
Overview

Yesterday we studied how real 2× 2 matrices act on C. Just as the action
of a diagonal matrix on R2 is easy to understand (i.e., scaling each of the
basis vectors by the corresponding diagonal entry), the action of a matrix

of the form
[

a −b
b a

]
determines a composition of rotation and scaling.

We also saw that any 2× 2 matrix with complex eigenvalues is similar to
such a “standard" form.
Today we’ll return to the study of matrices with real eigenvalues, using
them to model discrete dynamical systems.

From Lay, §5.6
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The main ideas
In this section we will look at discrete linear dynamical systems. Dynamics
describe the evolution of a system over time, and a discrete system is one
where we sample the state of the system at intervals of time, as opposed
to studying its continuous behaviour. Finally, these systems are linear
because the change from one state to another is described by a vector
equation like

(∗) xk+1 = Axk .

where A is an n × n matrix and the xk ’s are vectors Rn.
You should look at the equation above as a recursive relation. Given an
initial vector x0 we obtain a sequence x0, x1, x2, . . . , .. where for every k the
vector xk+1 is obtained from the previous vector xk using the relation (∗).
We are generally interested in the long term behaviour of such a system.
The applications in Lay focus on ecological problems, but also apply to
problems in physics, engineering and many other scientific fields.
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Initial assumptions
We’ll start by describing the circumstances under which our techniques will
be effective:

The matrix A is diagonalisable.
A has n linearly independent eigenvectors v1, . . . , vn with
corresponding eigenvalues
λ1, . . . , λn.
The eigenvectors are arranged so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Since {v1, . . . , vn} is a basis for Rn, any initial vector x0 can be written

x0 = c1v1 + · · ·+ cnvn.

This eigenvector decomposition of x0 determines what happens to the
sequence {xk}.
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Since
x0 = c1v1 + · · ·+ cnvn,

we have

x1 = Ax0 = c1Av1 + · · ·+ cnAvn

= c1λ1v1 + · · ·+ cnλnvn

x2 = Ax1 = c1λ1Av1 + · · ·+ cnλnAvn

= c1(λ1)2v1 + · · ·+ cn(λn)2vn

and in general,
xk = c1(λ1)kv1 + · · ·+ cn(λn)kvn (1)

We are interested in what happens as k →∞.
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Predator - Prey Systems

Example
See Example 1, Section 5.6

The owl and wood rat populations at time k are described by xk =
[
Ok
Rk

]
,

where k is the time in months, Ok is the number of owls in the region
studied, and Rk is the number of rats (measured in thousands). Since owls
eat rats, we should expect the population of each species to affect the
future population of the other one.
The changes in theses populations can be described by the equations:

Ok+1 = (0.5)Ok + (0.4)Rk

Rk+1 = −p · Ok + (1.1)Rk

where p is a positive parameter to be specified.
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In matrix form this is
xk+1 =

[
0.5 0.4
−p 1.1

]
xk .

Example (Case 1)
p = 0.104

This gives A =
[

0.5 0.4
−0.104 1.1

]

According to the book, the eigenvalues for A are λ1 = 1.02 and λ2 = 0.58.
Corresponding eigenvectors are, for example,

v1 =
[
10
13

]
, v2 =

[
5
1

]
.
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An initial population x0 can be written as x0 = c1v1 + c2v2. Then for
k ≥ 0,

xk = c1(1.02)kv1 + c2(0.58)kv2

= c1(1.02)k
[
10
13

]
+ c2(0.58)k

[
5
1

]

As k →∞, (0.58)k → 0. Assume c1 > 0. Then for large k,

xk ≈ c1(1.02)k
[
10
13

]

and
xk+1 ≈ c1(1.02)k+1

[
10
13

]
≈ 1.02xk .
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The last approximation says that eventually both the population of rats
and the population of owls grow by a factor of almost 1.02 per month, a
2% growth rate.

The ratio 10 to 13 of the entries in xk remain the same, so for every 10
owls there are 13 thousand rats.

This example illustrates some general facts about a dynamical system
xk+1 = Axk when

|λ1| ≥ 1 and
1 > |λj | for j ≥ 2 and
v1 is an eigenvector associated with λ1.

If x0 = c1v1 + · · ·+ cnvn, with c1 6= 0, then for all sufficiently large k,

xk+1 ≈ λ1xk and xk ≈ c1(λ)kv1.
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Example (Case 2)
We consider the same system when p = 0.2 (so the predation rate is
higher than in the previous Example (1), where we had taken
p = 0.104 < 0.2). In this case the matrix A is

[
0.5 0.4
−0.2 1.1

]
.

Here
A− λI =

[
0.5− λ 0.4
−0.2 1.1− λ

]

and the characteristic equation is

0 = (0.5− λ)(1.1− λ) + (0.4)(0.2)
= 0.55− 1.6λ+ λ2 + 0.08
= λ2 − 1.6λ+ 0.63
= (λ− 0.9)(λ− 0.7)
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When λ = 0.9,

E0.9 = Nul
[
−0.4 0.4
−0.2 0.2

]
→ Nul

[
1 −1
0 0

]

and an eigenvector is v1 =
[
1
1

]
.

When λ = 0.7

E0.7 = Nul
[
−0.2 0.4
−0.2 0.4

]
→ Nul

[
1 −2
0 0

]

and an eigenvector is v2 =
[
2
1

]
.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 10 / 39

This gives

xk = c1(0.9)k
[
1
1

]
+ c2(0.7)k

[
2
1

]
→ 0,

as k →∞.
The higher predation rate cuts down the owls’ food supply, and in the long
term both populations die out.
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Example (Case 3)
We consider the same system again when p = 0.125. In this case the
matrix A is [

0.5 0.4
−0.125 1.1

]
.

Hence
A− λI =

[
0.5− λ 0.4
−0.125 1.1− λ

]

and the characteristic equation is

0 = (0.5− λ)(1.1− λ) + (0.4)(0.125)
= 0.55− 1.6λ+ λ2 + 0.05
= λ2 − 1.6λ+ 0.6
= (λ− 1)(λ− 0.6).
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When λ = 1,

E1 = Nul
[
−0.5 0.4
−0.125 0.1

]
→ Nul

[
1 −0.8
0 0

]

and an eigenvector is v1 =
[
0.8
1

]
.

When λ = 0.6

E0.6 = Nul
[
−0.1 0.4
−0.125 0.5

]
→ Nul

[
1 −4
0 0

]

and an eigenvector is v2 =
[
4
1

]
.
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This gives

xk = c1(1)k
[
0.8
1

]
+ c2(0.6)k

[
4
1

]
→ c1

[
0.8
1

]
,

as k →∞.
In this case the population reaches an equilibrium, where for every 8 owls
there are 10 thousand rats. The size of the population depends only on
the values of c1.
This equilibrium is not considered stable as small changes in the birth
rates or the predation rate can change the situation.
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Graphical Description of Solutions

When A is a 2× 2 matrix we can describe the evolution of a dynamical
system geometrically.
The equation xk+1 = Axk determines an infinite collection of equations.
Beginning with an initial vector x0, we have

x1 = Ax0

x2 = Ax1

x3 = Ax2
...

The set {x0, x1, x2, . . . } is called a trajectory of the system.
Note that xk = Akx0.
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Examples

Example 1

Let A =
[
0.5 0
0 0.8

]
. Plot the first five points in the trajectories with the

following initial vectors:

(a) x0 =
[
5
0

]
(b) x0 =

[
0
−5

]

(c) x0 =
[
4
4

]
(d) x0 =

[
−2
4

]

Notice that since A is already diagonal, the computations are much easier!
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(a) For x0 =
[
5
0

]
and A =

[
0.5 0
0 0.8

]
, we compute

x1 = Ax0 =
[
2.5
0

]
x2 = Ax1 =

[
1.25
0

]

x3 = Ax2 =
[
0.625
0

]
x4 = Ax3 =

[
0.3125

0

]

These points converge to the origin along the x -axis.

(Note that e1 =
[
1
0

]
is an eigenvector for the matrix).

(b) The situation is similar for the case x0 =
[
0
−5

]
, except that the

convergence is along the y -axis.
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(c) For the case x0 =
[
4
4

]
, we get

x1 = Ax0 =
[
2
3.2

]
x2 = Ax1 =

[
1

2.56

]

x3 = Ax2 =
[

0.5
2.048

]
x4 = Ax3 =

[
0.25

1.6384

]

These points also converge to the origin, but not along a direct line. The
trajectory is an arc that gets closer to the y -axis as it converges to the
origin.
The situation is similar for case (d) with convergence also toward the
y -axis.
In this example every trajectory converges to 0. The origin is called an
attractor for the system.
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We can understand why this happens when we consider the eigenvalues of

A: 0.8 and 0.5. These have corresponding eigenvectors
[
0
1

]
and

[
1
0

]
.

So, for an initial vector

x0 =
[
c1
c2

]
= c1

[
0
1

]
+ c2

[
1
0

]

we have
xk = Akx0 = c1(0.8)k

[
0
1

]
+ c2(0.5)k

[
1
0

]
.

Because both (0.8)k and (0.5)k approach zero as k gets large, xk
approaches 0 for any initial vector x0.

Because
[
0
1

]
is the eigenvector corresponding to the larger eigenvalue of

A, xk approaches a multiple of
[
0
1

]
as long as c1 6= 0.
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Graphical example
Dynamical system xk+1 = Axk, where

A =
[

.80 0

0 .64

]
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FIGURE 1 The origin as an attractor.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A5.6.01
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Example 2
Describe the trajectories of the dynamical system associated to the matrix

A =
[
1.7 −0.3
−1.2 0.8

]
.

The eigenvalues of A are 2 and 0.5, with corresponding eigenvectors

v1 =
[
−1
1

]
, v2 =

[
1
4

]
.

As above, the dynamical system xk+1 = Axk has solution

xk = 2kc1v1 + (.05)kc2v2

where c1, c2 are determined by x0.
Thus for x0 = v1, xk = 2kv1, and this is unbounded for large k, whereas
for x0 = v2, xk = (0.5)kv2 → 0.
In this example we see different behaviour in different directions. We
describe this by saying that the origin is a saddle point.
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Here are some trajectories with different starting points:

saddle

!"" #"" $""!!""!#""!$"""

!!""

!#""

!""

#""

If a starting point is closer to v2 it is initially attracted to the origin, and
when it gets closer to v1 it is repelled. If the initial point is closer to v1, it
is repelled.Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 22 / 39

Dynamical system xk+1 = Axk, where

A =
[
1.25 −.75

−.75 1.25

]
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FIGURE 4 The origin as a saddle point.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A5.6.04

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 23 / 39

Example 3
Describe the trajectories of the dynamical system associated to the matrix

A =
[
4 1
1 4

]
.

The characteristic polynomial for A is
(4− λ)2 − 1 = λ2 − 8λ+ 15 = (λ− 5)(λ− 3). Thus the eigenvalues are 5

and 3 and corresponding eigenvectors are
[
1
1

]
and

[
−1
1

]
.

Hence for any initial vector

x0 = c1

[
1
1

]
+ c2

[
−1
1

]

we have
xk = c15k

[
1
1

]
+ c23k

[
−1
1

]
.
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As k becomes large, so do both 5k and 3k . Hence xk tends away from the
origin.

Because the dominant eigenvalue 5 has corresponding eigenvector
[
1
1

]
, all

trajectories for which c1 6= 0 will end up in the first or third quadrant.
Trajectories for which c2 = 0 start and stay on the line y = x whose

direction vector is
[
1
1

]
. (They move away from 0 along this line, unless

x0 = 0).
Similarly, trajectories for which c1 = 0 start and stay on the line y = −x

whose direction vector is
[
−1
1

]
.

In this case 0 is called a repellor. This occurs whenever all eigenvalues
have modulus greater than 1.
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Dynamical system xk+1 = Axk, where

A =
[
1.44 0

0 1.2

]

x
1

x
2

FIGURE 2 The origin as a repellor.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A5.6.02
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Example 4
Describe the trajectories of the dynamical system associated to the matrix

A =
[

0.5 0.4
−0.125 1.1

]
. (This was the final matrix in the owl/rat examples

earlier.)

Here the eigenvalues 1 and 0.6 have associated eigenvectors v1 =
[
4
5

]
and

v2 =
[
4
1

]
. So we have

xk = c1v1 + 0.6kc2v2 .

As k →∞, we have xk approaching the fixed point c1v1.
This situation is unstable – a small change to the entries can have a major
effect on the behaviour.
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For example with A :=
[

0.5 0.4
(−0.125) 1.1

]

value eigenvalue eigenvalue behaviour

−0.125 1 0.6 xk → c1v1

−0.1249 1.0099 0.5990 saddle point

−0.1251 0.9899 0.6010 xk → 0

This example comes from a model of populations of a species of owl and
its prey (Lay 5.6.4). In spite of the model being very simplistic, the
ecological implications of instability are clear.
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Complex eigenvalues
What about trajectories in the complex situation?
Consider the matrices

(a) A =
[
0.5 −0.5
0.5 0.5

]
, eigenvalues λ = 1

2 + i 1
2 , λ = 1

2 − i 1
2

where |λ| = |λ| =
√

(1
2)2 + (1

2)2 =
√

1
2 = 1√

2 < 1.

(b) A =
[
0.2 −1.2
0.6 1.4

]
, eigenvalues λ = 4

5 + i 3
5 , λ = 4

5 − i 3
5

where |λ| = |λ| =
√

(4
5)2 + (3

5)2 =
√

16
25 + 9

25 =
√
1 = 1.

If we plot the trajectories beginning with x0 =
[
4
4

]
for the dynamical

system xk+1 = Axk , we get some interesting results.

In case (a) the trajectory spirals into the origin, whereas for (b) it appears
to follow an elliptical orbit.
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For matrices with complex eigenvalues we can summarise as follows:
if A is a real 2× 2 matrix with complex eigenvalues λ = a ± bi then the
trajectories of the dynamical system xk+1 = Axk

spiral inward if |λ| < 1 (0 is a spiral attractor),
spiral outward if |λ| > 1 (0 is a spiral repellor),
and lie on a closed orbit if |λ| = 1 (0 is a orbital centre).

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 30 / 39



x
3 x

2 x
1

x
3

x
2

x
1

x
1

x
2

x
0

x
0

x
3

x
2

x
1

x
0

FIGURE 5 Rotation associated with complex eigenvalues.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A5.6.05
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Some further examples

Example 5

Let A =
[
0.8 0.5
−0.1 1.0

]
.

Here the eigenvalues are 0.9± 0.2i , with eigenvectors
[
1∓ 2i

1

]
. As we

noted in Section 18, setting P =
[
1 2
1 0

]
, cosϕ = 0.9√

0.85
, sinϕ = 0.2√

0.85
,

P−1AP =
[
0.9 −0.2
0.2 0.9

]
=
√
0.85

[
cosϕ − sinϕ
sinϕ cosϕ

]

a scaling (approximately 0.92) and a rotation (through approximately 44◦).
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P−1AP is the matrix of TA with respect to the basis of the columns of P.
Note that the rotation is anticlockwise.
Here are the trajectories with respect to the original axes. They go
clockwise, indicated by det(P) < 0.

spiral

1.00 2.00 3.00 4.00!1.00!2.00!3.00!4.0000

!1.00

!2.00

!3.00

1.00

2.00

3.00
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Example 6
(Lay 5.6.18) In a herd of buffalo, there are adults, yearlings and calves. On
average 42 female calves are borne to every 100 adult females each year,
60% of the female calves survive to become yearlings, and 75% of the
female yearlings survive to become adults, and 95% of the adults survive
to the next year.

This information gives the following relation:



adults
year ..s
calves




k+1

=



0.95 0.75 0
0 0 0.60

0.42 0 0







adults
year ..s
calves




k

Assuming that there are sufficient adult males, what are the long term
prospects for the herd?
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Eigenvalues are approximately

1.1048,−0.0774± 0.4063i .

The complex eigenvalues have modulus approximately 0.4136.

Corresponding eigenvectors are approximately v1 =



100.0
20.65
38.0


, and a

complex conjugate pair v2, v3.
Thus in the complex setting

xk = 1.1048kc1v1 +(−0.0774 + 0.4063i)kc2v2
+(−0.0774− 0.4063i)kc3v3.
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The last two terms go to 0 as k →∞, so in the long term the population
of females is determined by the first term, which grows at about 10.5% a
year. The distribution of females is 100 adults to 21 yearlings to 38
calves.
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Survival of the Spotted Owls

In the introduction to this chapter the survival of the spotted owl
population is modelled by the system xk+1 = Axk where

xk =




jk
sk
ak


 and A =




0 0 0.33
0.18 0 0
0 0.71 0.94




where xk lists the numbers of females at time k in the juvenile, subadult
and adult life stages.
Computations give that the eigenvalues of A are approximately
λ1 = 0.98, λ2 = −0.02 + 0.21i , and λ3 = −0.02− 0.21i . All eigenvalues
are less than 1 in magnitude, since
|λ2|2 = |λ3|2 = (−0.02)2 + (0.21)2 = 0.0445.
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Denote corresponding eigenvectors by v1, v2, and v3. the general solution
of xk+1 = Axk has the form

xk = c1(λ1)kv1 + c2(λ2)kv2 + c3(λ3)kv3.

Since all three eigenvalues have magnitude less than 1, all the terms on
the right of this equation approach the zero vector. So the sequence xk
also approaches the zero vector.
So this model predicts that the spotted owls will eventually perish.
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However if the matrix describing the system looked like


0 0 0.33
0.3 0 0
0 0.71 0.94


 instead of




0 0 0.33
0.18 0 0
0 0.71 0.94




then the model would predict a slow growth in the owl population. The
real eigenvalue in this case is λ1 = 1.01, with |λ1| > 1.
The higher survival rate of the juvenile owls may happen in different areas
from the one in which the original model was observed.
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