
Warm-up

Question
Do you understand the following sentence?

The set of 2× 2 symmetric matrices is a subspace of the vector
space of 2× 2 matrices.
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Overview
Last time we defined an abstract vector space as a set of objects that
satisfy 10 axioms. We saw that although Rn is a vector space, so is the set
of polynomials of a bounded degree and the set of all n × n matrices. We
also defined a subspace to be a subset of a vector space which is a vector
space in its own right.

To check if a subset of a vector space is a subspace, you need to
check that it contains the zero vector and is closed under
addition and scalar multiplication.

Recall from 1013 that a matrix has two special subspaces associated to it:
the null space and the column space.

Question
How do the null space and column space generalise to abstract vector
spaces?

(Lay, §4.2)
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Matrices and systems of equations

Recall the relationship between a matrix and a system of linear equations:

Let A =
[
a1 a2 a3
a4 a5 a6

]
and let b =

[
b1
b2

]
.

The equation Ax = b corresponds to the system of equations

a1x + a2y + a3z = b1

a4x + a5y + a6z = b2.

We can find the solutions by row-reducing the augmented matrix[
a1 a2 a3 b1
a4 a5 a6 b2

]

to reduced echelon form.
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The null space of a matrix

Let A be an m × n matrix.

Definition
The null space of A is the set of all solutions to the homogeneous
equation Ax = 0:

Nul A = {x : x ∈ Rn and Ax = 0}.
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Example 1

Let A =
[
1 0 4
0 1 −3

]
.

Then the null space of A is the set of all scalar multiples of v =

−43
1

.
We can check easily that Av = 0.
Furthermore, A(tv) = tAv = t0 = 0, so tv ∈ NulA.
To see that these are the only vectors in Nul A, solve the associated
homogeneous system of equations.
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The null space theorem

Theorem (Null Space is a Subspace)
The null space of an m × n matrix A is a subspace of Rn.

This implies that the set of all solutions to a system of m homogeneous
linear equations in n unknowns is a subspace of Rn.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 6 / 31



The null space theorem
Proof Since A has n columns, Nul A is a subset of Rn. To show a subset
is a subspace, recall that we must verify 3 axioms:

0 ∈ Nul A because A0 = 0.
Let u and v be any two vectors in Nul A. Then

Au = 0 and Av = 0.

Therefore
A(u + v) = Au + Av = 0 + 0 = 0.

This shows that u + v ∈ Nul A.
If c is any scalar, then

A(cu) = c(Au) = c0 = 0.

This shows that cu ∈ Nul A.
This proves that Nul A is a subspace of Rn.
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Example 2

Let W =




r
s
t
u

 : 3s − 4u = 5r + t
3r + 2s − 5t = 4u

 Show that W is a subspace.

Hint: Find a matrix A such that Nul A=W .

If we rearrange the equations given in the description of W we get

−5r + 3s − t − 4u = 0
3r + 2s − 5t − 4u = 0.

So if A is the matrix A =
[
−5 3 −1 −4
3 2 −5 −4

]
, then W is the null space of

A, and by the Null Space is a Subspace Theorem, W is a subspace of R4.
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An explicit description of Nul A

The span of any set of vectors is a subspace. We can always find a
spanning set for Nul A by solving the associated system of equations. (See
Lay §1.5).
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The column space of a matrix

Let A be an m × n matrix.

Definition
The column space of A is the set of all linear combinations of the
columns of A.
If A =

[
a1 a2 · · · an

]
, then

Col A = Span {a1, a2, . . . , an}.

Theorem
The column space of an m × n matrix A is a subspace of Rm.

Why?
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Example 3
Suppose

W =


3a + 2b
7a − 6b
−8b

 : a, b ∈ R

 .

Find a matrix A such that W = Col A.

W =

a

37
0

+ b

 2
−6
−8

 : a, b ∈ R

 = Span


37
0

 ,

 2
−6
−8




Put A =

3 2
7 −6
0 −8

. Then W = Col A.
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Another equivalent way to describe the column space is

Col A = {Ax : x ∈ Rn} .

Example 4
Let

u =


6
7
1
−4

 , A =


5 −5 −9
8 8 −6
−5 −9 3
3 −2 −7


Does u lie in the column space of A?

We just need to answer: does Ax = u have a solution?
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Consider the following row reduction:
5 −5 −9
8 8 −6
−5 −9 3
3 −2 −7

∣∣∣∣∣∣∣∣∣
6
7
1
−4

 rref−−→


1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣∣
11/2
−2
7/2
0

 .

We see that the system Ax = u is consistent.

This means that the vector u can be written as a linear combination of the
columns of A.

Thus u is contained in the Span of the columns of A, which is the column
space of A. So the answer is YES!

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 / 31



Consider the following row reduction:
5 −5 −9
8 8 −6
−5 −9 3
3 −2 −7

∣∣∣∣∣∣∣∣∣
6
7
1
−4

 rref−−→


1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣∣
11/2
−2
7/2
0

 .

We see that the system Ax = u is consistent.

This means that the vector u can be written as a linear combination of the
columns of A.

Thus u is contained in the Span of the columns of A, which is the column
space of A. So the answer is YES!

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 / 31



Comparing Nul A and Col A

Example 5

Let A =
[
4 5 −2 6 0
1 1 0 1 0

]
.

The column space of A is a subspace of Rk where k = ___.
The null space of A is a subspace of Rk where k = ___.
Find a nonzero vector in Col A. (There are infinitely many.)
Find a nonzero vector in Nul A.

For the final point, you may use the following row reduction:[
4 5 −2 6 0
1 1 0 1 0

]
→
[
1 1 0 1 0
4 5 −2 6 0

]
→
[
1 1 0 1 0
0 1 −2 2 0

]
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Table: For any m × n matrix A

Nul A Col A

1. Nul A is a subspace of Rn. 1.Col A is a subspace of Rm.

2. Any v in Nul A has
the property that Av = 0.

2. Any v in Col A has the
property that the equation
Ax = v is consistent.

3. Nul A = {0} if and only if
the equation Ax = 0 has only
the trivial solution.

3. Col A = Rm if and only if
the equation Ax = b has a
solution for every b ∈ Rm.
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Question
How does all this generalise to an abstract vector space?

An m× n matrix defines a function from Rn to Rm, and the null space and
column space are subspaces of the domain and range, respectively.
We’d like to define the analogous notions for functions between arbitrary
vector spaces.
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Linear transformations

Definition
A linear transformation from a vector space V to a vector space W is a
function T : V →W such that
L1. T (u + v) = T (u) + T (v) for u, v ∈ V ;
L2. T (cu) = cT (u) for u ∈ V , c ∈ R.
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Matrix multiplication always defines a linear transfomation.

Example 6

Let A =
[
1 0 2
1 −1 4

]
. Then the mapping defined by

TA(x) = Ax

is a linear transformation from R3 to R2.
For example

TA


 1
−2
3


 =

[
1 0 2
1 −1 4

] 1
−2
3

 =
[
7
15

]
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Example 7
Let T : P2 → P0 be the map defined by

T (a0 + a1t + a2t2) = 2a0.

Then T is a linear transformation.

T
(
(a0 + a1t + a2t2) + (b0 + b1t + b2t2)

)
= T

(
(a0 + b0) + (a1 + b1)t + (a2 + b2)t2)

= 2(a0 + b0)
= 2a0 + 2b0

= T (a0 + a1t + a2t2) + T (b0 + b1t + b2t2).

T
(
c(a0 + a1t + a2t2)

)
= T (ca0 + ca1t + ca2t2)
= 2ca0

= cT (a0 + a1t + a2t2)
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Kernel of a linear transformation

Definition
The kernel of a linear transformation T : V →W is the set of all vectors
u in V such that T (u) = 0.
We write

kerT = {u ∈ V : T (u) = 0}.

The kernel of a linear transformation T is analogous to the null space of a
matrix, and kerT is a subspace of V .

If kerT = {0}, then T is one to one.
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The range of a linear transformation

Definition
The range of a linear transformation T : V →W is the set of all vectors
in W of the form T (u) where u is in V .
We write

Range T = {w : w = T (u) for some u ∈ V }.

The range of a linear transformation is analogous to the columns space of
a matrix, and Range T is a subspace of W .

The linear transformation T is onto if its range is all of W .
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Example 8
Consider the linear transformation T : P2 → P0 by

T (a0 + a1t + a2t2) = 2a0.

Find the kernel and range of T .

The kernel consists of all the polynomials in P2 satisfying 2a0 = 0. This is
the set

{a1t + a2t2}.

The range of T is P0.
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Example 9
The differential operator D : P2 → P1 defined by D(p(x)) = p′(x) is a
linear transformation. Find its kernel and range.

First we see that
D(a + bx + cx2) = b + 2cx .

So

kerD = {a + bx + cx2 : D(a + bx + cx2) = 0}
= {a + bx + cx2 : b + 2cx = 0}

But b + 2cx = 0 if and only if b = 2c = 0, which implies b = c = 0.
Therefore

kerD = {a + bx + cx2 : b = c = 0}
= {a : a ∈ R}
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The range of D is all of P1 since every polynomial in P1 is the image under
D (i.e the derivative) of some polynomial in P2.
To be more specific, if a + bx is in P1, then

a + bx = D
(

ax + b
2 x2

)
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Example 10
Define S : P2 → R2 by

S(p) =
[
p(0)
p(1)

]
.

That is, if p(x) = a + bx + cx2, we have

S(p) =
[

a
a + b + c

]
.

Show that S is a linear transformation and find its kernel and range.
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Leaving the first part as an exercise to try on your own, we’ll find the
kernel and range of S.

From what we have above, p is in the kernel of S if and only if

S(p) =
[

a
a + b + c

]
=
[
0
0

]

For this to occur we must have a = 0 and c = −b.
So p is in the kernel of S if

p(x) = bx − bx2 = b(x − x2).

This gives ker S = Span
{
x − x2}.
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The range of S.

Since S(p) =
[

a
a + b + c

]
and a, b and c are any real numbers, the

range of S is all of R2.
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Example 11
let F : M2×2 → M2×2 be the linear transformation defined by taking the
transpose of the matrix:

F (A) = AT .

We find the kernel and range of F .

We see that

ker F = {A in M2×2 : F (A) = 0}
= {A in M2×2 : AT = 0}

But if AT = 0, then A = (AT )T = 0T = 0. It follows that ker F = 0.
For any matrix A in M2×2, we have A = (AT )T = F (AT ). Since AT is in
M2×2 we deduce that Range F = M2×2.
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Example 12
Let S : P1 → R be the linear transformation defined by

S(p(x)) =
∫ 1

0
p(x)dx .

We find the kernel and range of S.

In detail, we have

S(a + bx) =
∫ 1

0
(a + bx)dx

=
[
ax + b

2 x2
]1

0

= a + b
2 .
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Therefore,

ker S = {a + bx : S(a + bx) = 0}

=
{

a + bx : a + b
2 = 0

}
=

{
a + bx : a = −b

2

}
=

{
−b
2 + bx

}

Geometrically, ker S consists of all those linear polynomials whose graphs
have the property that the area between the line and the x -axis is equally
distributed above and below the axis on the interval [0, 1].
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The range of S is R, since every number can be obtained as the image
under S of some polynomial in P1.
For example, if a is an arbitrary real number, then∫ 1

0
a dx = [ax ]10 = a − 0 = a.
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