Overview

Last time we discussed orthogonal projection. We'll review this today
before discussing the question of how to find an orthonormal basis for a
given subspace.

From Lay, §6.4
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Orthogonal projection

Given a subspace W of R”, you can write any vector y € R" as
y=9+z=projyy + projyy,

where § € W is the closest vector in W to 'y and z € W, We call § the
orthogonal projection of y onto W.
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Orthogonal projection

Given a subspace W of R”, you can write any vector y € R" as

y =¥ +z = projyyy + projy Ly,

where § € W is the closest vector in W to 'y and z € W, We call § the
orthogonal projection of y onto W.

Given an orthogonal basis {uy,...,u,} for W, we have a formula to
compute y:
A yu y-u
y= up + -+ P Up.
ui-up up-up
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Orthogonal projection
Given a subspace W of R”, you can write any vector y € R” as

y =¥ +z = projyyy + projy Ly,

where § € W is the closest vector in W toy and z € W+. We call § the
orthogonal projection of y onto W.

Given an orthogonal basis {uy,...,u,} for W, we have a formula to
compute y:
. ‘uy ‘u
y:y ul_i__'_yipup
ui-up Up-up
If we also had an orthogonal basis {up;1,...,u,} for W, we could find z

by projecting y onto W-:

y-upii y-u,
227PUP+1+"'+ un‘
Up+1-Upt1 Up-Up

However, once we subtract off the projection of y to W, we're left with
z € W, We'll make heavy use of this observation today.
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Orthonormal bases

In the case where we have an orthonormal basis {uy,...,up,} for W, the
computations are made even simpler:

¥ = (yur)us + (y-uz)uz +--- + (y-up)up.
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Orthonormal bases

In the case where we have an orthonormal basis {uy,...,up,} for W, the
computations are made even simpler:

¥ = (yur)us + (y-uz)uz +--- + (y-up)up.

If U = {uq,...,up} is an orthonormal basis for W and U is the matrix
whose columns are the u;, then

o UUTy =4y

o UTU = lp
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {vy,...,v,} for a
subspace W when we start with a basis {x1,...,xn} that is not
orthogonal.
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {vy,...,v,} for a
subspace W when we start with a basis {x1,...,xn} that is not
orthogonal.

Start with vi = x3.

Now consider xa. If v; and x2 are not orthogonal, we'll modify x so that
we get an orthogonal pair vy, vp satisfying

Span{x1,x2} = Span{vy, va}.
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {vy,...,v,} for a
subspace W when we start with a basis {x1,...,xn} that is not
orthogonal.

Start with vi = x3.
Now consider xa. If v; and x2 are not orthogonal, we'll modify x so that
we get an orthogonal pair vy, vp satisfying

Span{xi,x2} = Span{vy,va}.

Then we modify x3 so get vz satisfying vi - v3 = vp - v3 = 0 and

Span{x1,x2,x3} = Span{vy, va,v3}.
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {vy,...,v,} for a
subspace W when we start with a basis {x1,...,xn} that is not
orthogonal.

Start with vi = x3.
Now consider xa. If v; and x2 are not orthogonal, we'll modify x so that
we get an orthogonal pair vy, vp satisfying
Span{xi,x2} = Span{vy,va}.
Then we modify x3 so get vz satisfying vi - v3 = vp - v3 = 0 and

Span{x1,x2,x3} = Span{vy, va,v3}.

We continue this process until we've built a new orthogonal basis for W.
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Example 1

1 2
Suppose that W = Span {xi1,x2} where x; = [1| and xo = |2|. Find an
0 3

orthogonal basis {vq,v2} for W.

To start the process we put vi = Xj.
We then find

X2:V1 4
2

V] =

1 2
y = proj,, xo = 1| = |2
Vi-Vi 0 0
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Now we define vo = xp — ¥, this is orthogonal to x; = vy:

v 2] |2 0
V2:X2—vj.v1V1:X2—9: 2] — (2] =10
3 0 3

So v is the component of x, orthogonal to x;. Note that vy is in
W = Span{xy, x>} because it is a linear combination of v; = x3 and x».
So we have that

w O o

1
V] = 1 , Vo =
0

is an orthogonal basis for W.
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Example 2

Suppose that {x1,x2,x3} is a basis for a subspace W of R*. Describe an

orthogonal basis for W.

e As in the previous example, we put

X2-V1

vi=Xx1; and vy =Xy — V1.

Vi-Vi

Then {v1, v} is an orthogonal basis for W5 =Span {x1, xo} = Span {v1, vo}.

X3-V1 X3:V2
Vi +
Vi-Vi V2-V2

e Now projy,x3 =

. X3-V1 X3-V2
V3 = X3 — Projy, X3 = X3 — V1-v1 Vi — v2'v2V

is the component of x3 orthogonal to W5. Furthermore, vs is in W
because it is a linear combination of vectors in W.

e Thus we obtain that {vi,vp,v3} is an orthogonal basis for W.
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Theorem (The Gram Schmidt Process)

Given a basis {x1,x2,...,Xp} for a subspace W of R", define
Vi X1
X2-Vq1
V2 X2 — Vi
Vi1V

V3

Vp

Then {v1,...,vp}

Span {vq,..

X3-V1 X3-V2
Vi — v
Vi-V1 V2V

Xp V1 Xp'Vp—1
= Xp— P—vg—...— 2Py,
Vi-Vi Vp—1'Vp—1

is an orthogonal basis for W. Also

Vit = Span {x1,...,x¢} forl<k<p.
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Example 3
The vectors

X1 =

form a basis for a subspace W. Use the Gram-Schmidt process to produce

an orthogonal basis for W.

3 -3
—4 , X2 = 14
5 =7

Step 1 Put vi = x1.
Step 2
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Then {v1,v2} is an orthogonal basis for WV.

To construct an orthonormal basis for W we normalise the basis {vy, v2}:

w

1 1
uy=-—Vvi=—|—4
Pl T VBO | g

1 1 3 1

1
U= —-Vv=——|[6 =—|2
NPT VTS D RV

Then {u1,uy} is an orthonormal basis for WV.
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Example 4

-1 6 6
3 -8 3 . :
Let A= L Use the Gram-Schmidt process to find an
1 -4 3

orthogonal basis for the column space of A.

Let x1, X2, X3 be the three columns of A.

-1

3

Step1 Putvy =x; = 1

1

Step 2

6 -1 3
v — _X2-V1v o —8 _(—36) 3 o 1
R 2 |1 |1
—4 1 -1
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Step 3

V3
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Example 5
The matrix A is given by

O O = =
O = = O
= = O O

Use the Gram-Schmidt process to show that

1 -1 1
1 1 -1
o’ 211
0 0 3

is an orthogonal basis for Col A.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 13 /24



Let a1, ap, a3 be the three columns of A.

1
1
Step1 Putvy =a; = ol
0
Step 2
0 1 -1/2
vo—a _a2-v1v |1 _l 1 | 1/2
2T Vi-V1 1= 1 2 (0 N 1
0 0 0
-1
For convenience we take vo = 12 . (This is optional, but it makes v,
0

easier to work with in the following calculation.)

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 14 / 24



0 -1 1/3
v3—a3—a3"1 R 0 —O—E 1 ~1/3
Vi-Vp Vo-Vo 1 6 2 1/3
1 0 1
1
. -1
For convenience we take vz = 1
3
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QR factorisation of matrices

If an m x n matrix A has linearly independent columns xi,...,x,, then
A = QR for matrices

@ @ is an m x n matrix whose columns are an orthonormal basis for
Col(A), and

@ R is an n x n upper triangular invertible matrix.

This factorisation is used in computer algorithms for various computations.

In fact, finding such a Q and R amounts to applying the Gram Schmidt
process to the columns of A.

(The proof that such a decomposition exists is given in the text.)
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Example 6

Let
5 9 5/6 —1/6
R 16 s5/6
A=123 5|0 Q9= |36 1/6
15 1/6  3/6

where the columns of @ are obtained by applying the Gram-Schmidt
process to the columns of A and then normalising the columns.
Find R such that A = QR.
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Example 6

Let
5 9 5/6 —1/6
R 16 s5/6
A=123 5|0 Q9= |36 1/6
1 s 1/6  3/6

where the columns of @ are obtained by applying the Gram-Schmidt
process to the columns of A and then normalising the columns.
Find R such that A = QR.

As we have noted before, QT Q = I because the columns of Q are
orthonormal. If we believe such an R exists, we have

QTA=Q"(QR)=(QTQR=IR=R.

Therefore R = QT A.
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In this case,

R = QTA
] 5 9
~ [s/6 1/6 —3/6 1/6] |1 7
~ |-1/6 5/6 1/6 3/6| |-3 -5
i 1 5
_[6 12
|0 6
An easy check shows that
5/6 —1/6 5 9
|16 s/6|[6 12] |1 7|
QR=1236 1/6 |0 6| |-3 —5| =™
1/6  3/6 1 5
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Example 7

In Example 4 we found that an orthogonal basis for the column space of

the matrix

is given by

A=

-1 6
3 -8
1 -2
1 -4
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Normalising the columns gives

-1/v/12  3/y12  1/4/30
o | 3V V2 —2/V30
|l 1v/12 1/V/12 0 3/4/30

1/V1i2  -1/V12 430

As in the last example

R = QTA
V2 V12 V12
= 0 V12 2V12].
0 0 V30

It is left as an exercise to check that QR = A.
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Matrix decompositions

We've seen a variety of matrix decompositions this semester:
e A= PDP!

—b
° [Z ) ]zsth

e A= QR

In each case, we go to some amount of computation work in order to
express the given matrix as a product of terms we understand well. The
advantages of this can be either conceptual or computational, depending
on the context.
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Example 8

An orthogonal basis for the column space of the matrix

1 00
110
A= 011
0 01
is given by
1 -1 1
1 1 -1
o’ 2|1
0 0
Find a QR decomposition of A.
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To construct @ we normalise the orthogonal vectors. These become the

columns of Q:
1/vV2 —1/vV6 1/V/12
0— 1/vV2 1/vV6 —1/V12
] 0 2/v/6  1/V/12

0 0 3/V12
Since R = QT A, we solve
[1/vV2  1/V2 0 0 1 2 8
R=Q"A = |-1/v6 1/v6 2/V6 0 011
1/V12 -1/V12 1/V12 3/V12 00 1
2/V2 1/vV2 0
= 0 3/V6 2/V6
| 0 0 4/V12
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Check:

[1/vV2 —1/V/6  1/V12 23 13 0
e Ve -zl |HV2 Y
QR = 0 N 0 3/V6 2/V6

0 0 3/y12 0 0 4/V12

O~ = O
= = O O

==
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