
Overview

Last time we discussed orthogonal projection. We’ll review this today
before discussing the question of how to find an orthonormal basis for a
given subspace.

From Lay, §6.4
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Orthogonal projection
Given a subspace W of Rn, you can write any vector y ∈ Rn as

y = ŷ + z = projW y + projW ⊥y,

where ŷ ∈W is the closest vector in W to y and z ∈W⊥. We call ŷ the
orthogonal projection of y onto W .
Given an orthogonal basis {u1, . . . , up} for W , we have a formula to
compute ŷ:

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up.

If we also had an orthogonal basis {up+1, . . . , un} for W⊥, we could find z
by projecting y onto W⊥:

z = y·up+1
up+1·up+1

up+1 + · · ·+ y·un
un·un

un.

However, once we subtract off the projection of y to W , we’re left with
z ∈W⊥. We’ll make heavy use of this observation today.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 2 / 24

Orthonormal bases

In the case where we have an orthonormal basis {u1, . . . , up} for W , the
computations are made even simpler:

ŷ = (y·u1)u1 + (y·u2)u2 + · · ·+ (y·up)up.

If U = {u1, . . . , up} is an orthonormal basis for W and U is the matrix
whose columns are the ui, then

UUT y = ŷ
UTU = Ip
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {v1, . . . , vn} for a
subspace W when we start with a basis {x1, . . . , xn} that is not
orthogonal.
Start with v1 = x1.
Now consider x2. If v1 and x2 are not orthogonal, we’ll modify x2 so that
we get an orthogonal pair v1, v2 satisfying

Span{x1, x2} = Span{v1, v2}.

Then we modify x3 so get v3 satisfying v1 · v3 = v2 · v3 = 0 and

Span{x1, x2, x3} = Span{v1, v2, v3}.

We continue this process until we’ve built a new orthogonal basis for W .
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Example 1

Suppose that W = Span {x1, x2} where x1 =



1
1
0


 and x2 =



2
2
3


. Find an

orthogonal basis {v1, v2} for W .

To start the process we put v1 = x1.
We then find

ŷ = projv1x2 = x2·v1
v1·v1

v1 = 4
2



1
1
0


 =



2
2
0


 .
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Now we define v2 = x2 − ŷ; this is orthogonal to x1 = v1:

v2 = x2 −
x2 · v1
v1 · v1

v1 = x2 − ŷ =



2
2
3


−



2
2
0


 =



0
0
3


 .

So v2 is the component of x2 orthogonal to x1. Note that v2 is in
W = Span{x1, x2} because it is a linear combination of v1 = x1 and x2.
So we have that 




v1 =



1
1
0


 , v2 =



0
0
3








is an orthogonal basis for W .
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Example 2
Suppose that {x1, x2, x3} is a basis for a subspace W of R4. Describe an
orthogonal basis for W .

• As in the previous example, we put

v1 = x1 and v2 = x2 −
x2·v1
v1·v1

v1.

Then {v1, v2} is an orthogonal basis for W2 =Span {x1, x2} = Span {v1, v2}.

• Now projW2x3 = x3·v1
v1·v1

v1 + x3·v2
v2·v2

v2 and

v3 = x3 − projW2x3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

is the component of x3 orthogonal to W2. Furthermore, v3 is in W
because it is a linear combination of vectors in W .
• Thus we obtain that {v1, v2, v3} is an orthogonal basis for W .
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Theorem (The Gram Schmidt Process)
Given a basis {x1, x2, . . . , xp} for a subspace W of Rn, define

v1 = x1
v2 = x2 −

x2·v1
v1·v1

v1

v3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

...
vp = xp −

xp·v1
v1·v1

v1 − . . .− xp·vp−1
vp−1·vp−1

vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . Also

Span {v1, . . . , vk} = Span {x1, . . . , xk} for 1 ≤ k ≤ p.
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Example 3
The vectors

x1 =



3
−4
5


 , x2 =



−3
14
−7




form a basis for a subspace W . Use the Gram-Schmidt process to produce
an orthogonal basis for W .

Step 1 Put v1 = x1.
Step 2

v2 = x2 −
x2·v1
v1·v1

v1

=



−3
14
−7


− (−100)

50



3
−4
5


 =



3
6
3


 .
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Then {v1, v2} is an orthogonal basis for W .

To construct an orthonormal basis for W we normalise the basis {v1, v2}:

u1 = 1
‖v1‖

v1 = 1√
50



3
−4
5




u2 = 1
‖v2‖

v2 = 1√
54



3
6
3


 = 1√

6



1
2
1




Then {u1, u2} is an orthonormal basis for W .
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Example 4

Let A =




−1 6 6
3 −8 3
1 −2 6
1 −4 3


. Use the Gram-Schmidt process to find an

orthogonal basis for the column space of A.

Let x1, x2, x3 be the three columns of A.

Step 1 Put v1 = x1 =




−1
3
1
1


.

Step 2

v2 = x2 −
x2·v1
v1·v1

v1 =




6
−8
−2
−4


−

(−36)
12




−1
3
1
1


 =




3
1
1
−1


 .

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 11 / 24

Step 3

v3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

=




6
3
6
3


−

12
12




−1
3
1
1


−

24
12




3
1
1
−1




=




1
−2
3
4


 .

Thus an orthogonal basis for the column space of A is given by







−1
3
1
1


 ,




3
1
1
−1


 ,




1
−2
3
4








.
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Example 5
The matrix A is given by

A =




1 0 0
1 1 0
0 1 1
0 0 1


 .

Use the Gram-Schmidt process to show that







1
1
0
0


 ,




−1
1
2
0


 ,




1
−1
1
3








is an orthogonal basis for Col A.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 / 24

Let a1, a2, a3 be the three columns of A.

Step 1 Put v1 = a1 =




1
1
0
0


.

Step 2

v2 = a2 −
a2·v1
v1·v1

v1 =




0
1
1
0


−

1
2




1
1
0
0


 =




−1/2
1/2
1
0


 .

For convenience we take v2 =




−1
1
2
0


. (This is optional, but it makes v2

easier to work with in the following calculation.)
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Step 3

v3 = a3 −
a3·v1
v1·v1

v1 −
a3·v2
v2·v2

v2 =




0
0
1
1


− 0− 2

6




−1
1
2
0


 =




1/3
−1/3
1/3
1




For convenience we take v3 =




1
−1
1
3


.
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QR factorisation of matrices

If an m × n matrix A has linearly independent columns x1, . . . , xn, then
A = QR for matrices

Q is an m × n matrix whose columns are an orthonormal basis for
Col(A), and
R is an n × n upper triangular invertible matrix.

This factorisation is used in computer algorithms for various computations.

In fact, finding such a Q and R amounts to applying the Gram Schmidt
process to the columns of A.
(The proof that such a decomposition exists is given in the text.)
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Example 6
Let

A =




5 9
1 7
−3 −5
1 5


 , Q =




5/6 −1/6
1/6 5/6
−3/6 1/6
1/6 3/6




where the columns of Q are obtained by applying the Gram-Schmidt
process to the columns of A and then normalising the columns.
Find R such that A = QR.

As we have noted before, QTQ = I because the columns of Q are
orthonormal. If we believe such an R exists, we have

QTA = QT (QR) = (QTQ)R = IR = R.

Therefore R = QTA.
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In this case,

R = QTA

=
[
5/6 1/6 −3/6 1/6
−1/6 5/6 1/6 3/6

]



5 9
1 7
−3 −5
1 5




=
[
6 12
0 6

]

An easy check shows that

QR =




5/6 −1/6
1/6 5/6
−3/6 1/6
1/6 3/6




[
6 12
0 6

]
=




5 9
1 7
−3 −5
1 5


 = A.
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Example 7
In Example 4 we found that an orthogonal basis for the column space of
the matrix

A =




−1 6 6
3 −8 3
1 −2 6
1 −4 3




is given by 






−1
3
1
1


 ,




3
1
1
−1


 ,




1
−2
3
4
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Normalising the columns gives

Q =




−1/
√
12 3/

√
12 1/

√
30

3/
√
12 1/

√
12 −2/

√
30

1/
√
12 1/

√
12 3/

√
30

1/
√
12 −1/

√
12 4

√
30


 .

As in the last example

R = QTA

=




√
12
√
12

√
12

0
√
12 2

√
12

0 0
√
30


 .

It is left as an exercise to check that QR = A.
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Matrix decompositions

We’ve seen a variety of matrix decompositions this semester:
A = PDP−1

[
a −b
b a

]
= StRθ

A = QR
In each case, we go to some amount of computation work in order to
express the given matrix as a product of terms we understand well. The
advantages of this can be either conceptual or computational, depending
on the context.
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Example 8
An orthogonal basis for the column space of the matrix

A =




1 0 0
1 1 0
0 1 1
0 0 1


 .

is given by 






1
1
0
0


 ,




−1
1
2
0


 ,




1
−1
1
3








Find a QR decomposition of A.
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To construct Q we normalise the orthogonal vectors. These become the
columns of Q:

Q =




1/
√
2 −1/

√
6 1/

√
12

1/
√
2 1/

√
6 −1/

√
12

0 2/
√
6 1/

√
12

0 0 3/
√
12




Since R = QTA, we solve

R = QTA =



1/
√
2 1/

√
2 0 0

−1/
√
6 1/

√
6 2/

√
6 0

1/
√
12 −1/

√
12 1/

√
12 3/

√
12







1 0 0
1 1 0
0 1 1
0 0 1




=



2/
√
2 1/

√
2 0

0 3/
√
6 2/

√
6

0 0 4/
√
12
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Check:

QR =




1/
√
2 −1/

√
6 1/

√
12

1/
√
2 1/

√
6 −1/

√
12

0 2/
√
6 1/

√
12

0 0 3/
√
12






2/
√
2 1/

√
2 0

0 3/
√
6 2/

√
6

0 0 4/
√
12




=




1 0 0
1 1 0
0 1 1
0 0 1


 .
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