
Overview

Last time we introduced the notion of an orthonormal basis for a subspace.
We also saw that if a square matrix U has orthonormal columns, then U is
invertible and U−1 = UT . Such a matrix is called an orthogonal matrix.
At the beginning of the course we developed a formula for computing the
projection of one vector onto another in R2 or R3. Today we’ll generalise
this notion to higher dimensions.

From Lay, §6.3
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Review
Recall from Stewart that if u 6= 0 and y are vectors in Rn, then

projuy = y·u
u·uu is the orthogonal projection of y onto u.

(Lay uses the notation “ ŷ ” for this projection, where u is understood.)
How would you describe the vector projuy in words?
One possible answer:

y can be written as the sum of a vector parallel to u and a vector
orthogonal to u; projuy is the summand parallel to u.

Or alternatively,
y can be written as the sum of a vector in the line spanned by u
and a vector orthogonal to u; projuy is the summand in Span{u}.

We’d like to generalise this, replacing Span{u} by an arbitrary subspace:
Given y and a subspace W in Rn, we’d like to write y as a sum of a vector
in W and a vector in W⊥.
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Example 1
Suppose that {u1, u2, u3} is an orthogonal basis for R3 and let
W = Span {u1, u2}. Write y as the sum of a vector ŷ in W and a vector z
in W⊥.

EXAMPLE: Suppose u1,u2,u3 is an orthogonal basis for R
3

and let W =Spanu1,u2. Write y in R
3 as the sum of a vector


y

in W and a vector z in W.

u10

u2

y

y
ˆ

W

W¶

z

2
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Recall that for any orthogonal basis, we have

y = y·u1
u1·u1

u1 + y·u2
u2·u2

u2 + y·u3
u3·u3

u3.

It follows that
ŷ = y·u1

u1·u1
u1 + y·u2

u2·u2
u2

and
z = y·u3

u3·u3
u3.

Since u3 is orthogonal to u1 and u2, its scalar multiples are orthogonal to
Span{u1, u2}. Therefore z ∈W⊥

All this can be generalised to any vector y and subspace W of Rn, as we
will see next.
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The Orthogonal Decomposition Theorem
Theorem
Let W be a subspace in Rn. Then each y ∈ Rn can be written uniquely in
the form

y = ŷ + z (1)

where ŷ ∈W and z ∈W⊥.
If {u1, . . . , up} is any orthogonal basis of W , then

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up (2)

The vector ŷ is called the orthogonal projection of y onto W .

Note that it follows from this theorem that to calculate the decomposition
y = ŷ + z, it is enough to know one orthogonal basis for W explicitly. Any
orthogonal basis will do, and all orthogonal bases will give the same
decomposition y = ŷ + z.
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Example 2
Given

u1 =




1
1
0
−1


 , u2 =




1
0
1
1


 , u3 =




0
−1
1
−1




let W be the subspace of R4 spanned by {u1, u2, u3}.

Write y =




2
−3
4
1


 as the sum of a vector in W and a vector orthogonal to

W .
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The orthogonal projection of y onto W is given by

ŷ = y·u1
u1·u1

u1 + y·u2
u2·u2

u2 + y·u3
u3·u3

u3

= −2
3




1
1
0
−1


+ 7

3




1
0
1
1


+ 6

3




0
−1
1
−1




= 1
3




5
−8
13
3




Also

z = y− ŷ =




2
−3
4
1


−

1
3




5
−8
13
3


 = 1

3




1
−1
−1
0



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Thus the desired decomposition of y is

y = ŷ + z


2
−3
4
1


 = 1

3




5
−8
13
3


+ 1

3




1
−1
−1
0


 .

The Orthogonal Decomposition Theorem ensures that z = y− ŷ is in W⊥.
However, verifying this is a good check against computational mistakes.
This problem was made easier by the fact that {u1, u2, u3} is an
orthogonal basis for W . If you were given an arbitrary basis for W instead
of an orthogonal basis, what would you do?
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Theorem (The Best Approximation Theorem)
Let W be a subspace of Rn, y any vector in Rn, and ŷ the orthogonal
projection of y onto W . Then ŷ is the closest vector in W to y, in the
sense that

‖y− ŷ‖ < ‖y− v‖ (3)

for all v in W , v 6= ŷ.

W
0

y

ŷ

||y - ŷ||

v||ŷ - v||

||y - v||
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Proof
Let v be any vector in W , v 6= ŷ. Then ŷ− v ∈W . By the Orthogonal
Decomposition Theorem, y− ŷ is orthogonal to W . In particular y− ŷ is
orthogonal to ŷ− v. Since

y− v = (y− ŷ) + (ŷ− v)

the Pythagorean Theorem gives

‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2.

Hence ‖y− v‖2 > ‖y− ŷ‖2.
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We can now define the distance from a vector y to a subspace W of Rn.

Definition
Let W be a subspace of Rn and let y be a vector in Rn. The distance
from y to W is

||y− ŷ||
where ŷ is the orthogonal projection of y onto W .
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Example 3
Consider the vectors

y =




3
−1
1
13


 , u1 =




1
−2
−1
2


 , u2 =




−4
1
0
3


 .

Find the closest vector to y in W = Span {u1, u2}.

ŷ = y·u1
u1·u1

u1 + y·u2
u2·u2

u2

= 30
10




1
−2
−1
2


+ 26

26




−4
1
0
3


 =




−1
−5
−3
9


 .

Therefore the distance from y to W is ||




3
−1
1
13


−




−1
−5
−3
9


 || = ||




4
4
4
4


 || = 8.
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Theorem
If {u1, u2, . . . , up} is an orthonormal basis for a subspace W of Rn, then
for all y in Rn we have

projW y = (y·u1)u1 + (y·u2)u2 + · · ·+ (y·up)up.

This theorem is an easy consequence of the usual projection formula:

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up.

When each ui is a unit vector, the denominators are all equal to 1.

Theorem
If {u1, u2, . . . , up} is an orthonormal basis for W and
U =

[
u1 u2 . . . up

]
, then for all y in Rn we have

projW y = UUT y . (4)

The proof is a matrix calculation; see the posted slides for details.
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Note that if U is a n × p matrix with orthonormal columns, then we have
UT U = Ip (see Lay, Theorem 6 in Chapter 6). Thus we have

UT Ux = Ipx = x for every x in Rp

UUT y = projW y for every y in Rn, where W = Col U.

Note: Pay attention to the sizes of the matrices involved here. Since U is
n× p we have that UT is p × n. Thus UT U is a p × p matrix, while UUT

is an n × n matrix.
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The previous theorem shows that the function which sends x to its
orthogonal projection onto W is a linear transformation. The kernel of this
transformation is ...
...the set of all vectors orthogonal to W , i.e., W⊥.
The range is W itself.
The theorem also gives us a convenient way to find the closest vector to x
in W : find an orthonormal basis for W and let U be the matrix whose
columns are these basis vectors. Then mutitply x by UUT .
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Examples

Example 4

Let W = Span







2
1
2


 ,



−2
2
1








and let x =



4
8
1


. What is the closest

vector to x in W ?

Set u1 =



2/3
1/3
2/3


 , u2 =



−2/3
2/3
1/3


,

U =



2/3 −2/3
1/3 2/3
2/3 1/3


 .
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We check that UT U =
[
1 0
0 1

]
, so U has orthonormal columns.

The closest vector is

projW x = UUT x = 1
9



8 −2 2
−2 5 4
2 4 5






4
8
1


 =



2
4
5


 .

We can also compute distance from x to W :

‖x− projW x‖ = ‖



4
8
1


−



2
4
5


 ‖ = ‖



2
4
−4


 ‖ = 6.
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Because this example is about vectors in R3, so we could also use cross
products:



2
1
2


×



−2
2
1


 =

∣∣∣∣∣∣∣

i j k
2 1 2
−2 2 1

∣∣∣∣∣∣∣
= −3i− 6j + 6k = n

gives a vector orthogonal to W , so the distance is the length of the
projection of x onto n:



4
8
1


 ·



−1/3
−2/3
2/3


 = −6 ,

and the closest vector is


4
8
1


+ 6



−1/3
−2/3
2/3


 =



2
4
5


 .
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This example showed that the standard matrix for projection to

W = Span







2
1
2


 ,



−2
2
1








is 1
9



8 −2 2
−2 5 4
2 4 5


.

If we instead work with B =







2
1
2


 ,



−2
2
1


 ,



−1
−2
2








coordinates, what is

the orthogonal projection matrix?
Observe that the three basis vectors were chosen very carefully: b1 and b2
span W , and b3 is orthogonal to W . Thus each of the basis vectors is an
eigenvector for the linear transformation. (Why?)
The linear transformation is represented by a diagonal matrix when it’s

written in terms of an eigenbasis. Thus we get the matrix



1 0 0
0 1 0
0 0 0


.

What does this tell you about orthogonal projection matrices in general?
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Example 5



1
0
1
0


 ,




1
1
−1
−1


 are orthogonal and span a subspace W of R4. Find a vector

orthogonal to W .

Normalize the columns and set

U =




1/
√
2 1/2

0 1/2
1/
√
2 −1/2

0 −1/2


 .
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Then the standard matrix for the orthogonal projection is has matrix

UUT = 1
4




3 1 1 −1
1 1 −1 −1
1 −1 3 1
−1 −1 1 1


 .

Thus, choosing a vector v =




3
2
0
1


 not in W , the closest vector to v in W is

given by

UUT




3
2
0
1


 = 1

2




5
2
1
−2


 .
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In particular, v− UUT v =




3
2
0
1


−

1
2




5
2
1
−2


 = 1

2




1
2
−1
4


 lies in W⊥.

Thus




1
0
1
0


 ,




1
1
−1
−1


 ,




1
2
−1
4


 are orthogonal in R4, and span a subspace W1 of

dimension 3.
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But now we can repeat the process with W1! This time take

U =




1/
√
2 1/2 1/

√
22

0 1/2 2/
√
22

1/
√
2 −1/2 −1/

√
22

0 −1/2 4/
√
22


 ,

UUT = 1
44




35 15 9 −3
15 19 −15 5
9 −15 35 3
−3 5 3 43


 .
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Taking x =




0
0
0
1


, (I4 − UUT )x = 1/44




3
−5
−3
1


 and then




1
0
1
0


 ,




1
1
−1
−1


 ,




1
2
−1
4


 ,




3
−5
−3
1


 is an orthogonal basis for R4.
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