
Overview

In preparation for the exam, we’ll look at the questions asked on the 2013
Mid-Semester Exam.
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Sample Question: Lines & Planes

Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

1 Find an equation for P of the form n · (r − r0) = 0 for some vector n
and some vector r0.

2 Find an equation for L.
3 Let Q be the plane containing L and the point (1, 1, 2). Find an

equation for Q.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

1 Find an equation for P of the form n · (r − r0) = 0 for some vector n
and some vector r0.

To find the equation of a plane P, we need a normal vector to P and a
point on P.

The plane Ax + By + Cz + D = 0 has normal vector

 A
B
C

, so a normal

vector to P is given by

 2
1
−1

. To find a point on P, we can plug in

x = y = 0 and see that (0, 0,−1) satisfies the equation 2x + y − z = 1.
Thus the general formula n · (r − r0) = 0 becomes 2

1
−1

 ·
 x

y
z + 1

 = 0.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

2 Find an equation for L.

A direction vector for L is any normal vector to P: i.e., any scalar multiple

of n =

 2
1
−1

. This yields the vector equation

r =

 1
1
1

+ t

 2
1
−1

 ,

with the associated parametric equations

x = 1 + 2t y = 1 + t z = 1− t.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

3 Let Q be the plane containing L and the point (1, 1, 2). Find an
equation for Q.

To find a normal vector to the new plane, take the cross product of two
vectors parallel to Q. For example, you could choose a direction vector for

L and the vector

 0
0
1

 between the two given points on Q:

∣∣∣∣∣∣∣
i j k
2 1 −1
0 0 1

∣∣∣∣∣∣∣ = i− 2j.

Any equation for the plane is acceptable, including the following:
 x

y
z

−
 1

1
2


 ·

 1
−2
0

 = 0,

(x − 1)− 2(y − 1) = 0,

x − 2y + 1 = 0.
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Sample Question: Bases & Coordinates

The set B = {t + 1, 1 + t2, 3− t2} is a basis for P2.

1 If p(t) =

 1
1
−1


B

, express p in the form p(t) = a + bt + ct2.

2 Find the coordinate vector of the polynomial q(t) = 2− 2t with
respect to B coordinates.
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Solution: Bases & Coordinates
The set B = {t + 1, 1 + t2, 3− t2} is a basis for P2.

2 Find the coordinate vector of the polynomial q(t) = 2− 2t with
respect to B coordinates.

We need a, b, and c such that

a(t + 1) + b(1 + t2) + c(3− t2) = 2− 2t.

Collecting like powers of t gives us a system of equations:

a + b + 3c = 2
a = −2

b − c = 0.

The unique solution to this is a = −2, b = c = 1.
To protect against algebra mistakes, check that

−2(t + 1) + 1(1 + t2) + 1(3− t2) = 2− 2t.
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Sample Question: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.

2 B is the set of vectors in R3 which are orthogonal to

 1
0
2

.
3 C is the set of polynomials whose derivative is 0:

C = {p(x) ∈ P | d
dx p(x) = 0}.
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Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.

This is a subset of the vector space of 2× 2 matrices with real entries, so
we can check if the three subspace axioms hold:

1 Is 0 in the set?
2 Is the set closed under addition?
3 Is the set closed under scalar multiplication?

No, this is not a vector space. This set is not closed under multiplication
by a non-integer scalar. For example,

1
2

[
1 0
0 0

]
=
[

1
2 0
0 0

]
is not in A.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 21



Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.
This is a subset of the vector space of 2× 2 matrices with real entries, so
we can check if the three subspace axioms hold:

1 Is 0 in the set?
2 Is the set closed under addition?
3 Is the set closed under scalar multiplication?

No, this is not a vector space. This set is not closed under multiplication
by a non-integer scalar. For example,

1
2

[
1 0
0 0

]
=
[

1
2 0
0 0

]
is not in A.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 21



Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.
This is a subset of the vector space of 2× 2 matrices with real entries, so
we can check if the three subspace axioms hold:

1 Is 0 in the set?
2 Is the set closed under addition?
3 Is the set closed under scalar multiplication?

No, this is not a vector space. This set is not closed under multiplication
by a non-integer scalar. For example,

1
2

[
1 0
0 0

]
=
[

1
2 0
0 0

]
is not in A.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 21



Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

2 B is the set of vectors in R3 which are orthogonal to

 1
0
2

.
As before, we could check the 3 subspace axioms, but it’s quicker to
observe that B is the null space of the matrix [1 0 2], and the null space
of a matrix is always a subspace.
We can find a basis for the null space explicitly and check that it has 2
vectors. Alternatively, observe that the matrix [1 0 2] has rank 1, so its
null space is two-dimensional by the Rank Theorem.
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Checking the 3 subspace axioms

1

 0
0
0

 ·
 1

0
2

 = 0, so 0 ∈ B.

2 Suppose v, u ∈ B. Then v ·

 1
0
2

 = u ·

 1
0
2

 = 0.

(u + v) ·

 1
0
2

 = u ·

 1
0
2

+ v ·

 1
0
2

 = 0 + 0 = 0.

Since u + v is in B, B is closed under addition.
3 Suppose v ∈ B.

(cv) ·

 1
0
2

 = c

v ·

 1
0
2


 = c0 = 0.

Since cv is in B, B is closed under scalar multiplication.
Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 12 / 21



Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

3 the set of polynomials whose derivative is 0:

C =
{

p(x) ∈ P
∣∣∣ d

dx p(x) = 0
}

.

We can solve this problem by recognising that the polynomials whose
derivatives are 0 are exactly the constant polynomials, so C = R1. It
follows that C is a one-dimensional vector space.

It is also acceptable to show that C is a subspace of the vector space P by
verifying each of the subspace axioms.
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Sample Question: Linear transformations
A linear transformation T : M2×2 → M2×2 is defined by:

T
([

a b
c d

])
=
[
a b
c d

] [
1 −1
−1 1

]
.

(a) Calculate T
([

a b
c d

])
.

(b) Which, if any, of the following matrices are in ker(T )?[
1 1
3 3

] [
1 3
3 1

] [
1 3
1 3

]
(c) Which, if any, of the following matrices are in range(T )?[

−2 2
2 −2

] [
1 −1
−2 2

] [
1 0
0 1

]
(d) Find the kernel of T and explain why T is not one to one.
(e) Explain why T does not map M2×2 onto M2×2.
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Sample Question: Subspaces associated to a matrix

Consider the matrix A:  2 −4 0 2
−1 2 1 2
1 −2 1 4

 .

(i) Find a basis for NulA.
(ii) Find a basis for ColA.
(iii) Consider the linear transformation TA : R4 → R3 defined by

TA(x) = Ax. Give a geometric description of the range of TA as a
subspace of R3. What is its dimension? Does it pass through the
origin?
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We begin by row-reducing A: 2 −4 0 2
−1 2 1 2
1 −2 1 4

 rref−−→

1 −2 0 1
0 0 1 3
0 0 0 0

 .

(i) Find a basis for NulA.

The general solution to R


w
x
y
z

 = 0 is y + 3z = 0, w − 2x + z = 0, so

NulA =



2x − z

x
−3z

z


 =

x


2
1
0
0

+ z


−1
0
−3
1




and so B =



2
1
0
0

 ,


−1
0
−3
1


 is a basis for NulA.
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We begin by row-reducing A: 2 −4 0 2
−1 2 1 2
1 −2 1 4

 rref−−→

1 −2 0 1
0 0 1 3
0 0 0 0

 .

(ii) Find a basis for ColA.
A basis for ColA is obtained by taking every column of A that corresponds
to a pivot column in the row reduced form of A. Thus the first and third
columns

C =


 2
−1
1

 ,

01
1




form a basis for ColA.
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(iii) Consider the linear transformation TA : R4 → R3 defined by
TA(x) = Ax. Give a geometric description of the range of TA as a
subspace of R3. What is its dimension? Does it pass through the
origin?

The range of TA is exactly the column space of A. We just saw that it has
a basis with two elements, so it is two dimensional. It is a plane in R3, and
passed through the origin, because every vector subspace contains O.
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Revision: Definitions

What is a vector space? Give some examples.
What is a subspace? How do you check if a subset of a vector space
is a subspace?
What is a linear transformation? Give some examples.
What does it mean for a set of vectors to be linearly independent?
How do you check this?
What are the coordinates of a vector with respect to a basis?
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Revision: Geometry of R3

What information do you need to determine a line? A plane?
How can you check if two lines are orthogonal? Parallel?
How do you find the distance between a point and a line? A point
and a plane?
How can you find the angle between two vectors?
What are the scalar and vector projections of one vector onto
another? Can you describe these in words?
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Revision: Bases

What is a basis for a vector space?
If the dimension of V is n, then V and Rn are isomorphic. What does
this mean and how do we know it’s true?
In an n-dimensional vector space,

I any n linearly independent vectors form a basis.
I any n vectors which span V form a basis.
I any set of vectors which spans V contains a basis for V .
I any set of linearly independent vectors can be extended to a basis for

V .
How do you find a basis for the null space of a matrix? The column
space? The row space? The kernel of the associated linear
transformation?

(Which pair of these are the same?)
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