
Overview

Last time we studied the evolution of a discrete linear dynamical system,
and today we begin the final topic of the course (loosely speaking).
Today we’ll recall the definition and properties of the dot product. In the
next two weeks we’ll try to answer the following questions:

Question
What is the relationship between diagonalisable matrices and vector
projection? How can we use this to study linear systems without exact
solutions?

From Lay, §6.1, 6.2
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Motivation for the inner product

A linear system Ax = b that arises from experimental data often has
no solution. Sometimes an acceptable substitute for a solution is a
vector x̂ that makes the distance between Ax̂ and b as small as
possible (you can see this x̂ as a good approximation of an actual
solution). As the definition for distance involves a sum of squares, the
desired x̂ is called a least squares solution.
Just as the dot product on Rn helps us understand the geometry of
Euclidean space with tools to detect angles and distances, the inner
product can be used to understand the geometry of abstract vector
spaces.

In this section we begin the development of the concepts of orthogonality
and orthogonal projections; these will play an important role in finding x̂.
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Recall the definition of the dot product:

Definition

The dot (or scalar or inner) product of two vectors u =




u1
...

un


 , v =




v1
...

vn


 in

Rn is the scalar

(u, v) = u·v = uT v

=
[
u1 · · · un

]



v1
...

vn


 = u1v1 + · · ·+ unvn .

The following properties are immediate:
(a) u·v = v·u
(b) u·(v + w) = u·v + u·w
(c) k(u·v) = (ku)·v = u·(kv), k ∈ R
(d) u·u ≥ 0, u·u = 0 if and only if u = 0.
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Example 1
Consider the vectors

u =




1
3
−2
4


 , v =




−1
0
3
−2




Then

u·v = uT v

=
[
1 3 −2 4

]



−1
0
3
−2




= (1)(−1) + (3)(0) + (−2)(3) + (4)(−2)
= −15
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The length of a vector

For vectors in R3, the dot product recovers the length of the vector:

‖u‖ =
√

u·u =
√

u2
1 + u2

2 + u2
3 .

We can use the dot product to define the length of a vector in an arbitrary
Euclidean space.

Definition
For u ∈ Rn, the length of u is

‖u‖ =
√

u·u =
√

u2
1 + · · ·+ u2n.

It follows that for any scalar c, the length of cv is |c| times the length of v:

‖cv‖ = |c|‖v‖.
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Unit Vectors
A vector whose length is 1 is called a unit vector
If v is a non-zero vector, then

u = v
‖v‖

is a unit vector in the direction of v. To see this, compute

||u||2 = u · u
= v
‖v‖ ·

v
‖v‖

= 1
||v||2 v · v

= 1
||v||2 ||v||

2

= 1 (1)

Replacing v by the unit vector v
||v|| is called normalising v.
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Example 2

Find the length of u =




1
−3
0
2


 .

||u|| =
√

u · u =

√√√√√√√√







1
−3
0
2


 ·




1
−3
0
2





 =

√
1 + 9 + 4 =

√
14.
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Orthogonal vectors

The concept of perpendicularity is fundamental to geometry. The dot
product generalises the idea of perpendicularity to vectors in Rn.

Definition
The vectors u and v are orthogonal to each other if u·v = 0.

Since 0·v = 0 for every vector v in Rn, the zero vector is orthogonal to
every vector.
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Orthogonal complements
Definition
Suppose W is a subspace of Rn. If the vector z is orthogonal to every w in
W , then z is orthogonal to W .

Example 3

The vector




0
0
1


 is orthogonal to W = Span








1
−1
0


 ,




1
1
0







.

Example 4

We can also see that




1
0
0
0


 is orthogonal to Nul

[
1 1 1 1
0 1 1 1

]
.
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Definition
The set of all vectors x that are orthogonal to W is called the orthogonal
complement of W and is denoted by W ⊥.

W ⊥ = {x ∈ Rn | x · y = 0 for all y ∈W }

From the basic properties of the inner product it follows that
A vector x is in W ⊥ if and only if x is orthogonal to every vector in a
set that spans W .
W ⊥ is a subspace
W ∩W ⊥ = 0 since 0 is the only vector orthogonal to itself.
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Example 5

Let W = Span







1
2
−1







. Find a basis for W ⊥, the orthogonal

complement of W .

W ⊥ consists of all the vectors




x
y
z


for which



1
2
−1


 ·




x
y
z


 = 0.

For this we must have x + 2y − z = 0, which gives x = −2y + z .
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Thus 


x
y
z


 =



−2y + z

y
z


 = y



−2
1
0


 + z



1
0
1


 .

So a basis for W ⊥ is given by






−2
1
0


 ,



1
0
1








.

Since W = Span







1
2
−1







, we can check that every vector in W ⊥ is

orthogonal to every vector in W .
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Example 6

Let V = Span








1
3
3
1


 ,




3
−1
−1
3







. Find a basis for V ⊥.

V ⊥ consists of all the vectors




a
b
c
d


 in R4 that satisfy the two conditions




a
b
c
d


 ·




1
3
3
1


 = 0 and




a
b
c
d


 ·




3
−1
−1
3


 = 0
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This gives a homogeneous system of two equations in four variables:
a +3b +3c +d = 0

3a −b −c +3d = 0
Row reducing the augmented matrix we get

[
1 3 3 1 0
3 −1 −1 3 0

]
→

[
1 0 0 1 0
0 1 1 0 0

]

So c and d are free variables and the general solution is



a
b
c
d


 =




−d
−c
c
d


 = d




−1
0
0
1


 + c




0
−1
1
0




The two vectors in the parametrisation above are linearly independent, so
a basis for V ⊥ is 







−1
0
0
1


 ,




0
−1
1
0
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Notice that in the previous example (and also in the one before it) we
found the orthogonal complement as the null space of a matrix.
We have

V ⊥ = Nul A

where
A =

[
1 3 3 1
3 −1 −1 3

]

is the matrix whose ROWS are the transpose of the column vectors in the
spanning set for V .
To find a basis for the null space of this matrix we just proceeded as usual
by bringing the augmented matrix for Ax = 0 to reduced row echelon form.
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Theorem
Let A be an m × n matrix.

The orthogonal complement of the row space of A is the null space of A.
The orthogonal complement of the column space of A is the null space of
AT .

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT .

(Remember, Row A is the span of the rows of A.)
Proof The calculation for computing Ax (multiply each row of A by the
column vector x) shows that if x is in Nul A, then x is orthogonal to each
row of A. Since the rows of A span the row space, x is orthogonal to every
vector in RowA.
Conversely, if x is orthogonal to Row A, then x is orthogonal to each row
of A, and hence Ax = 0.
The second statement follows since Row AT = Col A.
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Example 7

Let A =
[
1 0 −1
2 0 −2

]
.

Then Row A = Span







1
0
−1







.

Nul A = Span







1
0
1


 ,



0
1
0








Hence (Row A)⊥ = Nul A.
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Recall A =
[
1 0 −1
2 0 −2

]
.

Col A = Span
{[

1
2

]}
.

Nul AT = Span
{[
−2
1

]}
.

Clearly, (Col A)⊥ = Nul AT .
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An important consequence of the previous theorem.
Theorem
If W is a subspace of Rn , then dimW + dimW ⊥ = n

Choose vectors w1, w2, . . . , wp such that W = Span{w1, . . . , wp}. Let

A =




wT
1

wT
2
...

wT
p




be the matrix whose rows are wT
1 , . . . , wT

p .
Then W = RowA and W ⊥ = (RowA)⊥ = Nul A. Thus

dimW = dim(RowA) = RankA
dimW ⊥ = dim(Nul A)

and the Rank Theorem implies
dimW + dimW ⊥ = RankA + dim(Nul A) = n
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Example 8

Let W = Span







1
4
3








. Describe W ⊥.

We see first that dimW = 1 and W is a line through the origin in R3.
Since we must have dimW + dimW ⊥ = 3, we can then deduce that
dimW ⊥ = 2: W ⊥ is a plane through the origin.
In fact, W ⊥ is the set of all solutions to the homogeneous equation
coming from this equation:




x
y
z


 ·



1
4
3


 = 0.

That is,
x + 4y + 3z = 0 .

We recognise this as the equation of the plane through the origin in R3

with normal vector 〈1, 4, 3〉 = w.
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Basis Theorem

Theorem
If B = {b1, . . . , bm} is a basis for W and C = {c1, . . . , cr} is a basis for
W ⊥, then {b1, . . . , bm, c1, . . . , cr} is a basis for Rm+r .

It follows that if W is a subspace of Rn, then for any vector v, we can write

v = w + u,

where w ∈W and u ∈W ⊥.
If W is the span of a nonzero vector in R3, then w is just the vector
projection of v onto this spanning vector.
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Example 9

Let W = Span








1
1
0
1


 ,




1
1
1
0







. Decompose v =




2
1
1
3


 as a sum of vectors in

W and W ⊥.

To start, we find a basis for W ⊥ and then write v in terms of the bases for
W and W ⊥.
We’re given a basis for W in the problem, and

W ⊥ = Span








1
−1
0
0


 ,




1
0
−1
−1








Therefore v = 2







1
1
0
1





 +







1
−1
0
0


−




1
0
−1
−1





 =




2
2
0
2


 +




0
−1
1
1


.
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