Problem set 1 - discuss in Tutorial on July 28.

1. (a) Show that the set

$$
\left\{f \in L^{2}([0,4]) \mid \int_{0}^{4} f(x) d x=0\right\}
$$

is a closed subspace of $L^{2}([0,4])$.
(b) Find the closest point in this subspace to the characteristic function of the interval $[0,1]$, in the L^{2} metric.
2. Show that the set

$$
\left\{f \in L^{2}(\mathbb{R}) \mid \lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=0\right\}
$$

is not a closed subspace of $L^{2}(\mathbb{R})$.
3. Find the projection of a function f in $L^{2}([0,1])$ onto the subspace of continuous functions that are linear on $[0,1 / 2]$ and $[1 / 2,1]$.
4. Consider the function $f=\chi_{[0,1]}$ as an element of $L^{1}([0,4])$ (note here we look at the L^{1} norm, not the L^{2} norm). Show that there are lots of functions g that are "halfway between 0 and f ", in the sense that $\|g\|_{1}=\|f-g\|_{1}=1 / 2$. On the other hand, show that in a Hilbert space, given $f \neq 0$, there is only one element g satisfying $\|g\|=\|f-g\|=\|f\| / 2$, namely $f / 2$.
5. Show that the examples of BLTs in lecture 2 are bounded, namely the maps

$$
f(x) \mapsto \int_{-\infty}^{\infty} k(x-y) f(y) d y: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

for $k \in L^{1}(\mathbb{R})$, and integration on $L^{2}([0,1])$:

$$
f(x) \mapsto \int_{0}^{x} f(s) d s
$$

6. Let H be a Hilbert space. Suppose that a sequence P_{j} of orthogonal projections converges to the BLT T in operator norm, i.e. $\left\|T-P_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$. Show that T is an orthogonal projection.
7. Suppose that F is a finite rank operator on H. (This means, by definition, that the range of F is finite dimensional.) Show that there exist $x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N} \in H$, where N is the dimension of the range of F, such that

$$
F x=\sum_{j=1}^{N}\left(x_{i}, x\right) y_{i}
$$

