
Overview

Last week we introduced the notion of an abstract vector space, and we
saw that apparently different sets like polynomials, continuous functions,
and symmetric matrices all satisfy the 10 axioms defining a vector space.
We also discussed subspaces, subsets of a vector space which are vector
spaces in their own right. To any linear transformation between vector
spaces, one can associate two special subspaces:

the kernel
the range.

Today we’ll talk about linearly independent vectors and bases for abstract
vector spaces. The definitions are the same for abstract vector spaces as
for Euclidean space, so you may find it helpful to review the material
covered in 1013.

(Lay, §4.3, §4.4)
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Linear independence

Definition (Linear Independence)
A set of vectors {v1, v2, . . . , vp} in a vector space V is said to be linearly
independent if the vector equation

c1v1 + c2v2 + · · ·+ cpvp = 0 (1)

has only the trivial solution, c1 = c2 = · · · = cp = 0.

Definition
The set {v1, v2, . . . , vp} is said to be linearly dependent if it is not linearly
independent, i.e., if there are some weights c1, c2, . . . , cp, not all zero,
such that (1) holds.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 2 / 18



Here’s a recipe for proving a set of vectors {v1, v2, . . . , vp} is linearly
independent:

1 Write the equation

c1v1 + c2v2 + · · ·+ cpvp = 0.

2 Manipulate the equation to prove that all the ci = 0. Done!
3 If you find a different solution, then you’ve instead proven that the set

is linearly dependent.

!
If you start by assuming the ci are all zero, you can’t prove anything!
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Example 1
Show that the vectors 2x + 3, 4x2, and 1 + x are linearly independent in
P2.

1 Set a linear combination of the given vectors equal to 0:

a(2x + 3) + b(4x2) + c(1 + x) = 0.

2 Now manipulate the equation to see what coefficients are possible:

(3a + c) + (2a + c)x + 4bx2 = 0.

This implies

3a + c = 0
2a + c = 0

4b = 0

But the only solution to this system is a = b = c = 0, so the given
vectors are linearly independent.
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Span of a set
Example 2
Consider the plane H illustrated below:

Which of the following are valid descriptions of H?
(a) H = Span {v1, v2} (b) H = Span {v1, v3}
(c) H = Span {v2, v3} (d) H = Span {v1, v2 v3}
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The spanning set theorem

Definition
Let H be a subspace of a vector space V . An indexed set of vectors
B = {v1, v2, . . . , vp} in V is a basis for H if
(i) B is a linearly independent set, and
(ii) the subspace spanned by B equals H:

H = Span {v1, v2, . . . , vp}.

Theorem (The spanning set theorem)
Let S = {v1, v2, . . . , vp} be a set in V , and let H = Span {v1, v2, . . . , vp}.

(a) If the vector vk in S is a linear combination of the remaining vectors
of S, then the set formed from S by removing vk still spans H.

(b) If H 6= {0}, some subset of S is a basis for H.
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Example 3
Find a basis for P2 which is a subset of S = {1, x , 1 + x , x + 3, x2}.

First, let’s check if we have any hope: does S span P2?
The spanning set theorem says that if any vector in S is a linear
combination of the other vectors in S, we can remove it without changing
the span.

Span {1, x , 1 + x , x + 3, x2} = Span {1, x , x2}.

The set {1, x , x2} spans P2 and is linearly independent, so it’s a basis.

Other correct answers are {1, 1 + x , x2}, {1, x + 3, x2}, {x + 3, 1 + x , x2},
{x , x + 3, x2}, and {x , 1 + x , x2}.
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Bases for Nul A and Col A

Given any subspace V , it’s natural to ask for a basis of V .

When a subspace is defined as the null space or column space of a matrix,
there is an algorithm for finding a basis.

Recall the following example from the last lecture:

Example 4
Find the null space of the matrix

A =

1 5 −4 −3 1
0 1 −2 1 0
0 0 0 0 0

 .
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Row reducing the matrix gives1 5 −4 −3 1
0 1 −2 1 0
0 0 0 0 0

 r1→r1−5r2−−−−−−−→

1 0 6 −8 1
0 1 −2 1 0
0 0 0 0 0


This is equivalent to the system of equations

x1 + 6x3 − 8x4 + x5 = 0
x2 − 2x3 + x4 = 0

The general solutions is x1 = −6x3 + 8x4 − x5, x2 = 2x3 − x4. The free
variables are x3, x4 and x5.
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We express the general solution in vector form:


x1
x2
x3
x4
x5

 =


−6x3 + 8x4 − x5

2x3 − x4
x3
x4
x5



= x3


−6
2
1
0
0


↑
u

+ x4


8
−1
0
1
0


↑
v

+ x5


−1
0
0
0
1


↑
w

We get a vector for each free variable, and these form a spanning set for
Nul A. In fact, this spanning set is linearly independent, so it’s a basis.
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A basis for Col A

Theorem
The pivot columns of a matrix A form a basis for Col A.

Although we won’t prove this is true, we’ll see why it should be plausible
using this example.

Example 5
We find a basis for Col A, where

A =
[
a1 a2 · · · a5

]

=


1 0 6 −3 0
4 3 33 −6 8
2 −1 9 −8 −4
−2 2 −6 10 2


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We row reduce A to get

A =


1 0 6 −3 0
4 3 33 −6 8
2 −1 9 −8 −4
−2 2 −6 10 2

→

1 0 6 −3 0
0 1 3 2 0
0 0 0 0 1
0 0 0 0 0

 = B

[
a1 a2 · · · a5

]
→

[
b1 b2 · · · b5

]
Note that

b3 = 6b1 + 3b2 and b4 = −3b1 + 2b2

We can check that

a3 = 6a1 + 3a2 and a4 = −3a1 + 2a2

Elementary row operations do not affect the linear dependence
relationships among the columns of the matrix.
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B =


1 0 6 −3 0
0 1 3 2 0
0 0 0 0 1
0 0 0 0 0



Looking at the columns of B, we can guess that b1, b2, b5 form a basis
for Col B.
We check

1 b2 is not a multiple of b1.
2 b5 is not a linear combination of b1 and b2.

Elementary row operations do not affect the linear dependence
relationships among the columns of the matrix.

Since {b1, b2, b5} is a basis for Col B,

{a1, a2, a5} is a basis for Col A.
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Review

1 To find a basis for Nul A, use elementary row operations to transform
[A 0] to an equivalent reduced row echelon form [B 0]. Use the row
reduced echelon form to find a parametric form of the general
solution to Ax = 0. If Nul A 6= {0}, the vectors found in this
parametric form of the general solution are automatically linearly
independent and form a basis for Nul A.

2 A basis for Col A is is formed from the pivot columns of A.
The matrix B determines the pivot columns, but it is important to
return to the matrix A.
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The unique representation theorem

Theorem (The Unique Representation Theorem)
Suppose that B = {v1, . . . , vn} is a basis for a vector space V . Then each
x ∈ V has a unique expansion

x = c1v1 + · · · cnvn (2)

where c1, . . . , cn are in Rn.

We say that the ci are the coordinates of x relative to the basis B, and we

write [x]B =

 c1
...

cn

.
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Example 6
We found several bases for P2, including

B = {1, x , x2} and C = {1, x + 3, x2}.

Find the coordinates for 5 + 2x + 3x2 with respect to B and C.

We have
5 + 2x + 3x2 = 5(1) + 2(x) + 3(x2),

so [5 + 2x + 3x2]B =

 5
2
3

.
Similarly,

5 + 2x + 3x2 = −1(1) + 2(x + 3) + 3(x2)

so [5 + 2x + 3x2]C =

 −12
3

.
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Why is the Unique Representation Theorem true?

Suppose that B = {b1, . . . , bn} is a basis for V , and that we can write

x = c1b1 + · · ·+ cnbn

x = d1b1 + · · ·+ dnbn.

We’d like to show that this implies ci = di for all i .

Subtract the second
line from the first to get

0 = (c1 − d1)b1 + · · ·+ (cn − dn)bn.

Since B is a basis, the bi are linearly independent. This implies all the
coefficients ci − di are equal to 0.
Thus, ci = di for all i .
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Coordinates
Coordinates give instructions for writing a given vector as a linear
combination of basis vectors.

In Rn, we’ve been implicitly using the standard basis E = {i, j, k}: a
b
c

 = ai + bj + ck

.
However, we can express a vector in Rn in terms of any basis.

Example 7

Suppose B = {
[
1
1

]
E

,

[
1
−1

]
E
}. Then i = 1

2

[
1
1

]
E

+ 1
2

[
1
−1

]
E
, so

i =
[

1
2
1
2

]
B
.
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