Some Revision Questions

1. Consider the following two bases for \mathbb{R}^2

$$\mathcal{B} = \left\{ \mathbf{b}_1 = \begin{bmatrix} -6\\ -1 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 2\\ 0 \end{bmatrix} \right\}, \quad \mathcal{C} = \left\{ \mathbf{c}_1 = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \ \mathbf{c}_2 = \begin{bmatrix} 6\\ -2 \end{bmatrix} \right\}$$

Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

2. Find the eigenvalues and eigenvectors for the matrix

$$A = \begin{bmatrix} 3 & -2 & 8\\ 0 & 5 & -2\\ 0 & -4 & 3 \end{bmatrix}.$$

Determine if A is diagonalisable, and if so find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

3. Find all the real values of k for which the matrix A is diagonalisable.

(*i*)
$$A = \begin{bmatrix} 1 & k & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, (*ii*) $A = \begin{bmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

4. Show that the matrices A and B are similar by showing that they are similar to the same diagonal matrix. Then find an invertible matrix P such that $P^{-1}AP = B$.

$$A = \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- 5. Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$.
 - (a) Sketch the first six points of the trajectory for the dynamical system $\mathbf{x}_{k+1} = A\mathbf{x}_k$ taking $\mathbf{x}_0 = \begin{bmatrix} 1\\1 \end{bmatrix}$. From this would you classify the the origin as a spiral attractor, spiral repellor, or orbital centre?
 - (b) Find an invertible matrix P and a matrix C of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that $A = PCP^{-1}$.

6. Let $A = \begin{bmatrix} -3 & 2 \\ -1 & -5 \end{bmatrix}$. Find the (complex) eigenvalues and a basis for each eigenspace.

7. Find the orthogonal projection of **v** onto the subspace W of \mathbb{R}^4 spanned by $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

$$\mathbf{v} = \begin{bmatrix} 3\\-2\\4\\-3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

Find the distance from \mathbf{v} to W.

8. Find all possible values of a, b in \mathbb{R} for which the 2×2 matrix

$$U = \begin{bmatrix} a & \frac{2}{\sqrt{5}} \\ b & \frac{1}{\sqrt{5}} \end{bmatrix}$$

is orthogonal.

9. A dynamical system is described by the matrix equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ where the matrix A is given by

$$A = \begin{bmatrix} 0.5 & 0.2\\ -0.5 & 1.2 \end{bmatrix}.$$

The matrix A has eigenvalues 1 and 0.7.

- (a) Find the eigenvectors of A.
- (b) If $\mathbf{x}_0 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$, find the long term behaviour of the dynamical system.
- 10. On any given day, a student is either healthy or ill. Of the students who are healthy today, 90% will be healthy tomorrow. Of the students who are ill today, 30% will be ill tomorrow.
 - (a) Construct the stochastic matrix for this situation.
 - (b) Suppose that 20% of the students are ill on Monday. What percentage of the students are likely to be ill on Wednesday?
 - (c) In the long run what fraction of the students are expected to be healthy?
- 11. $T: M_{2\times 2} \to M_{2\times 2}$ is given by

$$T(A) = AB - BA$$

where $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(a) Find the matrix of T with respect to the "standard" basis for $M_{2\times 2}$:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

- (b) Find a basis for the kernel of T.
- (c) Explain why T is not one to one.
- (d) Find a basis for the range of T.
- (e) Explain why T is not onto.

12. $T: \mathbb{P}_2 \to \mathbb{P}_2$ is given by

$$T(p(x)) = p(3x+2).$$

- (a) Find the matrix of T with respect to the standard basis for \mathbb{P}_2 .
- (b) If possible find a basis for \mathbb{P}_2 for which the matrix of T is a diagonal matrix.
- 13. Consider the vector space W given by $W = \text{Span } \{e^{2x}, e^{2x} \cos x, e^{2x} \sin x\}$. Let $D : W \to W$ be the differential operator defined by D(f(x)) = f'(x) for every $f(x) \in W$ (where f'(x) is the derivative of f(x)).
 - (a) Find the matrix of D with respect to $\mathcal{B} = \{e^{2x}, e^{2x} \cos x, e^{2x} \sin x\}.$
 - (b) Compute the derivative of $f(x) = 3e^{2x} 3e^{2x} \cos x + 5e^{2x} \sin x$ using the matrix you have just constructed in part (a).
 - (c) Use the matrix in part (a) to find $\int (2e^{2x} \cos x 4e^{2x} \sin x) dx$.