nu_{j,s}$ as above. Setting $\nu_a = \sum_j \nu_{j,a}$ and $\nu_s = \sum_j \nu_{j,s}$ we satisfy the conditions of the theorem. To treat the case of a signed measure, we treat the positive and negative parts of ν separately.