
Overview
Last time we defined a basis of a vector space H:
Definition
The set {v1, · · · , vp} is a basis for H if

{v1, · · · , vp} is linearly independent, and
Span{v1, · · · , vp} = H

We recalled algorithms (§2.8, §4.3) to find a basis for the null space and
the column space of a matrix, and we stated the Unique Representation
Theorem:

Given a basis for H, every vector in H can be a written as a
linear combination of basis vectors in a unique way.

The coefficients of this expression are the coordinates of the vector with
respect to the basis.
Question
Given bases B and C for H, how are [x]B and [x]C related?

(Lay, §4.4, §4.7)
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Coordinates

Theorem (The Unique Representation Theorem)
Suppose that B = {v1, . . . , vn} is a basis for a vector space V . Then each
x ∈ V has a unique expansion

x = c1v1 + · · · cnvn (1)

where c1, . . . , cn are in R.

We say that the ci are the coordinates of x relative to the basis B, and we

write [x]B =




c1
...
cn


.

Coordinates give instructions for writing a given vector as a linear
combination of basis vectors.
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Different bases determine different coordinates...
Suppose B = {

[
1
0

]

E
,

[
1
2

]

E
}, and as always, E = {

[
1
0

]

E
,

[
0
1

]

E
}.

x x

e1 b1

b2

e2

Standard graph B-graph paper

If [x]B =
[
2
2

]
, then x = 2b1 + 2b2 = 2

[
1
0

]

E
+ 2

[
1
2

]

E
=
[
4
4

]

E

Similarly, [x]E =
[
4
4

]
, so x = 4e1 + 4e2 = 4

[
1
0

]

E
+ 4

[
0
1

]

E
=
[
4
4

]

E
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...but some things stay the same

Even though we use different coordinates to describe the same point with
respect to different bases, the structures we see in the vector space are
independent of the chosen coordinates.

Definition
A one-to-one and onto linear transformation between vector spaces is an
isomorphism. If there is an isomorphism T : V1 → V2, we say that V1 and
V2 are isomorphic.

Informally, we say that the vector space V is isomorphic to W if every
vector space calculation in V is accurately reproduced in W , and vice
versa.
For example, the property of a set of vectors being linearly independent
doesn’t depend on what coordinates they’re written in.
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Isomorphism

Theorem
Let B = {b1, b2, . . . , bn} be a basis for a vector space V . Then the
coordinate mapping P : V → Rn defined by P(x) = [x]B is an
isomorphism.

What does this theorem mean?
V and Rn are both vector spaces, and we’re defining a specific map that
takes vectors in V to vectors in Rn. This map

...is a linear transformation

...is one-to-one (i.e., if P(u) = 0, then u = 0)

...is onto (for every v ∈ Rn, there’s some u ∈ V with P(u) = v)

Every vector space with an n-element basis is isomorphic to Rn.
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Very Important Consequences

If B = {b1, . . . , bn} is a basis for a vector space V then

A set of vectors {u1, · · · , up} in V spans V if and only if the set of
the coordinate vectors {[u1]B, . . . , [up]B} spans Rn;

A set of vectors {u1, · · · , up} in V is linearly independent in V if and
only if the set of the coordinate vectors {[u1]B, . . . , [up]B} is linearly
independent in Rn.

An indexed set of vectors {u1, · · · , up} in V is a basis for V if and
only if the set of the coordinate vectors {[u1]B, . . . , [up]B} is a basis
for Rn.
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Theorem
If a vector space V has a basis B = {b1, . . . , bn}, then any set in V
containing more than n vectors is linearly dependent.

Theorem
If a vector space V has a basis consisting of n vectors, then every basis of
V must consist of exactly n vectors.

That is, every basis for V has the same number of elements. This number
is called the dimension of V and we’ll study it more tomorrow.
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Changing Coordinates (Lay §4.7)

When a basis B is chosen for V , the associated coordinate mapping onto
Rn defines a coordinate system for V . Each x ∈ V is identified uniquely by
its coordinate vector [x]B.

In some applications, a problem is initially described by using a basis B,
but by choosing a different basis C, the problem can be greatly simplified
and easily solved.

We want to study the relationship between [x]B, [x]C in Rn and the vector
x in V . We’ll try to solve this problem in 2 different ways.
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Changing from B to C coordinates: Approach #1

Example 1
Let B = {b1, b2} and C = {c1, c2} be bases for a vector space V , and
suppose that

b1 = −c1 + 4c2 and b2 = 5c1 − 3c2. (2)

Further, suppose that [x]B =
[
2
3

]
for some vector x in V . What is [x]C?

Let’s try to solve this from the definitions of the objects:

Since [x]B =
[
2
3

]
we have

x = 2b1 + 3b2. (3)
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The coordinate mapping determined by C is a linear transformation, so we
can apply it to equation (3):

[x]C = [2b1 + 3b2]C
= 2[b1]C + 3[b2]C

We can write this vector equation as a matrix equation:

[x]C =
[
[b1]C [b2]C

] [2
3

]
. (4)

Here the vector [bi ]C becomes the i th column of the matrix.
This formula gives us [x]C once we know the columns of the matrix. But
from equation (2) we get

[b1]C =
[
−1
4

]
and [b2]C =

[
5
−3

]
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So the solution is

[x]C =
[
−1 5
4 −3

] [
2
3

]
=
[
13
−1

]
or

[x]C = P
C←B [x]B

where P
C←B =

[
−1 5
4 −3

]
is called the change of coordinate matrix from

basis B to C.

Note that from equation (4), we have

P
C←B =

[
[b1]C [b2]C

]
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The argument used to derive the formula (4) can be generalised to give
the following result.

Theorem (2)

Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases for a vector space V .
Then there is a unique n × n matrix P

C←B such that

[x]C = P
C←B [x]B. (5)

The columns of P
C←B are the C-coordinate vectors of the vectors in the

basis B. That is

P
C←B =

[
[b1]C [b2]C · · · [bn]C

]
. (6)
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The matrix P
C←B in Theorem 12 is called the change of coordinate matrix

from B to C.
Multiplication by P

C←B converts B-coordinates into C-coordinates.

Of course,
[x]B = P

B←C [x]C ,

so that
[x]B = P

B←C
P
C←B [x]B,

whence P
B←C and P

C←B are inverses of each other.
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Summary of Approach #1

The columns of P
C←B are the C-coordinate vectors of the vectors

in the basis B.
Why is this true, and what’s a good way to remember this?
Suppose B = {b1, . . . , bn} and C = {c1, . . . , cn} are bases for a vector
space V . What is [b1]B?

[b1]B =




1
0
...
0




.

We have
[b1]C = P

C←B[b1]B,

so the first column of P
C←B needs to be the vector for b1 in C coordinates.
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Example
Example 2
Find the change of coordinates matrices P

C←B and P
B←C for the bases

B = {1, x , x2} and C = {1 + x , x + x2, 1 + x2}

of P2.

Notice that it’s “easy" to write a vector in C in B coordinates.

[1 + x ]B =



1
1
0


 , [x + x2]B =



0
1
1


 , [1 + x2]B =



1
0
1


 .

Thus,

P
B←C =



1 0 1
1 1 0
0 1 1


 .
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Example 3 (continued)
Find the change of choordinates matrices P

C←B and P
B←C for the bases

B = {1, x , x2} and C = {1 + x , x + x2, 1 + x2}

of P2.

Since we just showed

P
B←C =



1 0 1
1 1 0
0 1 1


 ,

we have

P
C←B = P

B←C
−1 =



1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2


 .
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Suppose now that we have a polynomial p(x) = 1+ 2x − 3x2 and we want
to find its coordinates relative to the C basis.
We have

[p]B =



1
2
−3




and so

[p]C = P
C←B [p]B

=



1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2






1
2
−3




=



3
−1
−2


 .
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Changing from B to C coordinates: Approach #2

As we just saw, it’s relatively easy to find a change of basis matrix from a
standard basis (e.g., {i, j, k} or {1, x , x2, x3}) to a non-standard basis.
We can use this fact to find a change of basis matrix between two
non-standard bases, too. Suppose that E is a standard basis and B and C
are non-standard bases for some vector space.
To change from B to C coordinates, first change from B to E coordinates
and then change from E to C coordinates:

P
C←Bx = P

C←E

(
P
E←Bx

)
.

Since this is true for all x, we can write the matrix P
C←B as a product of two

matrices which are easy to find:

P
C←B = P

C←E
P
E←B.
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Example 4
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
7
−2

]
, b2 =

[
2
−1

]
, c1 =

[
4
1

]
, c2 =

[
5
2

]
.

We want to find the change of coordinate matrix P
C←B using the method

described above.

We have

P
E←B =

[
7 2
−2 −1

]
, P

E←C =
[
4 5
1 2

]
and P

E←C
−1 = 1

3

[
2 −5
−1 4

]

Hence

P
C←B = P

E←C
−1 P
E←B = 1

3

[
2 −5
−1 4

] [
7 2
−2 −1

]
=
[
8 3
−5 −2

]
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Examples: Approach #1

Example 5
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
−1
8

]
, b2 =

[
1
−5

]
, c1 =

[
1
4

]
, c2 =

[
1
1

]
.

We want to find the change of coordinate matrix from B to C, and from C
to B.
Solution The matrix P

C←B involves the C-coordinate vectors of b1 and b2.
Suppose that

[b1]C =
[
x1
x2

]
and [b2]C =

[
y1
y2

]
.
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From the definition

b1 = x1c1 + x2c2 =
[
c1 c2

] [x1
x2

]

and
b2 = y1c1 + y2c2 =

[
c1 c2

] [y1
y2

]

To solve these systems simultaneously we augment the coefficient matrix
with b1 and b2 and row reduce:

[
c1 c2

... b1 b2

]
=

[
1 1
4 1

∣∣∣∣∣
−1 1
8 −5

]

rref−−→
[
1 0
0 1

∣∣∣∣∣
3 −2
−4 3

]
. (7)
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This gives

[b1]C =
[
3
−4

]
and [b2]C =

[
−2
3

]
,

and
P
C←B =

[
[b1]C [b2]C

]
=
[
3 −2
−4 3

]

You may notice that the matrix P
C←B already appeared in (7). This is

because the first column of P
C←B results from row reducing[

c1 c2
... b1

]
to
[
I ... [b1]C

]
, and similarly for the second column of

P
C←B. Thus [

c1 c2
... b1 b2

] rref−−→
[
I ... P

C←B

]
.
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Example 6
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
7
−2

]
, b2 =

[
2
−1

]
, c1 =

[
4
1

]
, c2 =

[
5
2

]
.

We want to find the change of coordinate matrix from B to C, and from C
to B.
We use the following relationship:

[
c1 c2

... b1 b2

] rref−−→
[
I ... P

C←B

]
.

Here
[
c1 c2

... b1 b2

]
=
[
4 5
1 2

∣∣∣∣∣
7 2
−2 −1

]
rref−−→

[
1 0
0 1

∣∣∣∣∣
8 3
−5 −2

]
.
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This gives
P
C←B =

[
8 3
−5 −2

]
.

Further
P
B←C =

(
P
C←B

)−1
=
[
2 3
−5 −8

]
.
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Example 7
In M2×2 let B be the basis

{
E11 =

[
1 0
0 0

]
,E21 =

[
0 0
1 0

]
,E12 =

[
0 1
0 0

]
,E22 =

[
0 0
0 1

]}

and let C be the basis
{
A =

[
1 0
0 0

]
,B =

[
1 1
0 0

]
,C =

[
1 1
1 0

]
,D =

[
1 1
1 1

]}

We find the change of basis matrix P
C←B and verify that [X ]C = P

C←B [X ]B

for X =
[
1 2
3 4

]
.
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Solution To solve this problem directly we must find the coordinate vectors
of B with respect to C.

This would usually involve solving a system of 4 linear equations of the
form E11 = aA + bB + cC + dD where we need to find a, b, c and d .

We can avoid that in this case since we can find the required coefficients
by inspection:
Clearly E11 = A,E21 = −B + C ,E12 = −A + B and E22 = −C + D.

Thus

[E11]C =




1
0
0
0


 , [E21]C =




0
−1
1
0


 , [E12]C =




−1
1
0
0


 , [E22]C =




0
0
−1
1


 .
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From this we have

P
C←B =

[
[E11]C [E21]C [E12]C [E22]C

]

=




1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1




For X =
[
1 2
3 4

]
,

X = 1E11 + 3E21 + 2E12 + 4E22

and [X ]B =




1
3
2
4


.
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We now want to verify that [X ]C = P
C←B [X ]B for X =

[
1 2
3 4

]
. From our

calculations

[X ]C = P
C←B [X ]B

=




1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1







1
3
2
4




=




−1
−1
−1
4


 .

This is the coordinate vector of X with respect to the basis C.
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We check this as follows:

Since [X ]C =




−1
−1
−1
4


 this means that X should be given by

−A− B − C + 4D:

−A− B − C + 4D = −
[
1 0
0 0

]
−
[
1 1
0 0

]
−
[
1 1
1 0

]
+ 4

[
1 1
1 1

]

=
[
1 2
3 4

]
= X

as it should be.
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