Overview

Yesterday we studied how real 2 x 2 matrices act on C. Just as the action
of a diagonal matrix on R? is easy to understand (i.e., scaling each of the
basis vectors by the corresponding diagonal entry), the action of a matrix

b
We also saw that any 2 x 2 matrix with complex eigenvalues is similar to
such a “standard" form.

Today we'll return to the study of matrices with real eigenvalues, using
them to model discrete dynamical systems.

a , " . .
of the form [ ] determines a composition of rotation and scaling.

From Lay, §5.6
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The main ideas

In this section we will look at discrete linear dynamical systems. Dynamics
describe the evolution of a system over time, and a discrete system is one
where we sample the state of the system at intervals of time, as opposed
to studying its continuous behaviour. Finally, these systems are linear
because the change from one state to another is described by a vector
equation like

(*) Xp4+1 = AXk .

where A is an n X n matrix and the x,'s are vectors R”.
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The main ideas

In this section we will look at discrete linear dynamical systems. Dynamics
describe the evolution of a system over time, and a discrete system is one
where we sample the state of the system at intervals of time, as opposed
to studying its continuous behaviour. Finally, these systems are linear
because the change from one state to another is described by a vector
equation like

(*) Xp4+1 = AXk .
where A is an n X n matrix and the x,'s are vectors R”.

You should look at the equation above as a recursive relation. Given an
initial vector xp we obtain a sequence xg, X1, X2, . . ., .. where for every k the
vector x4 1 is obtained from the previous vector x, using the relation (x).
We are generally interested in the long term behaviour of such a system.

The applications in Lay focus on ecological problems, but also apply to
problems in physics, engineering and many other scientific fields.
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Initial assumptions

We'll start by describing the circumstances under which our techniques will

be effective:

@ The matrix A is diagonalisable.

@ A has n linearly independent eigenvectors vy, ..., v, with
corresponding eigenvalues
Adyeeey An

@ The eigenvectors are arranged so that [A1| > | A2 > -+ > |\,
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Initial assumptions

We'll start by describing the circumstances under which our techniques will

be effective:

@ The matrix A is diagonalisable.

@ A has n linearly independent eigenvectors vy, ..., v, with
corresponding eigenvalues
Alyeey Ap

@ The eigenvectors are arranged so that [A1| > | A2 > -+ > |\,

Since {v1,...,vp} is a basis for R", any initial vector x¢ can be written
X0 = C1V1 + - + CaVp.

This eigenvector decomposition of xg determines what happens to the
sequence {Xg}.
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Since
Xp = C1V1 + -+ + CpVp,

we have

X1 =Axg = Cc1Avi+ -+ c,Av,

= aMvi+:---+ G,
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Since
Xp = C1V1 + -+ + CpVp,

we have
X1 =Axg = Cc1Avi+ -+ c,Av,
= aMvi+:---+ G,
Xo = AX1 = C1)\1AV1 + -+ Cn)\,-,AVn

= C1(A1)2V1 + -+ C,,()\,,)zv,,

and in general,
xk = ca(A)Rve + - 4 cn(An)Kv,

We are interested in what happens as k — oo.
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Predator - Prey Systems

Example
See Example 1, Section 5.6

The owl and wood rat populations at time k are described by x, = lgk]
k

where k is the time in months, O is the number of owls in the region
studied, and Ry is the number of rats (measured in thousands). Since owls
eat rats, we should expect the population of each species to affect the
future population of the other one.

The changes in theses populations can be described by the equations:

Oks1 = (0.5)Ok + (0.4) Ry
Rk+1 = —pP- Ok ar (1.1)Rk

where p is a positive parameter to be specified.
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In matrix form this is
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. _ |05 04
L= 1_p 1.1
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In matrix form this is

o1 05 0.4 N
Example (Case 1)
p=0.104 J
o 05 04
This gives A = 0104 11

According to the book, the eigenvalues for A are Ay = 1.02 and A\ = 0.58.
Corresponding eigenvectors are, for example,

o[ [}
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An initial population xg can be written as xo = civ1 + cvo. Then for
k>0,

X, = C1(1.02)kV1+C2(0.58)kV2

10

— qquL3

+Qm%VE]
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An initial population xg can be written as xg = c1vi + cva. Then for
k>0,

X, = C1(1.02)kV1—|-C2(0.58)kV2
10 5
= 1(1.02) l13 + ¢(0.58)* H

As k — oo, (0.58)k — 0. Assume ¢; > 0. Then for large k,

10
xi ~ c1(1.02)k l”’]

and

10

X1 ~ c1(1.02)FF1 lB] ~ 1.02x.
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The last approximation says that eventually both the population of rats
and the population of owls grow by a factor of almost 1.02 per month, a
2% growth rate.

The ratio 10 to 13 of the entries in x4 remain the same, so for every 10
owls there are 13 thousand rats.
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The last approximation says that eventually both the population of rats
and the population of owls grow by a factor of almost 1.02 per month, a
2% growth rate.

The ratio 10 to 13 of the entries in x4 remain the same, so for every 10
owls there are 13 thousand rats.

This example illustrates some general facts about a dynamical system
Xk+1 = Ax, when

@ |\ >1 and
e 1> |\ for j > 2 and

@ vi is an eigenvector associated with A;.

If xo = c1v1 + - -+ + cpvp, with ¢ # 0, then for all sufficiently large k,

Xk+1 A A1xx  and X, & cl(/\)kvl.
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Example (Case 2)

We consider the same system when p = 0.2 (so the predation rate is
higher than in the previous Example (1), where we had taken
p = 0.104 < 0.2). In this case the matrix A is

05 04
—-0.2 1.1|°
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Example (Case 2)

We consider the same system when p = 0.2 (so the predation rate is

higher than in the previous Example (1), where we had taken
p = 0.104 < 0.2). In this case the matrix A is

05 04
—-0.2 1.1|°

Here

05—\ 0.4
A_’\’_[—o.z 1.1—)\]

and the characteristic equation is

0 = (0.5—X)(1.1—\)+(0.4)(0.2)
= 0.55—1.6\+ A2 +0.08
= N —1.6)\+0.63
= (A=0.9)(A—0.7)
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When X = 0.9,
—0.4 04 1 -1
Foo = Nul l—o.z 0.2] — Nul [o 0]

. . 1
and an eigenvector is vi = l ]

1
When A = 0.7

~02 0.4 1 -2
Fo7 = Nul l—o.z 0.41 — Nul [o 01

. _ H
and an eigenvector is vo = 1l
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This gives

Xy = C1(0.9)k

k12
1 —I—C2(0.7) |}] — 0,

as k — oo.
The higher predation rate cuts down the owls’ food supply, and in the long
term both populations die out.
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Example (Case 3)

We consider the same system again when p = 0.125. In this case the

matrix A is
0.5 0.4
—-0.125 1.1|°
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Example (Case 3)

We consider the same system again when p = 0.125. In this case the

matrix A is

0.5 0.4
—0.125 1.1|°

Hence

05—\ 04
A=A = l—o.125 1.1—)\]

and the characteristic equation is

0 = (0.5—))(1.1—X)+(0.4)(0.125)
= 0.55— 1.6\ +\>+0.05

= XN —16)A+06
= (A—1)(\—0.6).
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When A =1,
05 0.4 1 -0.8
Er = Nul l—0.125 0.1] — Nul lo 0 ]

. . [0.8]
and an eigenvector is vi = 1|
When A = 0.6

~01 04 1 -4
Foe = Nul [—0.125 0.51 — Nul lo 0]

. _ H
and an eigenvector is vo = 1l
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This gives

0.8

Xy = Cl(l)k 1

+C2(0.6)k 4 — C1 0.8 R
1 1
as k — oo.

In this case the population reaches an equilibrium, where for every 8 owls
there are 10 thousand rats. The size of the population depends only on
the values of ¢.

This equilibrium is not considered stable as small changes in the birth
rates or the predation rate can change the situation.
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Graphical Description of Solutions

When Ais a 2 x 2 matrix we can describe the evolution of a dynamical
system geometrically.

The equation xx4+1 = Axj determines an infinite collection of equations.
Beginning with an initial vector xg, we have

X1 = AXO
X2 = AX1
X3 = AX2

The set {xg, X1, X2, ...} is called a trajectory of the system.
Note that x, = AXxg.
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Examples

Example 1

05 0

Let A= 0 osl Plot the first five points in the trajectories with the

following initial vectors:

() x0 = [2] (b) %o = [_05]
(c) %0 = m (d) x0 = m

Notice that since A is already diagonal, the computations are much easier!
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5 05 0
(a) For xg = [O] and A= l 0 0.8]' we compute

X1 = Axg = [265] X2 = Axy = [1551

‘s = Axy = [0.225] e = Axg = [0.3325]

These points converge to the origin along the x-axis.

(Note that e; = lé] is an eigenvector for the matrix).
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5 05 0
(a) For xg = [O] and A= l 0 0.8]' we compute

X1 = Axg = [265] X2 = Axy = [1'55]

< = Axy — [0.%25] e = Axy — [0.3525]

These points converge to the origin along the x-axis.

(Note that e; = lé] is an eigenvector for the matrix).

(b) The situation is similar for the case x¢ = [_051 except that the

convergence is along the y-axis.
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(c) For the case xg = lﬂ , we get

2 1
X1 = AXO = |‘3 ;| X2 = AX1 = |‘2 56‘|

0.5 0.25
X3 = Axy = lz.ms} X4 = Axg = [1.63841

These points also converge to the origin, but not along a direct line. The
trajectory is an arc that gets closer to the y-axis as it converges to the
origin.
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(c) For the case xg = lﬂ , we get

2 1
X1 = Axo = l3.2} Xz = Ax1 = [2.56]

0.5 0.25
X3 = Axy = lz.ms} X4 = Axg = [1.63841

These points also converge to the origin, but not along a direct line. The
trajectory is an arc that gets closer to the y-axis as it converges to the
origin.

The situation is similar for case (d) with convergence also toward the
y-axis.
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(c) For the case xg = lﬂ , we get

2 1
X1 = Axo = l3.2] Xz = Ax1 = [2.56]

0.5 0.25
X3 = Axy = l2.048} X4 = Axg = [1.63841

These points also converge to the origin, but not along a direct line. The
trajectory is an arc that gets closer to the y-axis as it converges to the
origin.

The situation is similar for case (d) with convergence also toward the
y-axis.

In this example every trajectory converges to 0. The origin is called an
attractor for the system.
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We can understand why this happens when we consider the eigenvalues of

A: 0.8 and 0.5. These have corresponding eigenvectors [(1)] and lé}

So, for an initial vector

xo= | =c 0 +c 1
07 || ~ M1l T 0
we have
0 1
x, = Afxg = ¢1(0.8) . + (0.5)k M
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We can understand why this happens when we consider the eigenvalues of

A: 0.8 and 0.5. These have corresponding eigenvectors [(1)] and ll

)

+ 0(05) H .

So, for an initial vector

C1 0

1 + &

we have

Xk = AkXO = C1(0.8)k (lJ

Because both (0.8)% and (0.5)% approach zero as k gets large, xx
approaches 0 for any initial vector xg.

0

] |
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We can understand why this happens when we consider the eigenvalues of

A: 0.8 and 0.5. These have corresponding eigenvectors [ﬂ and [ﬂ
1
0

Ol L o (0.5)k H .

So, for an initial vector

C1 0

1 + &

we have

Xk = AkXO = C1(0.8)k 1

Because both (0.8)% and (0.5)% approach zero as k gets large, xx
approaches 0 for any initial vector xg.

0| . . . .
Because 1| s the eigenvector corresponding to the larger eigenvalue of

A, x, approaches a multiple of [ﬂ as long as ¢; # 0.
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Graphical example

Dynamical system X4 = AXg, where

80 0
Az[ 0 ,64:|

FIGURE 1 The origin as an attractor.
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Example 2
Describe the trajectories of the dynamical system associated to the matrix

1.7 03
A_[—I.Z 0.8 |

The eigenvalues of A are 2 and 0.5, with corresponding eigenvectors

-1 1
Vi=|q|:V27 |4

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 21 /39



Example 2

Describe the trajectories of the dynamical system associated to the matrix

-12 0.8

i [ 17 03]

The eigenvalues of

-1

Vi = 1

, V2 =

A are 2 and 0.5, with corresponding eigenvectors
1
al

As above, the dynamical system x,,1 = Ax, has solution

Xy = 2kC1V1 + (.05)kC2V2

where ¢y, ¢ are determined by xg.
Thus for xg = vi, X = 2Kvy, and this is unbounded for large k, whereas
for xg = vz, xx = (0.5)kvy — 0.
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Example 2

Describe the trajectories of the dynamical system associated to the matrix

-12 0.8

i [ 17 03]

The eigenvalues of

-1

Vi = 1

, V2 =

A are 2 and 0.5, with corresponding eigenvectors
1
al

As above, the dynamical system x,,1 = Ax, has solution

Xy = 2kC1V1 + (.05)kC2V2

where ¢y, ¢ are determined by xg.
Thus for xg = vi, X = 2Kvy, and this is unbounded for large k, whereas
for xg = vz, xx = (0.5)kvy — 0.

In this example we

see different behaviour in different directions. We

describe this by saying that the origin is a saddle point.
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Here are some trajectories with different starting points:

200
N
N 100 o/ o
oo
A
<
4
-300 -200 -100 . 100 200 300
<
-fpo =
PN A
<o
200 PN
saddle

If a starting point is closer to vy it is initially attracted to the origin, and

when it iets closer to vi it is reielled. If the initial point is closer to vy, it
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Dynamical system X1 = AXg, where

125 -5
A:[—.75 1.25]

FIGURE 4 The origin as a saddle point.
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Example 3
Describe the trajectories of the dynamical system associated to the matrix

4 1
A- [1 4] |
The characteristic polynomial for A is
(4—X)?—1=X2—-8)\+15= (A —5)(\ —3). Thus the eigenvalues are 5

and 3 and corresponding eigenvectors are E] and [_11]
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Example 3
Describe the trajectories of the dynamical system associated to the matrix

4 1
A- [1 4] |
The characteristic polynomial for A is
(4—X)?—1=X2—-8)\+15= (A —5)(\ —3). Thus the eigenvalues are 5

and 3 and corresponding eigenvectors are [ﬂ and [_111
-1
1
-1
k
+ C23 l 1 ] .

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 24 / 39

Hence for any initial vector

1
Xo = C1 1 + o

we have

Xy = C15k

1
1




As k becomes large, so do both 5% and 3. Hence x tends away from the
origin.
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As k becomes large, so do both 5% and 3. Hence x tends away from the
origin.

Because the dominant eigenvalue 5 has corresponding eigenvector , all

1
trajectories for which ¢; # 0 will end up in the first or third quadrant.
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As k becomes large, so do both 5 and 3. Hence x, tends away from the
origin.

Because the dominant eigenvalue 5 has corresponding eigenvector , all

1
trajectories for which ¢; # 0 will end up in the first or third quadrant.
Trajectories for which ¢ = 0 start and stay on the line y = x whose

direction vector is l

Xo = 0)

ﬂ . (They move away from 0 along this line, unless
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As k becomes large, so do both 5 and 3. Hence x, tends away from the
origin.

Because the dominant eigenvalue 5 has corresponding eigenvector , all

1
trajectories for which ¢; # 0 will end up in the first or third quadrant.
Trajectories for which ¢ = 0 start and stay on the line y = x whose
direction vector is l
Xp = 0)

Similarly, trajectories for which ¢; = 0 start and stay on the line y = —x

ﬂ . (They move away from 0 along this line, unless

. . -1
whose direction vector is 1|
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As k becomes large, so do both 5 and 3. Hence x, tends away from the
origin.

. . . . 1
Because the dominant eigenvalue 5 has corresponding eigenvector 1| all
trajectories for which ¢; # 0 will end up in the first or third quadrant.
Trajectories for which ¢ = 0 start and stay on the line y = x whose

1

direction vector is [1] (They move away from 0 along this line, unless
Xp = 0)
Similarly, trajectories for which ¢; = 0 start and stay on the line y = —x

. . -1
whose direction vector is 1|

In this case 0 is called a repellor. This occurs whenever all eigenvalues
have modulus greater than 1.
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Dynamical system x;4| = Ax, where

144 0
A=[ 0 1.2]

Ny

FIGURE 2 The origin as a repellor.
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Example 4

Describe the trajectories of the dynamical system associated to the matrix
05 04
A= [—0.125 1.1

earlier.)

1. (This was the final matrix in the owl/rat examples

4
Here the eigenvalues 1 and 0.6 have associated eigenvectors v; = [5] and

vy = [ﬂ . So we have

X, = C1V1 + 0.6kC2V2 .

As k — oo, we have xj approaching the fixed point cjv;.
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Example 4

Describe the trajectories of the dynamical system associated to the matrix
05 04
A= [—0.125 1.1

earlier.)

1. (This was the final matrix in the owl/rat examples

4
Here the eigenvalues 1 and 0.6 have associated eigenvectors v; = [5] and
4
vy = [11 So we have

X, = C1V1 + 0.6kC2V2 .

As k — oo, we have xj approaching the fixed point cjv;.
This situation is unstable — a small change to the entries can have a major
effect on the behaviour.
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05 04
(-0.125) 1.1

For example with A := [

value  eigenvalue eigenvalue  behaviour
—0.125 1 0.6 Xk — C1V1
—0.1249 1.0099 0.5990  saddle point

—0.1251  0.9899 0.6010 Xy — 0

This example comes from a model of populations of a species of owl and
its prey (Lay 5.6.4). In spite of the model being very simplistic, the
ecological implications of instability are clear.
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Complex eigenvalues

What about trajectories in the complex situation?
Consider the matrices

(a) A= [8? _0055] , eigenvalues A\ =1+, N=3-il
where |\| = m \[ f < 1.

(b) A= lgé _1142] , eigenvalues A = § + i%, A=E- ,'%
where |\ = [ = /57 + (57 = V& + 5 =vVi=1

4
If we plot the trajectories beginning with xo = LJ for the dynamical

system xx41 = Axy, we get some interesting results

In case (a) the trajectory spirals into the origin, whereas for (b) it appears

to follow an elliptical orbit.
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For matrices with complex eigenvalues we can summarise as follows:

if Ais a real 2 x 2 matrix with complex eigenvalues A = a £ bi then the

trajectories of the dynamical system xy41 = Axg
e spiral inward if [A\| <1 (0 is a spiral attractor),
e spiral outward if |[\| > 1 (0 is a spiral repellor),

@ and lie on a closed orbit if [A\| =1 (0 is a orbital centre).
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FIGURE 5 Rotation associated with complex eigenvalues.
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Some further examples

Example 5
0.8 0.5
Let A= l—o.l 1.0]'
. . . 1F2i
Here the eigenvalues are 0.9 + 0.2/, with eigenvectors 1| As we
1 2 0.9 0.2
noted in Section 18, setting P = , COS(Pp = ———, Sinp = ——,
& [1 0] YT Voss YT Voes

p-lap — 0.9 -0.2 N cosp —singp
0.2 09 T lsing  cosy

a scaling (approximately 0.92) and a rotation (through approximately 44°).
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P~LAP is the matrix of T4 with respect to the basis of the columns of P.
Note that the rotation is anticlockwise.

Here are the trajectories with respect to the original axes. They go
clockwise, indicated by det(P) < 0.

3.00% *
*
x
*
2.00
x
*
S0 e «
- ¢ °
.
*
S
. o Bk AR J
. o xX o * o
a % .
0 —-4.00 -3.00 -2.00g *1.00 . * * 100 2.00 * 3.00 4.00
- X . o
oox *
*
* o * * * "
LI * _ho - X o
. T a a o
.
R -2.00
.
B
- -3.00
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Example 6

(Lay 5.6.18) In a herd of buffalo, there are adults, yearlings and calves. On
average 42 female calves are borne to every 100 adult females each year,
60% of the female calves survive to become yearlings, and 75% of the
female yearlings survive to become adults, and 95% of the adults survive
to the next year.

This information gives the following relation:

adults 095 075 0 adults
year..s =10 0 0.60| |year..s
calves k41 042 0 0 calves

Assuming that there are sufficient adult males, what are the long term
prospects for the herd?
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Eigenvalues are approximately
1.1048, —0.0774 4 0.4063..

The complex eigenvalues have modulus approximately 0.4136.
100.0

Corresponding eigenvectors are approximately v = [20.65|, and a
38.0

complex conjugate pair va, vs.

Thus in the complex setting

Xk = 1.1048%civ;  +(—0.0774 + 0.4063/) vy
+(—0.0774 — 0.4063/)* c3vs.
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The last two terms go to 0 as k — oo, so in the long term the population
of females is determined by the first term, which grows at about 10.5% a
year. The distribution of females is 100 adults to 21 yearlings to 38
calves. O
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Survival of the Spotted Owls

In the introduction to this chapter the survival of the spotted owl
population is modelled by the system x,11 = Axx where

Jk 0 0 0.33
X = | sk and A= 1018 O 0
ak 0 071 0.94

where x lists the numbers of females at time k in the juvenile, subadult
and adult life stages.

Computations give that the eigenvalues of A are approximately

A1 =0.98, A\ = —0.02 4+ 0.21/, and A3 = —0.02 — 0.21i. All eigenvalues
are less than 1 in magnitude, since

A2/ = |A3]? = (—0.02)% + (0.21)% = 0.0445.
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Denote corresponding eigenvectors by vy, vy, and vs. the general solution
of xx+1 = Axk has the form

xk = c1(A1)Fv1 + ca(A2) o + c3(A3)Fvs.

Since all three eigenvalues have magnitude less than 1, all the terms on
the right of this equation approach the zero vector. So the sequence x
also approaches the zero vector.

So this model predicts that the spotted owls will eventually perish.
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However if the matrix describing the system looked like

0 0 0.33 0 0 0.33
03 0 0 instead of 018 O 0
0 071 094 0 071 0.94

then the model would predict a slow growth in the owl population. The
real eigenvalue in this case is \; = 1.01, with || > 1.

The higher survival rate of the juvenile owls may happen in different areas
from the one in which the original model was observed.
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