Overview

In preparation for the exam, we'll look at the questions asked on the 2013 Mid-Semester Exam.

Sample Question: Lines & Planes

Let P be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let L be the line through the point (1, 1, 1) which is orthogonal to P.

- Find an equation for P of the form $\mathbf{n} \cdot (\mathbf{r} \mathbf{r_0}) = 0$ for some vector \mathbf{n} and some vector $\mathbf{r_0}$.
- Pind an equation for L.
- Solution Let Q be the plane containing L and the point (1, 1, 2). Find an equation for Q.

Let P be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let L be the line through the point (1, 1, 1) which is orthogonal to P.

• Find an equation for P of the form $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$ for some vector \mathbf{n} and some vector $\mathbf{r_0}$.

Let *P* be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let *L* be the line through the point (1, 1, 1) which is orthogonal to *P*.

• Find an equation for P of the form $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$ for some vector \mathbf{n} and some vector $\mathbf{r_0}$.

To find the equation of a plane P, we need a **normal vector** to P and a **point** on P.

The plane Ax + By + Cz + D = 0 has normal vector $\begin{bmatrix} A \\ B \\ C \end{bmatrix}$, so a normal

vector to *P* is given by $\begin{bmatrix} 2\\1\\-1 \end{bmatrix}$. To find a point on *P*, we can plug in x = y = 0 and see that (0, 0, -1) satisfies the equation 2x + y - z = 1. Thus the general formula $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$ becomes

$$\begin{bmatrix} 2\\1\\-1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z+1 \end{bmatrix} = 0.$$

Let P be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let L be the line through the point (1, 1, 1) which is orthogonal to P.

2 Find an equation for L.

Let P be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let L be the line through the point (1, 1, 1) which is orthogonal to P.

2 Find an equation for L.

A direction vector for *L* is any normal vector to *P*: i.e., any scalar multiple of $\mathbf{n} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$. This yields the vector equation

$$\mathbf{r} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} + t \begin{bmatrix} 2\\1\\-1 \end{bmatrix},$$

with the associated parametric equations

$$x = 1 + 2t$$
 $y = 1 + t$ $z = 1 - t$.

Let P be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let L be the line through the point (1, 1, 1) which is orthogonal to P.

• Let Q be the plane containing L and the point (1, 1, 2). Find an equation for Q.

Let *P* be the plane in \mathbb{R}^3 defined by the equation 2x + y - z = 1, and let *L* be the line through the point (1, 1, 1) which is orthogonal to *P*.

• Let Q be the plane containing L and the point (1, 1, 2). Find an equation for Q.

To find a normal vector to the new plane, take the cross product of two vectors parallel to Q. For example, you could choose a direction vector for

L and the vector $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ between the two given points on *Q*:

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{i} - 2\mathbf{j}.$$

Any equation for the plane is acceptable, including the following:

$$\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right) \cdot \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} = 0,$$

Sample Question: Bases & Coordinates

The set
$$\mathcal{B} = \{t + 1, 1 + t^2, 3 - t^2\}$$
 is a basis for \mathbb{P}_2 .
If $p(t) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}_{\mathcal{B}}$, express p in the form $p(t) = a + bt + ct^2$.

Solution Find the coordinate vector of the polynomial q(t) = 2 - 2t with respect to \mathcal{B} coordinates.

The set
$$\mathcal{B} = \{t + 1, 1 + t^2, 3 - t^2\}$$
 is a basis for \mathbb{P}_2 .
If $p(t) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}_{\mathcal{B}}$, express p in the form $p(t) = a + bt + ct^2$.

The set
$$\mathcal{B} = \{t + 1, 1 + t^2, 3 - t^2\}$$
 is a basis for \mathbb{P}_2 .
If $p(t) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}_{\mathcal{B}}$, express p in the form $p(t) = a + bt + ct^2$.
Since the \mathcal{B} coordinates of p are $1, 1$ and -1 , we have

$$p(t) = 1(t+1) + 1(1+t^2) - 1(3-t^2) = -1 + t + 2t^2.$$

The set $\mathcal{B} = \{t+1, 1+t^2, 3-t^2\}$ is a basis for \mathbb{P}_2 .

• Find the coordinate vector of the polynomial q(t) = 2 - 2t with respect to \mathcal{B} coordinates.

The set $\mathcal{B} = \{t+1, 1+t^2, 3-t^2\}$ is a basis for \mathbb{P}_2 .

Solution Find the coordinate vector of the polynomial q(t) = 2 - 2t with respect to \mathcal{B} coordinates.

We need a, b, and c such that

$$a(t+1) + b(1+t^2) + c(3-t^2) = 2 - 2t.$$

Collecting like powers of t gives us a system of equations:

$$a + b + 3c = 2$$
$$a = -2$$
$$b - c = 0.$$

The unique solution to this is a = -2, b = c = 1. To protect against algebra mistakes, check that

$$-2(t+1) + 1(1+t^2) + 1(3-t^2) = 2 - 2t.$$

Sample Question: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

() A is the set of 2×2 matrices whose entries are integers.

2 *B* is the set of vectors in \mathbb{R}^3 which are orthogonal to $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$.

• C is the set of polynomials whose derivative is 0:

$$C = \{p(x) \in \mathbb{P} \mid \frac{d}{dx}p(x) = 0\}.$$

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

() A is the set of 2×2 matrices whose entries are integers.

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

() A is the set of 2×2 matrices whose entries are integers.

This is a subset of the vector space of 2×2 matrices with real entries, so we can check if the three subspace axioms hold:

- Is 0 in the set?
- Is the set closed under addition?
- Is the set closed under scalar multiplication?

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

() A is the set of 2×2 matrices whose entries are integers.

This is a subset of the vector space of 2×2 matrices with real entries, so we can check if the three subspace axioms hold:

Is 0 in the set?

Is the set closed under addition?

Is the set closed under scalar multiplication?

No, this is not a vector space. This set is not closed under multiplication by a non-integer scalar. For example,

$$\frac{1}{2} \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & 0 \end{array} \right] \text{ is not in } A.$$

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

2 *B* is the set of vectors in \mathbb{R}^3 which are orthogonal to $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

As before, we could check the 3 subspace axioms, but it's quicker to observe that B is the null space of the matrix $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$, and the null space of a matrix is always a subspace.

We can find a basis for the null space explicitly and check that it has 2 vectors. Alternatively, observe that the matrix $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$ has rank 1, so its null space is two-dimensional by the Rank Theorem.

Checking the 3 subspace axioms Suppose $\mathbf{v}, \mathbf{u} \in B$. Then $\mathbf{v} \cdot \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} = \mathbf{u} \cdot \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} = 0$. $(\mathbf{u} + \mathbf{v}) \cdot \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} = \mathbf{u} \cdot \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} + \mathbf{v} \cdot \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} = 0 + 0 = 0.$

Since $\mathbf{u} + \mathbf{v}$ is in *B*, *B* is closed under addition.

Suppose $\mathbf{v} \in B$.

$$(c\mathbf{v})\cdot \begin{bmatrix} 1\\0\\2 \end{bmatrix} = c\left(\mathbf{v}\cdot \begin{bmatrix} 1\\0\\2 \end{bmatrix}\right) = c\mathbf{0} = \mathbf{0}.$$

Since $c\mathbf{v}$ is in B, B is closed under scalar multiplication.

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

It he set of polynomials whose derivative is 0:

$$C = \left\{ p(x) \in \mathbb{P} \mid \frac{d}{dx} p(x) = 0 \right\}.$$

Decide whether each of the following sets is a vector space. If it is a vector space, state its dimension. If it is not a vector space, explain why.

It he set of polynomials whose derivative is 0:

$$C = \left\{ p(x) \in \mathbb{P} \mid \frac{d}{dx} p(x) = 0 \right\}.$$

We can solve this problem by recognising that the polynomials whose derivatives are 0 are exactly the constant polynomials, so $C = \mathbb{R}^1$. It follows that C is a one-dimensional vector space.

It is also acceptable to show that C is a subspace of the vector space \mathbb{P} by verifying each of the subspace axioms.

Sample Question: Linear transformations

A linear transformation $T: M_{2\times 2} \rightarrow M_{2\times 2}$ is defined by:

$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = \begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}1 & -1\\-1 & 1\end{bmatrix}.$$
(a) Calculate $T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)$.
(b) Which if any of the following matrices are in ker(7)

(b) Which, if any, of the following matrices are in ker(T)?

$$\begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$$

(c) Which, if any, of the following matrices are in range(T)?

$$\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(d) Find the kernel of T and explain why T is not one to one. (e) Explain why T does not map $M_{2\times 2}$ onto $M_{2\times 2}$.

Dr Scott Morrison (ANU)

Sample Question: Subspaces associated to a matrix

Consider the matrix A:

$$\begin{bmatrix} 2 & -4 & 0 & 2 \\ -1 & 2 & 1 & 2 \\ 1 & -2 & 1 & 4 \end{bmatrix}.$$

(i) Find a basis for Nul A.

- (ii) Find a basis for Col A.
- (iii) Consider the linear transformation $T_A : \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T_A(\mathbf{x}) = A\mathbf{x}$. Give a geometric description of the range of T_A as a subspace of \mathbb{R}^3 . What is its dimension? Does it pass through the origin?

We begin by row-reducing *A*:

$$\begin{bmatrix} 2 & -4 & 0 & 2 \\ -1 & 2 & 1 & 2 \\ 1 & -2 & 1 & 4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(i) Find a basis for Nul A.
The general solution to
$$R\begin{bmatrix} w\\ x\\ y\\ z \end{bmatrix} = 0$$
 is $y + 3z = 0$, $w - 2x + z = 0$, so
 $Nul A = \left\{ \begin{bmatrix} 2x - z\\ x\\ -3z\\ z \end{bmatrix} \right\} = \left\{ x \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + z \begin{bmatrix} -1\\0\\-3\\1 \end{bmatrix} \right\}$
and so $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\-3\\1 \end{bmatrix} \right\}$ is a basis for Nul A.

16 / 21

We begin by row-reducing A:

$$\begin{bmatrix} 2 & -4 & 0 & 2 \\ -1 & 2 & 1 & 2 \\ 1 & -2 & 1 & 4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(ii) Find a basis for Col A.

A basis for Col A is obtained by taking every column of A that corresponds to a pivot column in the row reduced form of A. Thus the first and third columns

$$\mathcal{C} = \left\{ \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} \right\}$$

form a basis for Col A.

(iii) Consider the linear transformation $T_A : \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T_A(\mathbf{x}) = A\mathbf{x}$. Give a geometric description of the range of T_A as a subspace of \mathbb{R}^3 . What is its dimension? Does it pass through the origin?

The range of T_A is exactly the column space of A. We just saw that it has a basis with two elements, so it is two dimensional. It is a plane in \mathbb{R}^3 , and passed through the origin, because every vector subspace contains **O**.

Revision: Definitions

- What is a vector space? Give some examples.
- What is a subspace? How do you check if a subset of a vector space is a subspace?
- What is a linear transformation? Give some examples.
- What does it mean for a set of vectors to be linearly independent? How do you check this?
- What are the coordinates of a vector with respect to a basis?

Revision: Geometry of \mathbb{R}^3

- What information do you need to determine a line? A plane?
- How can you check if two lines are orthogonal? Parallel?
- How do you find the distance between a point and a line? A point and a plane?
- How can you find the angle between two vectors?
- What are the scalar and vector projections of one vector onto another? Can you describe these in words?

Revision: Bases

- What is a basis for a vector space?
- If the dimension of V is n, then V and \mathbb{R}^n are *isomorphic*. What does this mean and how do we know it's true?
- In an *n*-dimensional vector space,
 - ▶ any *n* linearly independent vectors form a basis.
 - ▶ any *n* vectors which span *V* form a basis.
 - ▶ any set of vectors which spans V contains a basis for V.
 - any set of linearly independent vectors can be extended to a basis for V.
- How do you find a basis for the null space of a matrix? The column space? The row space? The kernel of the associated linear transformation?

Revision: Bases

- What is a basis for a vector space?
- If the dimension of V is n, then V and \mathbb{R}^n are *isomorphic*. What does this mean and how do we know it's true?
- In an *n*-dimensional vector space,
 - ▶ any *n* linearly independent vectors form a basis.
 - ▶ any *n* vectors which span *V* form a basis.
 - ▶ any set of vectors which spans V contains a basis for V.
 - any set of linearly independent vectors can be extended to a basis for V.
- How do you find a basis for the null space of a matrix? The column space? The row space? The kernel of the associated linear transformation? (Which pair of these are the same?)