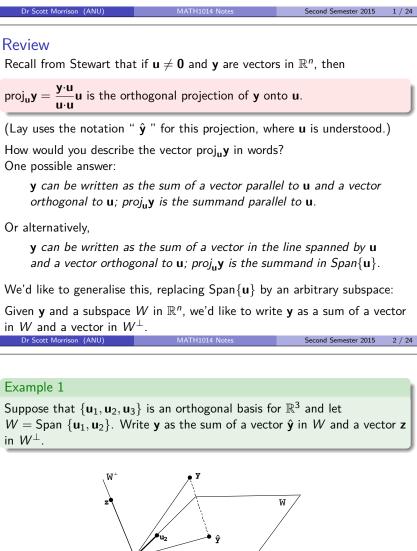
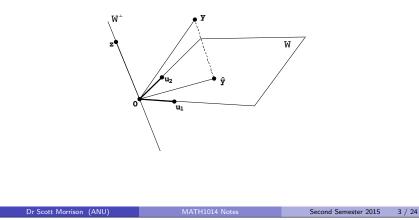
Overview

Last time we introduced the notion of an orthonormal basis for a subspace. We also saw that if a square matrix U has orthonormal columns, then U is invertible and $U^{-1} = U^T$. Such a matrix is called an *orthogonal* matrix.

At the beginning of the course we developed a formula for computing the projection of one vector onto another in \mathbb{R}^2 or \mathbb{R}^3 . Today we'll generalise this notion to higher dimensions.

From Lay, §6.3





Recall that for any orthogonal basis, we have

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$

It follows that

$$\hat{\mathbf{y}} = rac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + rac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

and

$$\mathbf{z} = \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$

Since \mathbf{u}_3 is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 , its scalar multiples are orthogonal to Span{ $\mathbf{u}_1, \mathbf{u}_2$ }. Therefore $\mathbf{z} \in W^{\perp}$

All this can be generalised to any vector \mathbf{y} and subspace W of $\mathbb{R}^n,$ as we will see next.

The Orthogonal Decomposition Theorem

Theorem

Let W be a subspace in $\mathbb{R}^n.$ Then each $\mathbf{y}\in\mathbb{R}^n$ can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

Second Semester 2015

where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto** W.

Note that it follows from this theorem that to calculate the decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, it is enough to know one orthogonal basis for W explicitly. Any orthogonal basis will do, and all orthogonal bases will give the same decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$.

 Dr Scott Morrison (ANU)
 MATH1014 Notes
 Second Semester 2015
 5 / 24

 Example 2

 Given
 $u_1 = \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1\\ 0\\ 1\\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 0\\ -1\\ 1\\ -1 \end{bmatrix}$

 let W be the subspace of \mathbb{R}^4 spanned by $\{u_1, u_2, u_3\}$.

 Write $\mathbf{y} = \begin{bmatrix} 2\\ -3\\ 4\\ 1 \end{bmatrix}$ as the sum of a vector in W and a vector orthogonal to W.

 Wr.

The orthogonal projection of
$$\mathbf{y}$$
 onto W is given by

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$

$$= \frac{-2}{3} \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} + \frac{7}{3} \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} + \frac{6}{3} \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 5\\-8\\13\\3 \end{bmatrix}$$
Also
$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 2\\-3\\4\\1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 5\\-8\\13\\3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\-1\\-1\\0 \end{bmatrix}$$
Dr Sect Merrison (ANU) MATHOLY NOTE Second Secon

Thus the desired decomposition of ${\boldsymbol{y}}$ is

The Orthogonal Decomposition Theorem ensures that $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . However, verifying this is a good check against computational mistakes.

This problem was made easier by the fact that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for W. If you were given an arbitrary basis for W instead of an orthogonal basis, what would you do?

Theorem (The Best Approximation Theorem)

Let W be a subspace of \mathbb{R}^n , y any vector in \mathbb{R}^n , and \hat{y} the orthogonal projection of y onto W. Then \hat{y} is the closest vector in W to y, in the sense that

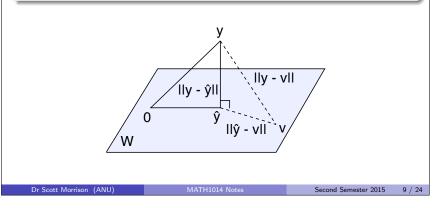
$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \tag{3}$$

Second Semester 2015

8 / 24

for all \mathbf{v} in W, $\mathbf{v} \neq \hat{\mathbf{y}}$.

Dr Scott Morrison (ANU)



Proof

Let **v** be any vector in W, $\mathbf{v} \neq \hat{\mathbf{y}}$. Then $\hat{\mathbf{y}} - \mathbf{v} \in W$. By the Orthogonal Decomposition Theorem, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W. In particular $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}} - \mathbf{v}$. Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2$$

Hence $\|\mathbf{y} - \mathbf{v}\|^2 > \|\mathbf{y} - \hat{\mathbf{y}}\|^2$.

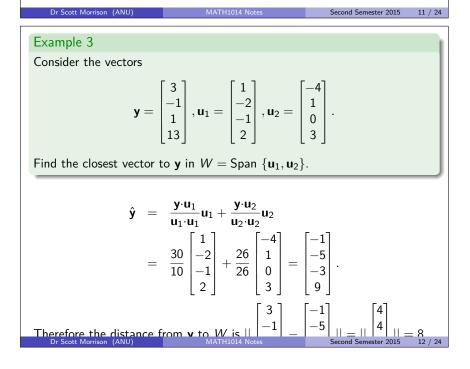
Second Semester 2015 10 / 24

We can now define the distance from a vector \mathbf{y} to a subspace W of \mathbb{R}^n . Definition

Let W be a subspace of \mathbb{R}^n and let \mathbf{y} be a vector in \mathbb{R}^n . The *distance* from \mathbf{y} to W is

 $||\mathbf{y} - \hat{\mathbf{y}}||$

where $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto W.



Theorem

If $\{u_1, u_2, \dots, u_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then for all y in \mathbb{R}^n we have

$$proj_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p.$$

This theorem is an easy consequence of the usual projection formula:

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \cdots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p.$$

When each \mathbf{u}_i is a unit vector, the denominators are all equal to 1.

Theorem

If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W and $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_p \end{bmatrix}$, then for all \mathbf{y} in \mathbb{R}^n we have

$$proj_W \mathbf{y} = UU^T \mathbf{y}$$
.

(4)

Second Semester 2015 14 / 24

Second Semester 2015

15 / 24

 Dr Scott Morrison (ANU)
 MATH1014 Notes
 Second Semester 2015
 13 / 24

Note that if U is a $n \times p$ matrix with orthonormal columns, then we have $U^T U = I_p$ (see Lay, Theorem 6 in Chapter 6). Thus we have

 $U^T U \mathbf{x} = I_p \mathbf{x} = \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^p

$$UU^T \mathbf{y} = \operatorname{proj}_W \mathbf{y}$$
 for every \mathbf{y} in \mathbb{R}^n , where $W = \operatorname{Col} U$.

Note: Pay attention to the sizes of the matrices involved here. Since U is $n \times p$ we have that U^T is $p \times n$. Thus $U^T U$ is a $p \times p$ matrix, while UU^T is an $n \times n$ matrix.

The previous theorem shows that the function which sends \mathbf{x} to its orthogonal projection onto W is a linear transformation. The kernel of this transformation is ...

...the set of all vectors orthogonal to W, i.e., W^{\perp} .

The range is W itself.

Dr Scott Morrison (ANU)

The theorem also gives us a convenient way to find the closest vector to \mathbf{x} in W: find an orthonormal basis for W and let U be the matrix whose columns are these basis vectors. Then mutitply \mathbf{x} by UU^{T} .

MATH1014 Notes

Examples

Example 4
Let
$$W = \text{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1\\1 \end{bmatrix} \right\}$$
 and let $\mathbf{x} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$. What is the closest vector to \mathbf{x} in W ?
Set $\mathbf{u}_1 = \begin{bmatrix} 2/3\\1/3\\2/3\\2/3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -2/3\\2/3\\1/3\\1/3 \end{bmatrix},$
 $U = \begin{bmatrix} 2/3 & -2/3\\1/3 & 2/3\\2/3 & 1/3 \end{bmatrix}.$

MATH1014 Notes

We check that $U^T U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so U has orthonormal columns. The closest vector is

$$\operatorname{proj}_{W} \mathbf{x} = UU^{T} \mathbf{x} = \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

Second Semester 2015 16 / 24

Second Semester 2015 17 / 24

Second Semester 2015 18 / 24

We can also compute distance from \mathbf{x} to W:

(ANU)

$$\|\mathbf{x} - \operatorname{proj}_{W}\mathbf{x}\| = \| \begin{bmatrix} 4\\8\\1 \end{bmatrix} - \begin{bmatrix} 2\\4\\5 \end{bmatrix} \| = \| \begin{bmatrix} 2\\4\\-4 \end{bmatrix} \| = 6$$

Dr Scott Morrison (ANU) MATH1014 Notes

Because this example is about vectors in $\ensuremath{\mathbb{R}}^3$, so we could also use cross products:

$$\begin{bmatrix} 2\\1\\2\end{bmatrix} \times \begin{bmatrix} -2\\2\\1\end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\2 & 1 & 2\\-2 & 2 & 1\end{vmatrix} = -3\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} = \mathbf{n}$$

gives a vector orthogonal to W, so the distance is the length of the projection of ${\bf x}$ onto ${\bf n}:$

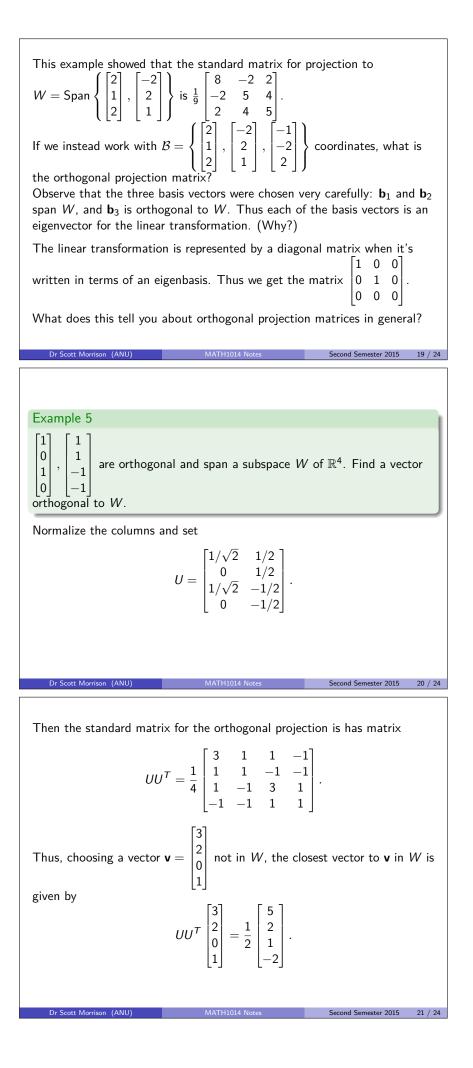
$$\begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1/3 \\ -2/3 \\ 2/3 \end{bmatrix} = -6 \,,$$

and the closest vector is

$$\begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} + 6 \begin{bmatrix} -1/3 \\ -2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

MATH1014 Notes

Dr Scott Morrison (ANU)



$$\begin{split} \label{eq:second} \begin{split} & \| n \ \text{particular, } \mathbf{v} - U U^T \mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \text{ lies in } W^{\perp}. \\ & \text{Thus } \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \text{ are orthogonal in } \mathbb{R}^4, \text{ and span a subspace } W_1 \text{ of dimension } 3. \end{split}$$