
Overview

Last time we introduced the Gram Schmidt process as an algorithm for
turning a basis for a subspace into an orthogonal basis for the same
subspace. Having an orthogonal basis (or even better, an orthonormal
basis!) is helpful for many problems associated to orthogonal projection.

Today we’ll discuss the “Least Squares Problem", which asks for the best
approximation of a solution to a system of linear equations in the case
when an exact solution doesn’t exist.

From Lay, §6.5
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1. Introduction

Problem: What do we do when the matrix equation Ax = b has no
solution x?
Such inconsistent systems Ax = b often arise in applications, sometimes
with large coefficient matrices.

Answer: Find x̂ such that Ax̂ is as close as possible to b.

In this situation Ax̂ is an approximation to b. The general least squares
problem is to find an x̂ that makes ‖b− Ax̂‖ as small as possible.
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Definition
For an m × n matrix A, a least squares solution to Ax = b is a vector x̂
such that

‖b− Ax̂‖ ≤ ‖b− Ax‖ for all x in Rn.

The name “least squares” comes from ‖ · ‖2 being the sum of the squares
of the coordinates.

It is now natural to ask ourselves two questions:
(1) Do least square solutions always exist?

The answer to this question is YES. We will see that we can use the
Orthogonal Decomposition Theorem and the Best Approximation
Theorem to show that least square solutions always exist.

(2) How can we find least square solutions?
The Orthogonal Decomposition Theorem —and in particular, the
uniqueness of the orthogonal decomposition— gives a method to find
all least squares solutions.
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Solution of the general least squares problem

Consider an m × n matrix A =
[
a1 a2 . . . an

]
.

If x =


x1
x2
...

xn

 is a vector in Rn, then the definition of matrix-vector

multiplication implies that

Ax = x1a1 + x2a2 + · · ·+ xnan .

So, the vector Ax is the linear combination of the columns of A with
weights given by the entries of x.

For any vector x in Rn that we select, the vector Ax is in Col A. We
can solve Ax = b if and only if b is in Col A.
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If the system Ax = b is inconsistent it means that b is NOT in Col A.

So we seek x̂ that makes Ax̂ the closest point in Col A to b.

The Best Approximation Theorem tells us that the closest point in
Col A to b is b̂ = projCol Ab.

So we seek x̂ such that Ax̂ = b̂. In other words, the least squares
solutions of Ax = b are exactly the solutions of the system

Ax̂ = b̂ .

By construction, the system Ax̂ = b̂ is always consistent.
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We seek x̂ such that Ax̂ is the closest point to b in Col A.

Equivalently, we need to find x̂ with the property that Ax̂ is the orthogonal
projection of b onto Col(A).

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 6 / 21



Since b̂ is the closest point to b in Col A, we need x̂ such that Ax̂ = b̂.
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The normal equations
By the Orthogonal Decomposition Theorem, the projection b̂ is the
unique vector in Col A with the property that b− b̂ is orthogonal to
Col A.
Since for every x̂ in Rn the vector Ax̂ is automatically in Col A,
requiring that Ax̂ = b̂ is the same as requiring that b− Ax̂ is
orthogonal to Col A.
This is equivalent to requiring that b− Ax̂ is orthogonal to each
column of A. This means

aT
1 (b− Ax̂) = 0, aT

2 (b− Ax̂) = 0, · · · , aT
n (b− Ax̂) = 0.

This gives 
aT

1
aT

2
...

aT
n

 (b− Ax̂) =


0
0
...
0


AT (b− Ax̂) = 0

AT b− AT Ax̂ = 0
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AT Ax̂ = AT b

These are the normal equations for x̂.

Theorem
The set of least-squares solutions of Ax = b coincides with the nonempty
set of solutions of the normal equations

AT Ax̂ = AT b.

Dr Scott Morrison (ANU) MATH1014 Notes Second Semester 2015 9 / 21



Since Ax̂ is automatically in Col A and b̂ is the unique vector in Col A
such that b− b̂ is orthogonal to Col A, requiring that Ax̂ = b̂ is the same
as requiring that b− Ax̂ is orthogonal to Col A.
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Examples

Example 1
Find a least squares solution to the inconsistent system Ax = b, where

A =

1 3
1 −1
1 1

 and b =

51
0

 .

To solve the normal equations AT Ax̂ = AT b, we first compute the
relevant matrices:

AT A =
[
1 1 1
3 −1 1

] 1 3
1 −1
1 1

 =
[
3 3
3 11

]
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AT b =
[
1 1 1
3 −1 1

] 51
0

 =
[
6
14

]
.

So we need to solve
[
3 3
3 11

]
x̂ =

[
6
14

]
. The augmented matrix is

[
3 3 6
3 11 14

]
→

[
1 1 2
3 11 14

]
→

[
1 1 2
0 8 8

]
→

[
1 1 2
0 1 1

]
→

[
1 0 1
0 1 1

]
.

This gives x̂ =
[
1
1

]
.

Note that Ax̂ =

1 3
1 −1
1 1

 [
1
1

]
=

40
2

 and this is the closest point in Col A

to b =

51
0

.
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We could note in this example that AT A =
[
3 3
3 11

]
is invertible with

inverse 1
24

[
11 −3
−3 3

]
. In this case the normal equations give

AT Ax̂ = AT b⇐⇒ x̂ = (AT A)−1AT b.

So we can calculate

x̂ = (AT A)−1AT b

= 1
24

[
11 −3
−3 3

] [
6
14

]

=
[
1
1

]
.
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Example 2
Find a least squares solution to the inconsistent system Ax = b, where

A =

3 −1
1 −2
2 3

 and b =

43
2

 .

Notice that

AT A =
[
3 1 2
−1 −2 3

] 3 −1
1 −2
2 3

 =
[
14 1
1 14

]
is invertible. Thus the

normal equations become

AT Ax̂ = AT b
x̂ = (AT A)−1AT b
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Furthermore,

AT b =
[
3 1 2
−1 −2 3

] 43
2

 =
[
19
−4

]

So in this case

x̂ = (AT A)−1AT b

=
[
14 1
1 14

]−1 [
19
−4

]

= 1
195

[
14 −1
−1 14

] [
19
−4

]

= 1
13

[
18
−5

]
.
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With these values, we have

Ax̂ = 1
13

5928
21

 ∼
5.54
2.15
1.62



which is as close as possible to

43
2

.
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Example 3

For A =


1 0 2
2 1 5
−1 1 −1
0 1 1

, what are the least squares solutions to

Ax = b =


1
−1
−1
2

?

AT A =

 6 1 13
1 3 5
13 5 31

 , AT b =

00
0

 .
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For this example, solving AT Ax̂ = AT b is equivalent to finding the null
space of AT A  6 1 13

1 3 5
13 5 31

 rref−−→

1 0 2
0 1 1
0 0 0


Here, x3 is free and x2 = −x3, x1 = −2x3.

So Nul AT A = R

 2
1
−1

.
Here Ax̂ = 0 –not a very good approximation!
Remember that we are looking for the vectors that map to the closest
point to b in Col A.
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The question of a “best approximation” to a solution has been reduced to
solving the normal equations.

An immediate consequence is that there is going to be a unique least
squares solution if and only if AT A is invertible (note that AT A is always a
square matrix).

Theorem

The matrix AT A is invertible if and only if the columns of A are linearly
independent. In this case the equation Ax = b has only one least squares
solution x̂, and it is given by

x̂ = (AT A)−1AT b (1)

For the proof of this theorem see Lay 6.5 Exercises 19 - 21.
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Formula (1) for x̂ is useful mainly for theoretical calculations and for hand
calculations when AT A is a 2× 2 invertible matrix.

When a least squares solution x̂ is used to produce Ax̂ as an approximation
to b, the distance from b to Ax̂ is called the least squares error of this
approximation.
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Example 4

Given A =

3 −1
1 −2
2 3

, b =

43
2

 as in Example 2, we found

Ax̂ = 1
13

5928
21

 ∼
5.54
2.15
1.62


Then the least squares error is given by ||b− Ax̂||, and since

b− Ax̂ =

43
2

−
5.54
2.15
1.62

 =

−1.54
0.85
0.38

 ,

we have
‖b− Ax̂‖ =

√
(−1.54)2 + .852 + .382 ≈

√
3.24.
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