
Overview

Given two bases B and C for the same vector space, we saw yesterday how
to find the change of coordinates matrices P

C←B nd P
B←C. Such a matrix is

always square, since every basis for a vector space V has the same number
of elements. Today we’ll focus on this number —the dimension of V—
and explore some of its properties.

From Lay, §4.5, 4.6
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Dimension

Definition
If a vector space V is spanned by a finite set, then V is said to be finite
dimensional.

The dimension of V , (written dimV ), is the number of vectors in a basis
for V .

The dimension of the zero vector space {0} is defined to be zero.

If V is not spanned by a finite set, then V is said to be infinite
dimensional.
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Example 1
1 The standard basis for Rn contains n vectors, so dimRn = n.
2 The standard basis for P3, which is {1, t, t2, t3}, shows that

dimP3 = 4.
3 The vector space of continuous functions on the real line is infinite

dimensional.
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Dimension and the coordinate mapping

Recall the theorem we saw yesterday:

Theorem
Let B = {b1,b2, . . . ,bn} be a basis for a vector space V . Then the
coordinate mapping P : V → Rn defined by P(x) = [x]B is an
isomorphism.

(Recall that an isomorphism is a linear transformation that’s both
one-to-one and onto.)

This means that every vector space with an n-element basis is isomorphic
to Rn.

We can now rephrase this theorem in new language:

Theorem
Any n-dimensional vector space is isomorphic to Rn.
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Dimensions of subspaces of R3

Example 2
The 0 - dimensional subspace contains only the zero vector

00
0


.

If u 6= 0, then Span {u} is a 1 - dimensional subspace. These
subspaces are lines through the origin.
If u and v are linearly independent vectors in R3, then Span {u, v} is
a 2 - dimensional subspace. These subspaces are planes through
the origin.
If u, v and w are linearly independent vectors in R3, then
Span {u, v,w} is a 3 - dimensional subspace. This subspace is R3

itself.
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Theorem

Let H be a subspace of a finite dimensional vector space V . Then any
linearly independent set in H can be expanded (if necessary) to form a
basis for H.

Also, H is finite dimensional and

dimH ≤ dimV .
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Example 3

Let H = Span


10
1

 ,

11
0


.

Then H is a subspace of R3 and

dimH < dimR3. Furthermore, we can expand the given spanning set for

H


10
1

 ,

11
0


 to


10
1

 ,

11
0

 ,

00
1




to form a basis for R3.

Question
Can you find another vector that you could have added to the spanning set
for H to form a basis for R3?
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When the dimension of a vector space or subspace is known, the search for
a basis is simplified.

Theorem (The Basis Theorem)
Let V be a p-dimensional space, p ≥ 1.

1 Any linearly independent set of exactly p elements in V is a basis for
V .

2 Any set of exactly p elements that spans V is a basis for V .
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Example 4
Schrödinger’s equation is of fundamental importance in quantum
mechanics. One of the first problems to solve is the one-dimensional
equation for a simple quadratic potential, the so-called linear harmonic
oscillator.
Analysing this leads to the equation

d2y
dx2 − 2x dydx + 2ny = 0

where n = 0, 1, 2, ...

There are polynomial solutions, the Hermite polynomials. The first few are

H0(x) = 1 H3(x) = −12x + 8x3

H1(x) = 2x H4(x) = 12− 48x3 + 16x4

H2(x) = −2 + 4x2 H5(x) = 120x − 160x3 + 32x5

We want to show that these polynomials form a basis for P5.
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Writing the coordinate vectors relative to the standard basis for P5 we get

1
0
0
0
0
0


,



0
2
0
0
0
0


,



−2
0
4
0
0
0


,



0
−12
0
8
0
0


,



12
0
0
−48
16
0


,



0
120
0
−160
0
32


.

This makes it clear that the vectors are linearly independent. Why?

Since dimP5 = 6 and there are 6 polynomials that are linearly
independent, the Basis Theorem shows that they form a basis for P5.
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The dimensions of Nul A and Col A
Recall that last week we saw explicit algorithms for finding bases for the
null space and the column space of a matrix A.

1 To find a basis for Nul A, use elementary row operations to transform
[A 0] to an equivalent reduced row echelon form [B 0]. Use the row
reduced echelon form to find a parametric form of the general
solution to Ax = 0. If Nul A 6= {0}, the vectors found in this
parametric form of the general solution are automatically linearly
independent and form a basis for Nul A.

2 A basis for Col A is is formed from the pivot columns of A.
The matrix B determines the pivot columns, but it is important to
return to the matrix A.

Dimension of Nul A and Col A
The dimension of Nul A is the number of free variables in the equation
Ax = 0.
The dimension of Col A is the number of pivot columns in A.
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Example 5
Given the matrix

A =


1 −6 9 10 −2
0 1 2 −4 5
0 0 0 5 1
0 0 0 0 0

 ,

what are the dimensions of the null space and column space?

There are three pivots and two free variables, so dim(Nul A) = 2 and
dim(Col A) = 3.
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Example 6
Given the matrix

A =

1 −1 0
0 4 7
0 0 5

 ,

there are three pivots and no free variables, dim(Nul A) = 0 and
dim(Col A) = 3.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 / 29



Example 6
Given the matrix

A =

1 −1 0
0 4 7
0 0 5

 ,

there are three pivots and no free variables, dim(Nul A) = 0 and
dim(Col A) = 3.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 / 29



The rank theorem

As before, let A be a matrix and let B be its reduced row echelon form

dimCol A = # of pivots of A = # of pivot columns of B

Definition
The rank of a matrix A is the dimension of the column space of A.

dimNul A = # of free variables of B

= # of non-pivot columns of B.

Compare the two red boxes. What does this tell about the relationship
between the dimensions of the null space and column space of matrix?
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Theorem
If A is an m × n matrix, then

Rank A + dimNul A = n.

Proof. {
number of

pivot columns

}
+

{
number of

nonpivot columns

}
=

{
number of
columns

}
.
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Examples

Example 7
If a 6× 3 matrix A has rank 3, what can we say about dimNul A,
dimCol A and Rank A?

Rank A + dimNul A = 3.
Since A only has three columns, and and all three are pivot columns,
there are no free variables in the equation Ax = 0. Hence
dimNul A = 0.
dimCol A = Rank A = 3.
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The row space of a matrix

The null space and the column space are the fundamental subspaces
associated to a matrix, but there’s one other natural subspace to consider:

Definition
The row space Row A of an m × n matrix A is the subspace of Rn

spanned by the rows of A.
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Example 8
For the matrix A given by

A =


1 −6 9 10 −2
3 1 2 −4 5
−2 0 −1 5 1
4 −3 1 0 6

 ,

we can write

r1 = [1,−6, 9, 10,−2]
r2 = [3, 1, 2,−4, 5]
r3 = [−2, 0,−1, 5, 1]
r4 = [4,−3, 1, 0, 6

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4}.

(Note that we’re writing the vectors ri as rows, rather than columns, for
convenience.)
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A basis for Row B
Theorem
Suppose a matrix B is obtained from a matrix A by row operations. Then
Row A = Row B. If B is an echelon form of A, then the non-zero rows of
B form a basis for Row B.

Compare this to our procedure for finding a basis for Col A. Notice that
it’s simpler: after row reducing, we don’t need to return to the original
matrix to find our basis!
Proof.
If a matrix B is obtained from a matrix A by row operations, then the rows
of B are linear combinations of those of A, so that Row B ⊆ Row A.
But row operations are reversible, which gives the reverse inclusion so that
Row A = Row B.
In fact if B is an echelon form of A, then any non-zero row is linearly
independent of the rows below it (because of the leading non-zero entry),
and so the non-zero rows of B form a basis for Row B = Row A.
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In fact if B is an echelon form of A, then any non-zero row is linearly
independent of the rows below it (because of the leading non-zero entry),
and so the non-zero rows of B form a basis for Row B = Row A.
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The Rank Theorem –Updated!

Theorem
For any m × n matrix A, Col A and Row A have the same dimension.
This common dimension, the rank of A, is equal to the number of pivot
positions in A and satisfies the equation

Rank A + dimNul A = n.

This additional statement in this theorem follows from our process for
finding bases for Row A and Col A:

Use row operations to replace A with its reduced row echelon form. Each
pivot determines a vector (a column of A) in the basis for Col A and a
vector (a row of B) in the basis for Row A.

Note also Rank A = Rank AT .
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Example 9
Suppose a 4× 7 matrix A has 4 pivot columns.

Col A ⊆ R4 and dimCol A = 4. So Col A = R4.
On the other hand, Row A ⊆ R7, so that even though
dimRow A = 4, Row A 6= R4.

Example 10
If A is a 6× 8 matrix, then the smallest possible dimension of Nul A is 2.
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Example 11

A =

1 2 2 −1
3 6 5 0
1 2 1 2

 rref−−→

1 2 0 5
0 0 1 −3
0 0 0 0



Thus, {r1 = (1, 2, 0, 5), r2 = (0, 0, 1,−3)} is a basis for Row A.
(Note that these are rows of rref (A), not rows of A.)

Pivots are in columns 1 and 3 of rref (A), so that


13
1

 ,

25
1


 is a basis

for Col A. (Note these are columns of A.)
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Example 12

A =


2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1

 ref−−→ B =


2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0



The number of pivots in B is three, so dimCol A = 3 and a basis for Col A
is given by 


2
−2
4
−2

 ,


6
−3
9
3

 ,


2
−3
5
−4




A basis for Row A is given by

{(2,−3, 6, 2, 5), (0, 0, 3,−1, 1), (0, 0, 0, 1, 3)}.

From B we can see that there are two free variables for the equation
Ax = 0, so dimNul A = 2. How would you find a basis for this subspace?
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Applications to systems of equations

The rank theorem is a powerful tool for processing information about
systems of linear equations.

Example 13
Suppose that the solutions of a homogeneous system of five linear
equations in six unknowns are all multiples of one nonzero solution. Will
the system necessarily have a solution for every possible choice of
constants on the right hand side of the equations?

Solution The hardest thing to figure out is
What is the question asking?

A non-homogeneous system of equations Ax = b always has a solution if
and only if the dimension of the column space of the matrix A is the same
as the length of the columns.
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In this case if we think of the system as Ax = b, then A is a 5× 6 matrix,
and the columns have length 5: each column is a vector in R5.
The question is asking

Do the columns span R5?

or equivalently,
Is the rank of the column space equal to 5?

First note that dimNul A = 1. We use the equation:

Rank A + dimNul A = 6

to deduce that Rank A = 5.
Hence the dimension of the column space of A is 5, Col A = R5 and the
system of non-homogeneous equations always has a solution.
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Example 14
A homogeneous system of twelve linear equations in eight unknowns has
two fixed solutions that are not multiples of each other, and all other
solutions are linear combinations of these two solutions. Can the set of all
solutions be described with fewer than twelve homogeneous linear
equations? If so, how many?

Considering the corresponding matrix system Ax = 0, the key points are
A is a 12× 8 matrix.
dimNul A = 2
Rank A + dimNul A = 8
What is the rank of A?
How many equations are actually needed?
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Example 15

Let A =

 2 −2 0
−2 2 0
1 2 0

.

The following are easily checked:

Nul A is the z-axis.
Row A is the xy -plane.
Col A is the plane whose equation is x + y = 0.
Nul AT is the set of all multiples of (1, 1, 0).
Nul A and Row A are perpendicular to each other.
Col A and Nul AT are also perpendicular.
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Theorem (Invertible Matrix Theorem ctd)
Let A be an n × n matrix. Then the following statements are each
equivalent to the statement that A is an invertible matrix.
m. The columns of A form a basis of Rn.
n. Col A = Rn.
o. dimCol A = n.
p. Rank A = n.
q. Nul A = {0}.
r. dimNul A = 0.

(The numbering continues the statement of the Invertible Matrix Theorem
from Lay §2.3.)
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Summary

1 Every basis for V has the same number of elements. This number is
called the dimension of V .

2 If V is n-dimensional, V is isomorphic to Rn.
3 A linearly independent list of vectors in V can be extended to a basis

for V .
4 If the dimension of V is n, any linearly independent list of n vectors is

a basis for V .
5 If the dimension of V is n, any spanning set of n vectors is a basis for

V .
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