Overview

Last time we discussed orthogonal projection. We'll review this today
before discussing the question of how to find an orthonormal basis for a
given subspace.

From Lay, §6.4
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Orthogonal projection

Given a subspace W of R”, you can write any vector y € R” as

y =¥ -+ 2z = projyy + projy.Ly,

where § € W is the closest vector in W to y and z € W=. We call § the
orthogonal projection of y onto W.

Given an orthogonal basis {u,...,up} for W, we have a formula to
compute y:
‘up ‘u
YU it Ly,
ui-up Up-up

9:

If we also had an orthogonal basis {up11,...,u,} for W+, we could find z
by projecting y onto W
Y-Up+1 yun

Zziup-l»l“‘"""
Upt1-Upt1 Up-Up

u,.

However, once we subtract off the projection of y to W, we're left with
z € W™, We'll make heavy use of this observation today.
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Orthonormal bases

In the case where we have an orthonormal basis {uy,...,up} for W, the
computations are made even simpler:

¥ = (yur)ur + (y-u2)uz + - -+ + (y-up)up.

If U = {uq,...,up} is an orthonormal basis for W and U is the matrix
whose columns are the u;, then

o UUTy=y

o UTU=1,

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 3/24




The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {vi,...,vn} for a
subspace W when we start with a basis {x1,...,Xa} that is not
orthogonal.

Start with vi = x3.
Now consider xz. If vi and x2 are not orthogonal, we'll modify x2 so that
we get an orthogonal pair vy, vy satisfying
Span{xi,x2} = Span{vy,va}.
Then we modify x3 so get v3 satisfying v; - v3 = va -v3 =0 and

Span{xi, x2,x3} = Span{vi,va, v3}.

We continue this process until we've built a new orthogonal basis for W.
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Example 1
1 2
Suppose that W = Span {x1,x2} where x; = [1| and xo = [2]|. Find an
0 3

orthogonal basis {vi, vy} for W.

To start the process we put vi = x3.

We then find
1 2
. . 2:V1 4
y = projy,x2 = v v] = 5 1] =12
0 0
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Now we define vo = xo — ¥; this is orthogonal to x; = v1:

oy 2] ]2 0
V2ZX2_Vj~V1V1:X2_9: 2 — (2| =10
3 0 3

So v; is the component of x, orthogonal to x;. Note that v is in
W = Span{xi,x2} because it is a linear combination of vi = x; and xa.
So we have that

Vi = , V2o =

O = o=
w o o

is an orthogonal basis for W.
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Example 2

Suppose that {x1,x2,x3} is a basis for a subspace W of R*. Describe an
orthogonal basis for W.

e As in the previous example, we put

X2V

vi=x3 and vy =Xy — vi.

Vi-V1
Then {v1, vy} is an orthogonal basis for W, =Span {x1, xa} = Span {v1, va}.
X3:V1 X3:V2
v

1+
Vi-vi V2-V2

e Now projyy,x3 = vo and

X3:V1 X3-V2
V] —
Vi-Vi V2-V2

V3 = X3 — Projiy,X3 = X3 — Vo

is the component of x3 orthogonal to W>. Furthermore, v3 is in W
because it is a linear combination of vectors in W.

e Thus we obtain that {vi, v2,v3} is an orthogonal basis for W.
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Theorem (The Gram Schmidt Process)

Given a basis {x1,X2,...,Xp} for a subspace W of R", define
Vi = X1
X2-V1
Vo = Xy — A%
Vi-vi

X3-V1 X3-V2
Vi —

V3 = X3— 1 V2
vVi-vi V2-V2
Xp-V1 XpVp_1
Vp = Xp— —vp—...— PPy
Vi-Vi Vp—1-Vp—1
Then {v1,...,vp} is an orthogonal basis for W. Also
Span {vi,...,vx} = Span{xi,...,xx} forl<k<p.
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Example 3
The vectors
3 -3
X1 = —4 , X2 = 14
5 -7
form a basis for a subspace W. Use the Gram-Schmidt process to produce
an orthogonal basis for W.

Step 1 Put vi = x3.

Step 2
X2-V1
Vo = Xy — A1
Vi-V1
-3 3 3
e - 20 )~ e
-7 5 3
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Then {v1,v2} is an orthogonal basis for W.

To construct an orthonormal basis for W we normalise the basis {v1,v2}:

I SV O
Ml Vo |
N SOV S o B R
P vl VB 5| T VB |y

Then {ui,uy} is an orthonormal basis for W.
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Example 4
-1 6 6
3 -8 3 . .
Let A= L Use the Gram-Schmidt process to find an
1 -4 3
orthogonal basis for the column space of A.

Let x1, X2, x3 be the three columns of A.

-1
3
Step 1 Putwv; =x; = 1
1
Step 2
6 -1 3
X2V -8 (=36) | 3 1
V2 = 2 — = —_—— =
Vi-Vi1 -2 12 1 1
—4 1 -1
Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 11 /24
Step 3
X3-V1 X3°V2
V3 = X3 — V] — Vo
Vi-Vi Vo V)
-1 3
3] 1203 241
|6 2|1 121
3 1 -1
1
I
B 3
4

-1 3 1
3 1 -2
11711]7]3
1 -1 4
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Example 5
The matrix A is given by

O O = =
O = = O
= = O O

Use the Gram-Schmidt process to show that

1 -1 1
1 1 -1
o’ 2|1
0 0 3
is an orthogonal basis for Col A.
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Let a1, ap, a3 be the three columns of A.
1
Step1 Putv; =a; = ol
0
Step 2
0 1 -1/2
v_a_ag~V1V_ 1 _1 1l 1/2
27 Vi-Vi ! 1 210 1
0 0 0
-1
For convenience we take vo = 12 . (This is optional, but it makes v
0

easier to work with in the following calculation.)
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Step 3
0 -1 1/3
Vi g, 3V ava |0 _g 211 | _ |-1/3
T vy vovy o |1 6| 2 1/3
1 0 1
1
. -1
For convenience we take vz = 1
3
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QR factorisation of matrices

If an m x n matrix A has linearly independent columns x1,...,X,, then
A = QR for matrices

@ @ is an m X n matrix whose columns are an orthonormal basis for
Col(A), and

@ R is an n X n upper triangular invertible matrix.

This factorisation is used in computer algorithms for various computations.

In fact, finding such a Q@ and R amounts to applying the Gram Schmidt
process to the columns of A.

(The proof that such a decomposition exists is given in the text.)
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Example 6
Let
5 9 5/6 —1/6
|1 7 | 1/6 5/6
A= -3 =5{’ Q= —-3/6 1/6
1 5 1/6  3/6
where the columns of Q are obtained by applying the Gram-Schmidt
process to the columns of A and then normalising the columns.
Find R such that A = QR.

As we have noted before, Q7 Q = I/ because the columns of @ are
orthonormal. If we believe such an R exists, we have

QTA=Q"(QR)=(QTQR=IR=R.
Therefore R = QT A.
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In this case,
R = QTA
5 9
5/6 1/6 -3/6 1/6 1 7
-1/6 5/6 1/6 3/6||-3 =5
1 5
|6 12
|0 6
An easy check shows that
5/6 -1/6 5 9
| 1/6 5/6 6 12| |1 7T
QR = —-3/6 1/6 {0 6| |-3 =5 =A
1/6 3/6 1 5
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Example 7
In Example 4 we found that an orthogonal basis for the column space of
the matrix _
-1 6 6
3 -8 3
A= 1 -2 6
1 -4 3]
is given by i
-1 3 1
3 1 -2
1('[1](3
1 -1 4 |
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Normalising the columns gives

-1/v/12  3/V/12  1/V/30
o | 3V2 V2 —2/V30
vz 1v12 3/V30

1/VI2 -1/Vi2  4V30

As in the last example

R = QTA
V12 V12 V12
= 0 V12 2V12].
0 0 V30

It is left as an exercise to check that QR = A.
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Matrix decompositions

We've seen a variety of matrix decompositions this semester:
e A= PDP1

—b
° [Z ) }zsth

e A=QR
In each case, we go to some amount of computation work in order to
express the given matrix as a product of terms we understand well. The

advantages of this can be either conceptual or computational, depending
on the context.
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Example 8

An orthogonal basis for the column space of the matrix

100
110
A= 01 1|°
0 01
is given by
1 -1 1
1 1 -1
o’ 2|1
0 0 3

Find a QR decomposition of A.
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To construct @ we normalise the orthogonal vectors. These become the
columns of Q:

1/vV2 —-1/v/6 1/V/12
Q- 1/vV2 1/vV/6 —1/V12
I R JAV I VAV V)
0 0 3/V12
Since R = QT A, we solve
[1v2 V20 o 1/ 3 g
R=QTA = |[-1/v6 1/V/6 2/vV6 0 011
|1/V12 —-1/V12 1/V12 3/V12 00 1
[2/v2 1/vV2 0
= 0 3/V6 2/V6
0 0 4/V12
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Check:
[1/v2 -1/v6 1/V12
OR - 1/vV2 1/V/6 -1/V12 Q/Oﬂ ;j\‘g 2/?@
0 2/V/6  1/V12 0 0 4V
| 0 0 3/V12
(1 00
ot 10
o001 1|
0 0 1
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