
Overview

We’ve studied the geometric and algebraic behaviour of vectors in
Euclidean space. This week we turn to an abstract model that has many
of the same algebraic properties.

The importance of this is two-fold:
Many models of physical processes do not sit in R3, or indeed in Rn

for any n.
Apparently different situations often turn out to be “essentially” the
same; studying the abstract case solves many problems at once.

(Lay, §4.1)
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Let’s review vector operations in language that will help set up our
generalisation:

Vectors are objects which can be added together or multiplied by
scalars; both operations give back a vector.
Vector addition is commutative and associative; scalar multiplication
and vector addition are distributive.
Adding the zero vector to v doesn’t change v.
Multiplying a vector v by the scalar 1 doesn’t change v.
Adding v to (−1)v gives the zero vector.

(Notice that we haven’t included the dot product. This does have a role to
play in our abstract setting, but we’ll come to it later in the term.)
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Definition
A vector space is a non-empty set V of objects called vectors on which are
defined operations of addition and multiplication by scalars. These objects
and operations must satisfy the following ten axioms for all u, v and w in
V and for all scalars c and d .

For now, we’ll take the set of scalars to be the real numbers. In a few
weeks, we’ll consider vector spaces where the scalars are complex numbers
instead.
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Definition
A vector space is a non-empty set V of objects called vectors on which are
defined operations of addition and multiplication by scalars. These objects
and operations must satisfy the following ten axioms for all u, v and w in
V and for all scalars c and d .

The axioms for a vector space

1 u + v is in V ;
2 u + v = v + u; (commutativity)
3 (u + v) + w = u + (v + w); (associativity)
4 there is an element 0 in V , 0 + u = u;
5 there is −u ∈ V with u + (−u) = 0;
6 cu is in V ;
7 c(u + v) = cu + cv;
8 (c + d)u = cu + du;
9 c(du) = (cd)u;
10 1u = u.
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Example 1

Let M2×2 =
{[

a b
c d

]
: a, b, c, d ∈ R

}
, with the usual operations of

addition of matrices and multiplication by a scalar.

In this context the the zero vector 0 is
[
0 0
0 0

]
.

The negative of the vector v =
[
a b
c d

]
is −v =

[
−a −b
−c −d

]
.

For the same vector v and t ∈ R we have tv =
[
ta tb
tc td

]
.

If v =
[
a b
c d

]
and w =

[
e f
g h

]
then u + w =

[
a + e b + f
c + g d + h

]
.
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Example 2
Let P2 be the set of all polynomials of degree at most 2 with coefficients
in R. Elements of P2 have the form

p(t) = a0 + a1t + a2t2

where a0, a1 and a2 are real numbers and t is a real variable. You are
already familiar with adding two polynomials or multiplying a polynomial
by a scalar.
The set P2 is a vector space.

We will just verify 3 out of the 10 axioms here.
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Let p(t) = a0 + a1t + a2t2 and q(t) = b0 + b1t + b2t2, and let c be a
scalar.
Axiom 1: v + u is in V
The polynomial p + q is defined in the usual way:
(p + q)(t) = p(t) + q(t). Therefore,

(p + q)(t) = p(t) + q(t) = (a0 + b0) + (a1 + b1)t + (a2 + b2)t2

which is also a polynomial of degree at most 2. So p + q is in P2.
Axiom 4: v + 0 = v
The zero vector 0 is the zero polynomial 0 = 0 + 0t + 0t2.

(p + 0)(t) = p(t) + 0(t) = (a0 + 0) + (a1 + 0)t + (a2 + 0)t2 = p(t).

So p + 0 = p.
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Axiom 6: cu is in V

(cp)(t) = cp(t) = (ca0) + (ca1)t + (ca2)t2.

This is again a polynomial in P2.
The remaining 7 axioms also hold, so P2 is a vector space.
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In fact, the previous example generalises:

Example 3
Let Pn be the set of polynomials of degree at most n with coefficients in
R. Elements of Pn are polynomials of the form

p(t) = a0 + a1t + . . . + antn

where a0, a1, . . . , an are real numbers and t is a real variable.
As in the example above, the usual operations of addition of polynomials
and multiplication of a polynomial by a real number make Pn a vector
space.
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Example 4
The set Z of integers with the usual operations is not a vector space. To
demonstrate this it is enough to to find that one of the ten axioms fails
and to give a specific instance in which it fails (i.e., a counterexample).

In this case we find that we do not have closure under scalar multiplication
(Axiom 6). For example, the multiple of the integer 3 by the scalar 1

4 is
(1
4

)
(3) = 3

4

which is not an integer. Thus it is not true that cx is in Z for every x in Z
and every scalar c.
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Example 5
Let F denote the set of real valued functions defined on the real line. If f
and g are two such functions and c is a scalar, then f + g and cf are
defined by

(f + g)(x) = f (x) + g(x) and (cf )(x) = cf (x).

This means that the value of f + g at x is obtained by adding together the
values of f and g at x . So if f is the function f (x) = cos x and g is
g(x) = ex then

(f + g)(0) = f (0) + g(0) = cos 0 + e0 = 1 + 1 = 2.

We find cf in a similar way. This means axioms 1 and 6 are true. The
other axioms need to be verified, and with that verification F is a vector
space.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 11 / 28

Sometimes we have vector spaces with unintuitive operations for addition
and scalar multiplication.

Example 6
Consider R>0, the positive real numbers, under the following operations:

v⊕w = vw
c ⊗ v = vc .

Counterintuitively, this is a vector space! For example, we can check
Axiom 7:

c ⊗ (u⊕ v) = (uv)c

while

(c ⊗ u)⊕ (c ⊗ v) = ucvc .

To make things work out, we find 0 = 1, and −u = u−1

What’s going on here?
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The following theorem is a direct consequence of the axioms.

Theorem
Let V be a vector space, u a vector in V and c a scalar.

1 0 is unique;
2 −u is the unique vector that satisfies u + (−u) = 0;
3 0u = 0; (note difference between 0 and 0)
4 c0 = 0;
5 (−1)u = −u.

Exercises 4.1.25 - 29 of Lay outline the proofs of these results.
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Subspaces

Some of the vector space examples we’ve seen “sit inside” others.
For example, we sketched the proof that P2 and P4 are both vector spaces.
Any polynomial of degree at most two can also be viewed as a polynomial
of degree at most 4:

a0 + a1t + a2t2 = a0 + a1t + a2t2 + 0t3 + 0t4.

If you have a subset H of a vector space V , some of the axioms are
satisfied for free. For example, you don’t need to check that scalar
multiplication in H distributes through vector addition: you already know
this is true in H because it’s true in V .
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Subspaces

This idea is formalised in the notion of a subspace.

Definition
A subspace of a vector space V is a subset H of V such that

1 The zero vector is in H: 0 ∈ H;
2 whenever u, v are in H, u + v is in H.

“ H is closed under vector addition."
3 cu is in H whenever u is in H and c is in R.

“H is closed under scalar multiplication."

This is not a new idea: in MATH1013 the same definition is given for
subspaces of Rn.
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Examples

Example 7
If V is any vector space, the subset {0} of V containing only the zero
vector 0 is a subspace of V .

This is called the zero subspace or the trivial subspace.
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Example 8

Let H =







a
0
b


 : a, b ∈ R




. Show that H is a subspace of R3.

The zero vector of R3 is in H: set a = 0 and b = 0.
H is closed under addition: adding two vectors in H always produces
another vector whose second entry is 0 and therefore in H.
H is closed under scalar multiplication: multiplying a vector in H by a
scalar produces another vector in H.

Since all three properties hold, H is a subspace of R3.
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If we identify vectors in R3 with points in 3D space as usual, then H is the
plane through the origin given by the homogeneous equation y = 0.

H is a plane, but H is NOT EQUAL to R2!
(The set R2 is not contained in R3.)
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Example 9

Is H =
{[

s
s + 1

]
: s ∈ R

}
a subspace of R2?

We can identify H with the line whose equation is y = x + 1.

Clearly, the zero vector is not in H, so H is not a subspace of R2.
(Observe that the equation y = x + 1 is not homogeneous).
As you saw in MATH1013, lines and planes through the origin are
subspaces of Rn while lines and planes that do not pass through the origin
are not subspaces.
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Example 10
Let W be the set of symmetric 2× 2 matrices:

W =
{[

a b
b d

] ∣∣∣∣∣ a, b, d ∈ R
}

=
{
A | AT = A

}
.

Then W is a subspace of M2×2.

The zero matrix satisfies the condition:
[
0 0
0 0

]T
=
[
0 0
0 0

]
.

Let A and B be in W . Then AT = A and BT = B, from which it
follows that

(A + B)T = AT + BT = A + B.

Therefore A + B is symmetric and is in W .
Similarly, (cA)T = cAT = cA, so cA is symmetric and is in W .
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Example 11
Let V be the first quadrant in the xy -plane:

V =
{[

x
y

]
: x ≥ 0, y ≥ 0

}
.

Is V a subspace of R2?

The answer is NO. Look at the picture below for example
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Example 12
Let H be the set of all polynomials (with coefficients in R) of degree at
most two that have value 0 at t = 1

H = {p ∈ P2 : p(1) = 0}.

Is H a subspace of P2?

The zero polynomial satisfies 0(t) = 0 for every t, so in particular 0(1) = 0.
Let p and q be in H. Then p(1) = 0 and q(1) = 0
Thus

(p + q)(1) = p(1) + q(1) = 0 + 0 = 0.

If c is in R and p is in H we have

(cp)(1) = c(p(1)) = c0 = 0.

Yes, H is a subspace of P2!
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Example 13
Let U be the set of all polynomials (with coefficients in R) of degree at
most two that have value 2 at t = 1

U = {p ∈ P2 : p(1) = 2}.

Is U a subspace of P2?

NO! In fact, the subset U doesn’t satisfy any of the three subspace axioms.
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Span: a recipe for building a subspace

Definition
Given a set of vectors S = {v1, v2, . . . , vp} in V , then the set of all vectors
that can be written as linear combinations of the vectors is S is called
Span(S):

Span(S) = {c1v1 + · · ·+ cpvp : c1, . . . , cp are real numbers}

Theorem
Let S = {v1, v2, . . . , vp} be a set of vectors in a vector space V . Then
Span(S) is a subspace of V .

The subspace Span(S) is the “smallest" subspace of V that contains S, in
the sense that if H is a subspace of V that contains all the vectors in S
then Span(S) ⊂ H.
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Example 14
Let V = {〈a + 3b, 3a − 2b〉 : a, b ∈ R}. Is V a subspace of R2?

Write the vectors in V in column form:
[
a + 3b
3a − 2b

]
=

[
a
3a

]
+
[
3b
−2b

]

= a
[
1
3

]
+ b

[
3
−2

]

So V = Span {v1, v2}, where v1 =
[
1
3

]
and v2 =

[
3
−2

]
, and it is therefore

a subspace of R2.
(In fact, it’s all of R2, but that still counts as a subspace!)
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Example 15
Let W be the set of all vectors in R4 of the form




4a − 2b
a + b + c

0
−2c − 6a


 (a, b, c ∈ R) (W )

Show that W is a subspace of R4.
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Since 


4a − 2b
a + b + c

0
−2c − 6a


 = a




4
1
0
−6


+ b




−2
1
0
0


+ c




0
1
0
−2


 ,

it follows that W is the subspace of R4 spanned by the three vectors



4
1
0
−6


 ,




−2
1
0
0


 ,




0
1
0
−2


 .
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Suggested exercises for review

Lay §4.1: 3, 9, 13, 33
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