
Overview

The previous lecture introduced eigenvalues and eigenvectors. We’ll review
these definitions before considering the following question:

Question
Given a square matrix A, how can you find the eigenvalues of A?

We’ll discuss an important tool for answering this question: the
characteristic equation.

Lay, §5.2
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Eigenvalues and eigenvectors

Definition
An eigenvector of an n × n matrix A is a non-zero vector x such that
Ax = λx for some scalar λ. The scalar λ is an eigenvalue for A.

Multiplying a vector by a matrix changes the vector. An eigenvector is a
vector which is changed in the simplest way: by scaling.

Given any matrix, we can study the associated linear transformation. One
way to understand this function is by identifying the set of vectors for
which the transformation is just scalar multiplication.
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Example

Example 1

Let A =
[
2 1
0 −1

]
.

Then u =
[
1
0

]
is an eigenvector for the eigenvalue 2:

Au =
[
2 1
0 −1

] [
1
0

]
=
[
2
0

]
= 2u.

Also, v =
[

1
−3

]
is an eigenvector for the eigenvalue −1:

Av =
[
2 1
0 −1

] [
1
−3

]
=
[
−1
3

]
= −v.
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Finding Eigenvalues
Suppose we know that λ ∈ R is an eigenvalue for A. That is, for some
x 6= 0,

Ax = λx.

Then we solve for an eigenvector x by solving (A− λI)x = 0.

But how do we find eigenvalues in the first place?

x must be non zero
⇓

(A− λI)x = 0 must have non trivial solutions
⇓

(A− λI) is not invertible
⇓

det(A− λI) = 0.

Solve det(A− λI) = 0 for λ to find the eigenvalues of the matrix A.
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The eigenvalues of a square matrix A are the solutions of the characteristic
equation.

the characteristic polynomial: det(A− λI)

the characteristic equation: det(A− λI) = 0
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Examples
Example 2
Consider the matrix

A =
[
5 3
3 5

]
.

We want to find the eigenvalues of A.

Since
A− λI =

[
5 3
3 5

]
−
[
λ 0
0 λ

]
=
[
5− λ 3
3 5− λ

]
,

The equation det(A− λI) = 0 becomes

(5− λ)(5− λ)− 9 = 0
λ2 − 10λ+ 16 = 0
(λ− 8)(λ− 2) = 0
⇒ λ = 2, λ = 8.
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Example 3
Find the characteristic equation for the matrix

A =

0 3 1
3 0 2
1 2 0

 .

For a 3× 3 matrix, recall that a determinant can be computed by cofactor
expansion.

A− λI =

−λ 3 1
3 −λ 2
1 2 −λ
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det(A− λI) = det

−λ 3 1
3 −λ 2
1 2 −λ


= −λ

∣∣∣∣∣−λ 2
2 −λ

∣∣∣∣∣− 3
∣∣∣∣∣3 2
1 −λ

∣∣∣∣∣+ 1
∣∣∣∣∣3 −λ
1 2

∣∣∣∣∣
= −λ(λ2 − 4)− 3(−3λ− 2) + (6 + λ)
= −λ3 + 4λ+ 9λ+ 6 + 6 + λ

= −λ3 + 14λ+ 12

Hence the characteristic equation is

−λ3 + 14λ+ 12 = 0.

The eigenvalues of A are the solutions to the characteristic equation.
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Example 4
Consider the matrix

A =


3 0 0 0 0
2 1 0 0 0
−1 4 2 0 0
8 6 −3 0 0
5 −2 4 −1 1


Find the characteristic equation for this matrix.
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Observe that

det(A− λI) =


3− λ 0 0 0 0
2 1− λ 0 0 0
−1 4 2− λ 0 0
8 6 −3 −λ 0
5 −2 4 −1 1− λ


= (3− λ)(1− λ)(2− λ)(−λ)(1− λ)
= (−λ)(1− λ)2(3− λ)(2− λ)

Thus A has eigenvalues 0, 1, 2 and 3. The eigenvalue 1 is said to have
multiplicity 2 because the factor 1− λ occurs twice in the characteristic
polynomial.

In general the (algebraic) multiplicity of an eigenvalue λ is its
multiplicity as a root of the characteristic equation.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 24



Observe that

det(A− λI) =


3− λ 0 0 0 0
2 1− λ 0 0 0
−1 4 2− λ 0 0
8 6 −3 −λ 0
5 −2 4 −1 1− λ


= (3− λ)(1− λ)(2− λ)(−λ)(1− λ)
= (−λ)(1− λ)2(3− λ)(2− λ)

Thus A has eigenvalues 0, 1, 2 and 3. The eigenvalue 1 is said to have
multiplicity 2 because the factor 1− λ occurs twice in the characteristic
polynomial.

In general the (algebraic) multiplicity of an eigenvalue λ is its
multiplicity as a root of the characteristic equation.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 24



Observe that

det(A− λI) =


3− λ 0 0 0 0
2 1− λ 0 0 0
−1 4 2− λ 0 0
8 6 −3 −λ 0
5 −2 4 −1 1− λ


= (3− λ)(1− λ)(2− λ)(−λ)(1− λ)
= (−λ)(1− λ)2(3− λ)(2− λ)

Thus A has eigenvalues 0, 1, 2 and 3. The eigenvalue 1 is said to have
multiplicity 2 because the factor 1− λ occurs twice in the characteristic
polynomial.

In general the (algebraic) multiplicity of an eigenvalue λ is its
multiplicity as a root of the characteristic equation.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 24



Similarity

The next theorem illustrates the use of the characteristic polynomial, and it
provides a basis for several iterative methods that approximate eigenvalues.

Definition (Similar matrices)
If A and B are n × n matrices, then A is similar to B if there is an
invertible matrix P such that

P−1AP = B

or equivalently,
A = PBP−1.

We say that A and B are similar. Changing A into P−1AP is called a
similarity transformation.
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Theorem
If the n × n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the same
multiplicities).

Proof.
If B = P−1AP, then

B − λI = P−1AP − λP−1P
= P−1(AP − λP)
= P−1(A− λI)P.

Hence
det(B − λI) = det

[
P−1(A− λI)P

]
= det(P−1) det(A− λI) detP
= det(P−1) detP det(A− λI)
= det(P−1P) det(A− λI)
= det I det(A− λI)
= det(A− λI).
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Application to dynamical systems
A dynamical system is a system described by a difference equation
xk+1 = Axk . Such an equation was used to model population movement
in Lay 1.10 and it is the sort of equation used to model a Markov chain.
Eigenvalues and eigenvectors provide a key to understanding the evolution
of a dynamical system.

Here’s the idea that we’ll see illustrated in the next
example:

1 If you can, find a basis B of eigenvectors:
B = {b1,b2}.

2 Express the vector x0 describing the initial condition in B coordinates:
x0 = c1b1 + c2b2.

3 Since A multiplies each eigenvector by the corresponding eigenvalue,
this makes it easy to see what happens after many iterations:
Anx0 = An(c1b1 + c2b2) = c1Anb1 + c2Anb2 = c1λ

n
1b1 + c2λ

n
2b2.
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Examples

Example 5
In a certain region, about 7% of a city’s population moves to the
surrounding suburbs each year, and about 3% of the suburban population
moves to the city. In 2000 there were 800,000 residents in the city and
500,000 residents in the suburbs. We want to investigate the result of this
migration in the long term.

The migration matrix M is given by

M =
[
.93 .03
.07 .97

]
.

The first step is to find the eigenvalues of M.
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The characteristic equation is given by

0 = det
[
.93− λ .03
.07 .97− λ

]
= (.93− λ)(.97− λ)− (.03)(.07)
= λ2 − 1.9λ+ .9021− .0021
= λ2 − 1.9λ+ .9000
= (λ− 1)(λ− .9)

So the eigenvalues are λ = 1 and λ = 0.9.

E1 = Nul
[
−.07 .03
.07 −.03

]
= Nul

[
7 −3
0 0

]

This gives an eigenvector v1 =
[
3
7

]
.
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E.9 = Nul
[
.03 .03
.07 .07

]
= Nul

[
1 1
0 0

]

and an eigenvector for this space is given by v2 =
[
1
−1

]
.

The next step is to write x0 in terms of v1 and v2.

The initial vector x0 describes the initial population (in 2000), so writing

in 100,000’s we will put x0 =
[
8
5

]
.

There exist weights c1 and c2 such that

x0 = c1v1 + c2v2 =
[
v1 v2

] [c1
c2

]
(1)
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To find
[
c1
c2

]
we do the following row reduction:

[
3 1 8
7 −1 5

]
rref−−→

[
1 0 1.3
0 1 4.1

]

So
x0 = 1.3v1 + 4.1v2. (2)
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We can now look at the long term behaviour of the system. Because
v1 and v2 are eigenvectors of M, with Mv1 = v1 and Mv2 = .9v2, we
can compute each xk :

x1 = Mx0 = c1Mv1 + c2Mv2

= c1v1 + c2(0.9)v2

x2 = Mx1 = c1Mv1 + c2(0.9)Mv2

= c1v1 + c2(0.9)2v2

In general we have

xk = c1v1 + c2(0.9)kv2, k = 0, 1, 2, . . . ,

that is
xk = 1.3

[
3
7

]
+ 4.1(0.9)k

[
1
−1

]
, k = 0, 1, 2, . . .
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As k →∞, (0.9)k → 0, and xk → 1.3v1, which is
[
3.9
9.1

]
. This indicates

that in the long term 390,000 are expected to live in the city, while
910,000 are expected to live in the suburbs.
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Example 6

Let A =
[
0.8 0.1
0.2 0.9

]
. We analyse the long-term behaviour of the dynamical

system defined by xk+1 = Axk , (k = 0, 1, 2, . . .), with x0 =
[
0.7
0.3

]
.

As in the previous example we find the eigenvalues and eigenvectors
of the matrix A.

0 = det
[
0.8− λ 0.1
0.2 0.9− λ

]

= (0.8− λ)(0.9− λ)− (0.1)(0.2)
= λ2 − 1.7λ+ 0.7
= (λ− 1)(λ− 0.7)
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So the eigenvalues are λ = 1 and λ = 0.7. Eigenvalues corresponding to
these eigenvalues are multiples of

v1 =
[
1
2

]
and v2 =

[
1
−1

]

respectively. The set {v1, v2} is clearly a basis for R2.

The next step is to write x0 in terms of v1 and v2.

There exist weights c1 and c2 such that

x0 = c1v1 + c2v2 =
[
v1 v2

] [c1
c2

]
(3)
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To find
[
c1
c2

]
we do the following row reduction:

[
1 1 0.7
2 −1 0.3

]
rref−−→

[
1 0 0.333
0 1 0.367

]

So
x0 = 0.333v1 + 0.367v2. (4)

We can now look at the long term behaviour of the system.
As in the previous example, since λ1 = 1 and λ2 = 0.7 we have

xk = c1v1 + c2(0.7)kv2, k = 0, 1, 2, . . . ,
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This gives

xk = 0.333
[
1
2

]
+ 0.367(0.7)k

[
1
−1

]
, k = 0, 1, 2, . . .

As k →∞, (0.7)k → 0, and xk → 0.333v1, which is
[
1/3
2/3

]
. This is the

steady state vector of the Markov chain described by A.
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Some Numerical Notes

Computer software such as Mathematica and Maple can use symbolic
calculation to find the characteristic polynomial of a moderate sized
matrix. There is no formula or finite algorithm to solve the
characteristic equation of a general n × n matrix for n ≥ 5.
The best numerical methods for finding eigenvalues avoid the
characteristic equation entirely. Several common algorithms for
estimating eigenvalues are based on the Theorem on Similar matrices.
Another technique, called Jacobi’s method works when A = AT and
computes a sequence of matrices of the form

A1 = A and Ak+1 = P−1
k AkPk , k = 1, 2, . . . .

Each matrix in the sequence is similar to A and has the same
eigenvalues as A. The non diagonal entries of Ak+1 tend to 0 as k
increases, and the diagonal entries tend to approach the eigenvalues
of A.
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