
Overview

Last time
we defined the dot product on Rn;
we recalled that the word “orthogonal" describes a relationship
between two vectors in Rn;
we extended the definition of the word “orthogonal" to describe a
relationship between a vector and a subspace;
we defined the orthogonal complement W⊥ of the the subspace W to
be the subspace consisting of all the vectors orthogonal to W .

Today we’ll extend the definition of the word “orthogonal" yet again. We’ll
also see how orthogonality can determine a particularly useful basis for a
vector space.

From Lay, §6.2
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Definition of an orthogonal set

Definition
A set S ⊂ Rn is orthogonal if its elements are pairwise orthogonal.

Example 1
Let U = {u1, u2, u3} where

u1 =




3
−2
1
3


 , u2 =




−1
3
−3
4


 , u3 =




3
8
7
0


 .

To show that U is an orthogonal set we need to show that
u1·u2 = 0, u1·u3 = 0 and u2·u3 = 0.
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Example 2
The set {w1, w2, w3} where

w1 =




5
−4
0
3


 , w2 =




−4
1
−3
8


 , w3 =




3
3
5
−1




is not an orthogonal set.

We note that w1·w2 = 0, w1·w3 = 0 but w2·w3 = −32 6= 0.
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Theorem (1)
If S = {v1, v2, . . . , vk} is an orthogonal set of nonzero vectors in Rn,

then S is a linearly independent set, and hence is a basis for the subspace
spanned by S.

Proof:
Suppose that c1, c2, . . . , ck are scalars such that

c1v1 + · · ·+ ckvk = 0.

Then

0 = 0·v1 = (c1v1 + · · ·+ ckvk)·v1

= c1(v1·v1) + c2(v2·v1) + · · ·+ ck(vk ·v1)
= c1(v1·v1)

since v1 is orthogonal to v2, . . . , vk .
Since v1 is nonzero, v1·v1, and so c1 = 0.
A similar argument shows that c2, . . . , ck must be zero.
Thus S is linearly independent.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 4 / 21

Definition
An orthogonal basis for a subspace W of Rn is a basis of W that is an
orthogonal set.
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Example 3

Given




1
2
1
0


 ,




1
−1
1
3


 ,




2
−1
0
−1


, find a nonzero vector x =




a
b
c
d


 so that the four

vectors form an orthogonal set.

We are looking for a vector that satisfies the three conditions



a
b
c
d


 ·




1
2
1
0


 = 0,




a
b
c
d


 ·




1
−1
1
3


 = 0,




a
b
c
d


 ·




2
−1
0
−1


 = 0

This gives a homogeneous system of three equations in the four variables
a, b, c, d , which reduces the problem to one we already know how to solve.
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We solve the system

a +2b +c = 0
a − b +c +3d = 0
2a − b − d = 0.

The coefficient matrix of this system is

A =



1 2 1 0
1 −1 1 3
2 −1 0 −1




the matrix whose rows are the transpose of the given vectors and the
orthogonality condition is indeed Ax = 0 (which gives the above system).
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Row reducing the augmented matrix of this system we get

[A|0] =




1 2 1 0 0
1 −1 1 3 0
2 −1 0 −1 0


 rref−−→




1 0 0 −1 0
0 1 0 −1 0
0 0 1 3 0




Thus d is free, and a = b = d , c = −3d .

So the general solution to the system is x = d




1
1
−3
1


 and every choice of

d 6= 0 gives a vector as required. For example taking d = 1 we get the
orthogonal set 







1
2
1
0


 ,




1
−1
1
3


 ,




2
−1
0
−1


 ,




1
1
−3
1








This is an orthogonal basis for R4.
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An advantage of working with an orthogonal basis is that the coordinates
of a vector with respect to that basis are easily determined.

Theorem (2)
Let {v1, . . . , vk} be an orthogonal basis for a subspace W of Rn, and let

w be any vector in W . Then the unique scalars c1, . . . , ck such that

w = c1v1 + · · ·+ ckvk

are given by
ci = w·vi

vi ·vi
for i = 1, . . . , k.
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Proof Since {v1, . . . , vk} is a basis for W , we know that there are unique
scalars c1, c2, . . . , ck such that w = c1v1 + · · ·+ ckvk .
To solve for c1, we take the dot product of this linear combination with vi :

w·v1 = (c1v1 + · · ·+ ckvk)·v1

= c1(v1·v1) + · · ·+ ci(vi ·v1) + · · ·+ ck(vk ·v1)
= c1(v1·v1)

since vj ·v1 = 0 for j 6= 1.
Since v1 6= 0, v1·v1 6= 0. Dividing by v1·v1, we obtain the desired result

c1 = w·v1
v1·v1

.

Similar results follow for c = 2, . . . , k.
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Example 4
Consider the orthogonal basis for R3:

U =







3
−3
0


 ,



2
2
−1


 ,



1
1
4








.

Express x =



4
2
−1


 in U coordinates.

First, check that U really is an orthogonal basis for R3:

u1·u2 = u1·u3 = u2·u3 = 0.

Hence the set {u1, u2, u3} is an orthogonal set, and since none of the
vectors is the zero vector, the set is linearly independen a basis for R3.
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Recall from Theorem (2) that the ui coordinate of x is given by x·vi
vi ·vi

. We
compute

x·u1 = 6, x·u2 = 13, x·u3 = 2,

u1·u1 = 18, u2·u2 = 9, u3·u3 = 18.

Hence

x = x·u1
u1·u1

u1 + x·u2
u2·u2

u2 + x·u3
u3·u3

u3

= 6
18u1 + 13

9 u2 + 2
18u3

= 1
3u1 + 13

9 u2 + 1
9u3.

So x =




1
3

13
9

1
9



U

.
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Finally, note that if P =
[
u1 u2 u3

]
=



3 2 1
−3 2 1
0 −1 4


, then

PT P =



18 0 0
0 9 0
0 0 18


 .

The diagonal form is because the vectors form an orthogonal set, diagonal
entries are the squares of the lengths of the vectors.
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Orthonormal sets

Definition
A set {u1, u2, . . . , up} in Rn is an orthonormal set if it is an orthogonal set
of unit vectors.

The simplest example of an orthonormal set is the standard basis
{e1, e2, . . . , en} for Rn.
When the vectors in an orthogonal set of nonzero vectors are normalised
to have unit length, the new vectors will still be orthogonal, and hence the
new set will be an orthonormal set.
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Recall that in the last example, when P was a matrix with orthogonal
columns, PT P was diagonal. When the columns of a matrix are vectors in
an orthonormal set, the situation is even nicer:
Suppose that {u1, u2, u3} is an orthonormal set in R3 and
U =

[
u1 u2 u3

]
. Then

UT U =




uT
1

uT
2

uT
3




[
u1 u2 u3

]
=




uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3


 .

Hence

UT U =



1 0 0
0 1 0
0 0 1


 .

Since U is a square matrix, the relation UT U = I implies that UT = U−1

and thus we also have UUT = I .
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In fact,

A square matrix U has orthonormal columns if and only if U is invertible
with U−1 = UT .

Definition
A square matrix U which is invertible and such that U−1 = UT is called
an orthogonal matrix.

It follows from the result above that an orthogonal matrix is a square
matrix whose columns form an orthonormal set (not just an orthogonal
set as the name might suggest).
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More generally, we have the following result:

Theorem (3)
An m × n matrix U has orthonormal columns if and only if UT U = I.

We also have the following theorem

Theorem (4)
Let U be an m × n matrix with orthonormal columns, and let x and y be
vectors in Rn. Then
(1) ‖Ux‖ = ‖x‖.
(2) (Ux)·(Uy) = x·y.
(3) (Ux)·(Uy) = 0 if and only if x·y = 0.

Properties (1) and (3) say that if U has orthonormal columns then the
linear transformation x→ Ux (from Rn to Rm) preserves lengths and
orthogonality.
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Examples
Example 5
The 4× 3 matrix

A =




1 1 2
2 −1 −1
1 1 0
0 3 −1




has orthogonal columns and AT A equals



1 2 1 0
1 −1 1 3
2 −1 0 −1







1 1 2
2 −1 −1
1 1 0
0 3 −1


 =



6 0 0
0 12 0
0 0 6


 .

Note that here the rows of A are NOT orthogonal. For example, if we take
the dot product of the first two rows we get

〈1, 1, 2〉 · 〈2,−1,−1〉 = 2− 1− 2 = −1 6= 0 .
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Now consider the new matrix where each column of A is normalised:

B =




1/
√
6 1/

√
12 2/

√
6

2/
√
6 −1/

√
12 −1/

√
6

1/
√
6 1/

√
12 0

0 3/
√
12 −1/

√
6


 .

Then

BT B =



1 0 0
0 1 0
0 0 1


 .
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Example 6
Determine a, b, c such that




a 1√
2 − 1√

2
b 1√

6
1√
6

c 1√
3

1√
3




is an orthogonal matrix.
The given 2nd and 3rd columns are orthonormal.
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So we need to satisfy:
(1) a2 + b2 + c2 = 1,
(2) a/

√
2 + b/

√
6 + c/

√
3 = 0 which is equivalent to
√
3a + b +

√
2c = 0

(3) −a/
√
2 + b/

√
6 + c/

√
3 = 0 which is equivalent to

−
√
3a + b +

√
2c = 0.

From (2) and (3) we get a = 0, b = −
√
2c.

Substituting in (1) we get 2c2 + c2 = 1 that is c2 = 1
3 which gives

c = ± 1√
3 . Thus possible 1st columns are ±




0
−
√

2√
3

1√
3


 (there are only two

possibilities).
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