Overview

Last time we introduced the notion of an orthonormal basis for a subspace. We also saw that if a square matrix U has orthonormal columns, then U is invertible and $U^{-1} = U^T$. Such a matrix is called an *orthogonal* matrix.

At the beginning of the course we developed a formula for computing the projection of one vector onto another in \mathbb{R}^2 or \mathbb{R}^3 . Today we'll generalise this notion to higher dimensions.

From Lay, §6.3

Recall from Stewart that if $\textbf{u} \neq \textbf{0}$ and y are vectors in $\mathbb{R}^{\textit{n}},$ then

 $\text{proj}_u y = \frac{y \cdot u}{u \cdot u} u \text{ is the orthogonal projection of } y \text{ onto } u.$

(Lay uses the notation " \hat{y} " for this projection, where **u** is understood.)

Recall from Stewart that if $\textbf{u} \neq \textbf{0}$ and y are vectors in $\mathbb{R}^{\textit{n}},$ then

 $\mathsf{proj}_u \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \text{ is the orthogonal projection of } \mathbf{y} \text{ onto } \mathbf{u}.$

(Lay uses the notation " $\hat{\boldsymbol{y}}$ " for this projection, where \boldsymbol{u} is understood.)

How would you describe the vector $proj_u y$ in words?

Recall from Stewart that if $\textbf{u} \neq \textbf{0}$ and y are vectors in $\mathbb{R}^{\textit{n}},$ then

 $\mathsf{proj}_u y = \frac{y \cdot u}{u \cdot u} u \text{ is the orthogonal projection of } y \text{ onto } u.$

(Lay uses the notation " $\hat{\mathbf{y}}$ " for this projection, where \mathbf{u} is understood.)

How would you describe the vector $\text{proj}_{\mathbf{u}}\mathbf{y}$ in words? One possible answer:

y can be written as the sum of a vector parallel to **u** and a vector orthogonal to **u**; $proj_u y$ is the summand parallel to **u**.

Or alternatively,

y can be written as the sum of a vector in the line spanned by **u** and a vector orthogonal to **u**; $proj_u y$ is the summand in $Span\{u\}$.

Recall from Stewart that if $\textbf{u} \neq \textbf{0}$ and y are vectors in $\mathbb{R}^{\textit{n}},$ then

 $\mathsf{proj}_u y = \frac{y \cdot u}{u \cdot u} u \text{ is the orthogonal projection of } y \text{ onto } u.$

(Lay uses the notation " $\hat{\mathbf{y}}$ " for this projection, where \mathbf{u} is understood.)

How would you describe the vector $\text{proj}_{\mathbf{u}}\mathbf{y}$ in words? One possible answer:

y can be written as the sum of a vector parallel to **u** and a vector orthogonal to **u**; $proj_u y$ is the summand parallel to **u**.

Or alternatively,

y can be written as the sum of a vector in the line spanned by **u** and a vector orthogonal to **u**; $proj_u y$ is the summand in $Span\{u\}$.

We'd like to generalise this, replacing $\mathsf{Span}\{u\}$ by an arbitrary subspace:

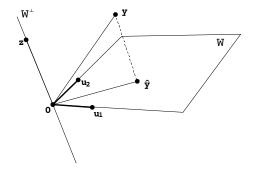
Given **y** and a subspace W in \mathbb{R}^n , we'd like to write **y** as a sum of a vector in W and a vector in W^{\perp} .

Example 1

Suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 and let $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$. Write **y** as the sum of a vector $\hat{\mathbf{y}}$ in W and a vector \mathbf{z} in W^{\perp} .

Example 1

Suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 and let $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$. Write **y** as the sum of a vector $\hat{\mathbf{y}}$ in W and a vector \mathbf{z} in W^{\perp} .



Recall that for any orthogonal basis, we have

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3.$$

Recall that for any orthogonal basis, we have

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3.$$

It follows that

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

and

$$\mathbf{z} = \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3.$$

Since u_3 is orthogonal to u_1 and u_2 , its scalar multiples are orthogonal to Span $\{u_1, u_2\}$. Therefore $z \in W^{\perp}$

All this can be generalised to any vector \mathbf{y} and subspace W of $\mathbb{R}^n,$ as we will see next.

The Orthogonal Decomposition Theorem

Theorem

Let W be a subspace in \mathbb{R}^n . Then each $\mathbf{y} \in \mathbb{R}^n$ can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

If $\{u_1,\ldots,u_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto** W.

Note that it follows from this theorem that to calculate the decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, it is enough to know one orthogonal basis for W explicitly. Any orthogonal basis will do, and all orthogonal bases will give the same decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$.

Example 2

Given

$$\mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}$$

let W be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Write $\mathbf{y} = \begin{bmatrix} 2 \\ -3 \\ 4 \\ 1 \end{bmatrix}$ as the sum of a vector in W and a vector orthogonal to W.

The orthogonal projection of \mathbf{y} onto W is given by

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$
$$= \frac{-2}{3} \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} + \frac{7}{3} \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} + \frac{6}{3} \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 5\\-8\\13\\3 \end{bmatrix}$$

The orthogonal projection of \mathbf{y} onto W is given by

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} + \frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} + \frac{\mathbf{y} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}$$

$$= \frac{-2}{3} \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} + \frac{7}{3} \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} + \frac{6}{3} \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 5\\-8\\13\\3 \end{bmatrix}$$

$$z = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 2\\-3\\4\\1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 5\\-8\\13\\3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\-1\\-1\\0 \end{bmatrix}$$

Also

0

Thus the desired decomposition of y is

The Orthogonal Decomposition Theorem ensures that $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . However, verifying this is a good check against computational mistakes. Thus the desired decomposition of y is

The Orthogonal Decomposition Theorem ensures that $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . However, verifying this is a good check against computational mistakes.

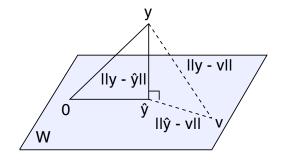
This problem was made easier by the fact that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for W. If you were given an arbitrary basis for W instead of an orthogonal basis, what would you do?

Theorem (The Best Approximation Theorem)

Let W be a subspace of \mathbb{R}^n , y any vector in \mathbb{R}^n , and $\hat{\mathbf{y}}$ the orthogonal projection of y onto W. Then $\hat{\mathbf{y}}$ is the closest vector in W to y, in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \tag{3}$$

for all **v** in W, $\mathbf{v} \neq \hat{\mathbf{y}}$.



Proof

Let **v** be any vector in W, $\mathbf{v} \neq \hat{\mathbf{y}}$. Then $\hat{\mathbf{y}} - \mathbf{v} \in W$. By the Orthogonal Decomposition Theorem, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W. In particular $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}} - \mathbf{v}$. Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2.$$

Hence $\|\mathbf{y} - \mathbf{v}\|^2 > \|\mathbf{y} - \hat{\mathbf{y}}\|^2$.

We can now define the distance from a vector **y** to a subspace W of \mathbb{R}^n .

Definition

Let W be a subspace of \mathbb{R}^n and let **y** be a vector in \mathbb{R}^n . The *distance* from **y** to W is

 $||\mathbf{y} - \hat{\mathbf{y}}||$

where $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto W.

Example 3

Consider the vectors

$$\mathbf{y} = \begin{bmatrix} 3\\-1\\1\\13 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix}$$

Find the closest vector to \mathbf{y} in $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$.

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{30}{10} \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix} + \frac{26}{26} \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix} = \begin{bmatrix} -1\\-5\\-3\\9 \end{bmatrix}$$

•

Example 3

Dr Sco

Consider the vectors

$$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$

Find the closest vector to \mathbf{y} in $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$.

Theorem

If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then for all \mathbf{y} in \mathbb{R}^n we have

$$proj_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p.$$

This theorem is an easy consequence of the usual projection formula:

$$\hat{\mathbf{y}} = rac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + rac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

When each \mathbf{u}_i is a unit vector, the denominators are all equal to 1.

Theorem

If $\{u_1, u_2, \dots, u_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then for all y in \mathbb{R}^n we have

$$proj_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p.$$

This theorem is an easy consequence of the usual projection formula:

$$\hat{\mathbf{y}} = rac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + rac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p.$$

When each \mathbf{u}_i is a unit vector, the denominators are all equal to 1.

Theorem
If
$$\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$$
 is an orthonormal basis for W and
 $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_p \end{bmatrix}$, then for all \mathbf{y} in \mathbb{R}^n we have
 $proj_W \mathbf{y} = UU^T \mathbf{y}$. (4)

The proof is a matrix calculation; see the posted slides for details.

Note that if U is a $n \times p$ matrix with orthonormal columns, then we have $U^T U = I_p$ (see Lay, Theorem 6 in Chapter 6). Thus we have

$$U^T U \mathbf{x} = I_p \mathbf{x} = \mathbf{x}$$
 for every \mathbf{x} in \mathbb{R}^p

$$UU^T \mathbf{y} = \operatorname{proj}_W \mathbf{y}$$
 for every \mathbf{y} in \mathbb{R}^n , where $W = \operatorname{Col} U$.

Note: Pay attention to the sizes of the matrices involved here. Since U is $n \times p$ we have that U^T is $p \times n$. Thus $U^T U$ is a $p \times p$ matrix, while UU^T is an $n \times n$ matrix.

The previous theorem shows that the function which sends \mathbf{x} to its orthogonal projection onto W is a linear transformation. The kernel of this transformation is ...

The previous theorem shows that the function which sends \mathbf{x} to its orthogonal projection onto W is a linear transformation. The kernel of this transformation is ...

...the set of all vectors orthogonal to W, i.e., W^{\perp} .

The range is W itself.

The previous theorem shows that the function which sends \mathbf{x} to its orthogonal projection onto W is a linear transformation. The kernel of this transformation is ...

...the set of all vectors orthogonal to W, i.e., W^{\perp} .

The range is W itself.

The theorem also gives us a convenient way to find the closest vector to \mathbf{x} in W: find an orthonormal basis for W and let U be the matrix whose columns are these basis vectors. Then mutitply \mathbf{x} by UU^{T} .

Examples

Example 4

Let
$$W = \text{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\}$$
 and let $\mathbf{x} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$. What is the closest vector to \mathbf{x} in W ?

Set
$$\mathbf{u}_1 = \begin{bmatrix} 2/3\\ 1/3\\ 2/3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2/3\\ 2/3\\ 1/3 \end{bmatrix}$,
 $U = \begin{bmatrix} 2/3 & -2/3\\ 1/3 & 2/3\\ 1/3 & 2/3\\ 2/3 & 1/3 \end{bmatrix}$

•

We check that
$$U^T U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, so U has orthonormal columns.
The closest vector is

$$\operatorname{proj}_{W} \mathbf{x} = UU^{T} \mathbf{x} = \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$$

We check that
$$U^T U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, so U has orthonormal columns.
The closest vector is

$$\operatorname{proj}_{W} \mathbf{x} = UU^{T} \mathbf{x} = \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$$

We can also compute distance from \mathbf{x} to W:

$$\|\mathbf{x} - \operatorname{proj}_{W}\mathbf{x}\| = \| \begin{bmatrix} 4\\8\\1 \end{bmatrix} - \begin{bmatrix} 2\\4\\5 \end{bmatrix} \| = \| \begin{bmatrix} 2\\4\\-4 \end{bmatrix} \| = 6.$$

Because this example is about vectors in \mathbb{R}^3 , so we could also use cross products:

$$\begin{bmatrix} 2\\1\\2 \end{bmatrix} \times \begin{bmatrix} -2\\2\\1 \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{vmatrix} = -3\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} = \mathbf{n}$$

gives a vector orthogonal to W, so the distance is the length of the projection of **x** onto **n**:

$$\begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1/3 \\ -2/3 \\ 2/3 \end{bmatrix} = -6 \,,$$

and the closest vector is

$$\begin{bmatrix} 4\\8\\1 \end{bmatrix} + 6 \begin{bmatrix} -1/3\\-2/3\\2/3 \end{bmatrix} = \begin{bmatrix} 2\\4\\5 \end{bmatrix}$$

This example showed that the standard matrix for projection to

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1\\1 \end{bmatrix} \right\} \text{ is } \frac{1}{9} \begin{bmatrix} 8 & -2 & 2\\-2 & 5 & 4\\2 & 4 & 5 \end{bmatrix}.$$

If we instead work with $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}$ coordinates, what is

the orthogonal projection matrix?

This example showed that the standard matrix for projection to

 $W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ is } \frac{1}{9} \begin{bmatrix} 8 & -2 & 2\\-2 & 5 & 4\\2 & 4 & 5 \end{bmatrix}.$ If we instead work with $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\2 \end{bmatrix} \right\}$ coordinates, what is the orthogonal projection matrix?

Observe that the three basis vectors were chosen very carefully: \mathbf{b}_1 and \mathbf{b}_2 span W, and \mathbf{b}_3 is orthogonal to W. Thus each of the basis vectors is an eigenvector for the linear transformation. (Why?)

The linear transformation is represented by a diagonal matrix when it's

written in terms of an eigenbasis. Thus we get the matrix $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$.

This example showed that the standard matrix for projection to

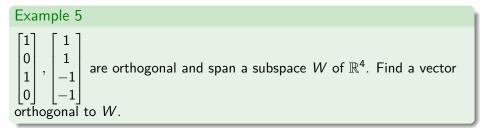
 $W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ is } \frac{1}{9} \begin{bmatrix} 8 & -2 & 2\\-2 & 5 & 4\\2 & 4 & 5 \end{bmatrix}.$ If we instead work with $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}$ coordinates, what is the orthogonal projection matrix?

Observe that the three basis vectors were chosen very carefully: \mathbf{b}_1 and \mathbf{b}_2 span W, and \mathbf{b}_3 is orthogonal to W. Thus each of the basis vectors is an eigenvector for the linear transformation. (Why?)

The linear transformation is represented by a diagonal matrix when it's

written in terms of an eigenbasis. Thus we get the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

What does this tell you about orthogonal projection matrices in general?



Normalize the columns and set

$$U = \begin{bmatrix} 1/\sqrt{2} & 1/2 \\ 0 & 1/2 \\ 1/\sqrt{2} & -1/2 \\ 0 & -1/2 \end{bmatrix}$$

Then the standard matrix for the orthogonal projection is has matrix

$$UU^{T} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 3 & 1 \\ -1 & -1 & 1 & 1 \end{bmatrix}.$$

Thus, choosing a vector $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ not in W , the closest vector to \mathbf{v} in W is given by
$$UU^{T} \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 5 \\ 2 \\ 1 \\ -2 \end{bmatrix}.$$

In particular,
$$\mathbf{v} - UU^T \mathbf{v} = \begin{bmatrix} 3\\2\\0\\1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 5\\2\\1\\-2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\2\\-1\\4 \end{bmatrix}$$
 lies in W^{\perp} .
Thus $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1\\4 \end{bmatrix}$ are orthogonal in \mathbb{R}^4 , and span a subspace W_1 of dimension 3.

But now we can repeat the process with W_1 ! This time take

$$U = egin{bmatrix} 1/\sqrt{2} & 1/2 & 1/\sqrt{22} \ 0 & 1/2 & 2/\sqrt{22} \ 1/\sqrt{2} & -1/2 & -1/\sqrt{22} \ 0 & -1/2 & 4/\sqrt{22} \end{bmatrix} \,,$$

$$UU^{T} = \frac{1}{44} \begin{bmatrix} 35 & 15 & 9 & -3 \\ 15 & 19 & -15 & 5 \\ 9 & -15 & 35 & 3 \\ -3 & 5 & 3 & 43 \end{bmatrix}$$

٠

Taking
$$\mathbf{x} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
, $(I_4 - UU^T)\mathbf{x} = 1/44 \begin{bmatrix} 3\\-5\\-3\\1 \end{bmatrix}$ and then
 $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\-1\\4 \end{bmatrix}$, $\begin{bmatrix} 3\\-5\\-3\\1 \end{bmatrix}$ is an orthogonal basis for \mathbb{R}^4 .