
Some Revision Questions, Solutions

1. Consider the following two bases for R2

B =

{
b1 =

[
−6
−1

]
, b2 =

[
2
0

]}
, C =

{
c1 =

[
2
−1

]
, c2 =

[
6
−2

]}
.

Find the change of coordinates matrix from B to C.
Solution. The change of coordinates matrix from B to C is the matrix

P
C←B =

[
[b1]C [b2]C

]
.

(To remember this formula keep in mind that you want to pass FROM
B-coordinates TO C-coordinate so you need to know the C coordinates
of the vectors b1,b2.)

Thus we have to find the coordinate vectors of b1 and b2 in the basis C.
For this we have to solve the two vector equations

x1c1 + x2c2 = b1 (that will give the coordinate vector

[
x1
x2

]
= [b1]C)

and

y1c1 + y2c2 = b2 (that will give the coordinate vector

[
y1
y2

]
= [b2]C).

Each vector equation above gives a system of two linear equations in two
variables. Since the two systems have the same coefficient matrix (the
2× 2 matrix [ c1 c2 ]) we can solve these two systems at the same time
by row reducing[

c1 c2 b1 b2

]
=

[
2 6 −6 2
−1 −2 −1 0

]
(the “new” basis is on the left and the “old” basis is on the right). We
have[

2 6 −6 2
−1 −2 −1 0

]
→
[

1 3 −3 1
−1 −2 −1 0

]
→
[

1 3 −3 1
0 1 −4 1

]
→
[

1 0 9 −2
0 1 −4 1

]

Thus P
C←B = [[b1]C [b2]C] =

[
9 −2
−4 1

]
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2. Find the eigenvalues and eigenvectors for the matrix

A =

3 −2 8
0 5 −2
0 −4 3

 .
Determine if A is diagonalisable, and if so find an invertible matrix P
and a diagonal matrix D such that A = PDP−1.

Solution

The characteristic equation for A is

0 = (3− λ){(5− λ)(3− λ)− 8}
= (3− λ){15− 8λ+ λ2 − 8}
= (3− λ){7− 8λ+ λ2}
= (3− λ)(7− λ)(1− λ)

So the eigenvalues of A are 1, 3 and 7. Since A has three distinct eigen-
values, A is diagonalisable. To find the invertible matrix P we need to
find the eigenspaces of A.

E1 = Nul (A− I) = Nul

2 −2 8
0 4 −2
0 −4 2



= Nul

1 −1 4
0 1 −1/2
0 0 0

 = Nul

1 0 7/2
0 1 −1/2
0 0 0


So a basis for E1 is

−7/2
1/2
1

 or to make calculation easier,

−7
1
2

.

E3 = Nul (A− 3I) = Nul

0 −2 8
0 2 −2
0 −4 0



= Nul

0 1 −4
0 1 −1
0 1 0

 = Nul

0 1 0
0 0 1
0 0 0

 .
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A basis for E3 is

1
0
0

.

E7 = Nul (A− 7I) = Nul

−4 −2 8
0 −2 −2
0 −4 −4


= Nul

1 1/2 −2
0 1 1
0 0 0

 = Nul

1 0 −5/2
0 1 1
0 0 0

 .
A basis for E7 is

5/2
−1
1

, or to make calculation easier,

 5
−2
2

.

From these calculations the matrices P and D are

P =

−7 1 5
1 0 −2
2 0 2

 , D =

1 0 0
0 3 0
0 0 7

 .
Note that the matrix D depends on the order in which the eigenvectors

are used in P .

To check the answer we show that AP = PD:

AP =

3 −2 8
0 5 −2
0 −4 3

−7 1 5
1 0 −2
2 0 2

 =

−7 3 35
1 0 −14
2 0 14

 ,
PD =

−7 1 5
1 0 −2
2 0 2

1 0 0
0 3 0
0 0 7

 =

−7 3 35
1 0 −14
2 0 14

 .

3. Find all the real values of k for which the matrix A is diagonalisable.

(i) A =

1 k 0
0 2 0
0 0 1

 , (ii) A =

1 0 k

0 1 0
0 0 1


Solution
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(i) Since A is an upper triangular matrix we can see that the eigenvalues
of A are 1 and 2. For A to be diagonalisable we need

dimE1 + dimE2 = 3 ,

where E1, E2 are the eigenspaces associated with the eigenvalues 1
and 2 respectively. Since 2 has multiplicity 1 we know that dimE2 =
1. Since 1 has multiplicity 2 we know that dimE1 can be 1 or 2.
Thus for A to be diagonalisable we need dimE1 = 2. We need to
check the dimension of E1.

E1 = Nul (A− I) = Nul

0 k 0
0 1 0
0 0 0

 = Nul

0 1 0
0 0 0
0 0 0


for any real number k. Since there are 2 free variables (x1 and x3),
E1 has dimension 2 for any real number, K and A is diagonalisable
for any real number k.

(ii) Again A is upper triangular and has eigenvalue 1 with multiplicity
3. For A to be diagonalisable we need dimE1 = 3. So we check the
dimension of the eigenspace E1:

E1 = Nul (A− I) = Nul

0 0 k

0 0 0
0 0 0


If k is non-zero the dimension of E1 is 2, and A is not diagonalisable.
If k = 0, E1 has dimension 3 and A is diagonalisable.
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4. Show that the matrices A and B are similar by showing that they are
similar to the same diagonal matrix. Then find an invertible matrix P
such that P−1AP = B.

A =

[
3 1
0 −1

]
, B =

[
1 2
2 1

]
Solution

Since A is upper triangular we can see that the eigenvalues for A are 3
and −1.

The characteristic equation for B is

0 = (1− λ)(1− λ)− 4 = 1− 2λ+ λ2− 4 = λ2− 2λ− 3 = (λ− 3)(λ+ 1).

Thus the eigenvalues of B are 3 and −1 and both A and B are similar

to the diagonal matrix D =

[
3 0
0 −1

]
.

We now find an invertible matrix P1 such that A = P1DP
−1
1 or equiva-

lently D = P−11 AP1. To do this we find the eigenvectors for A:

E3 = Nul (A− 3I) = Nul

[
0 1
0 −4

]
= Nul

[
0 1
0 0

]
.

A basis for E3 (for A) is

[
1
0

]
.

E−1 = Nul (A+ I) =

[
4 1
0 0

]
.

A basis for E−1 (for A) is

[
1
−4

]
, and we can take P1 =

[
1 1
0 −4

]
.

We now find an invertible matrix P2 such that B = P2DP
−1
2 or equiva-

lently D = P−12 BP2. To do this we find the eigenvectors for B:

E3 = Nul (B − 3I) = Nul

[
−2 2
2 −2

]
= Nul

[
1 −1
0 0

]
A basis for E3 (for B) is

[
1
1

]
.

E−1 = Nul (B + I) = Nul

[
2 2
2 2

]
= Nul

[
1 1
0 0

]
.
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A basis for E−1 (for B) is

[
1
−1

]
, and we can take P2 =

[
1 1
1 −1

]
.

We now have that D = P−11 AP1 and D = P−12 BP2, so that

P−11 AP1 = P−12 BP2 or B = P2P
−1
1 AP1P

−1
2 .

So if we put P = P1P
−1
2 then P−1AP = B as asked by the question. So

P = P1P
−1
2 =

[
1 1
0 −4

]
1

2

[
1 1
1 −1

]
=

1

2

[
2 0
−4 4

]
=

[
1 0
−2 2

]
An easy check shows that AP = PB.
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5. Let A =

[
1 −1
1 0

]
.

(a) Sketch the first six points of the trajectory for the dynamical system

xk+1 = Axk taking x0 =

[
1
1

]
. From this would you classify the the

origin as a spiral attractor, spiral repellor, or orbital centre?

(b) Find an invertible matrix P and a matrix C of the form C =

[
a −b
b a

]
such that A = PCP−1.

Solution

(a)

x1 = Ax0 =

[
1 −1
1 0

] [
1
1

]
=

[
0
1

]
,

x2 = Ax1 =

[
1 −1
1 0

] [
0
1

]
=

[
−1
0

]
,

x3 = Ax2 =

[
1 −1
1 0

] [
−1
0

]
=

[
−1
−1

]
,

x4 = Ax3 =

[
1 −1
1 0

] [
−1
−1

]
=

[
0
−1

]
,

x5 = Ax4 =

[
1 −1
1 0

] [
0
−1

]
=

[
1
0

]
,

x6 = Ax5 =

[
1 −1
1 0

] [
1
0

]
=

[
1
1

]
.

You can plot these points on an x − y plane. We have x0 = x6, so
any further points will just cycle around the points we have already.
It should be clear that the trajectory doesn’t spiral into the origin,
or spiral away from the origin. Thus the origin is an orbital centre.

(b) To answer this part of the question we need to find the eigenvalues
and eigenvectors of A. The characteristic equation is

0 = (1− λ)(−λ) + 1 = λ2 − λ+ 1.
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The roots of this equation are

λ =
1±
√

1− 4

2
=

1

2
± i
√

3

2
.

(Note that the eigenvalues have modulus√√√√(1

2

)2

+

(√
3

2

)2

=

√
1

4
+

3

4
= 1 .

This agrees with the fact that the origin is an orbital centre for the
corresponding dynamical system, as we have observed in part (a).)

Take λ =
1

2
− i
√

3

2
and find the corresponding eigenvector:

Eλ = Nul (A− λI) = Nul

[
1/2 + i

√
3/2 −1

1 −1/2 + i
√

3/2

]
We can use either the first or second row of this matrix. The first
row gives

(1/2 + i
√

3/2)x1 − x2 = 0 or x2 = (1/2 + i
√

3/2)x1.

This gives an eigenvector v1 =

[
1

1/2 + i
√

3/2

]
. To make calculation

easier we could take v1 =

[
2

1 + i
√

3

]
.

Note that for λ =
1

2
+
i
√

3

2
the eigenvector is v2 =

[
2

1− i
√

3

]
.

The matrix P is

P =
[
Re(v1) Im(v1)

]
=

[
2 0

1
√

3

]
,

and the matrix C is

C =

[
1/2 −

√
3/2√

3/2 1/2

]
.

We can check the answer by showing that AP = PC:

AP =

[
1 −1
1 0

] [
2 0

1
√

3

]
=

[
1 −
√

3
2 0

]
,
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PC =

[
2 0

1
√

3

] [
1/2 −

√
3/2√

3/2 1/2

]
=

[
1 −
√

3
2 0

]
.
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6. Let A =

[
−3 2
−1 −5

]
. Find the (complex) eigenvalues and a basis for each

eigenspace.

Solution The characteristic polynomial is given by

det(A− λI) = det

[
−3− λ 2
−1 −5− λ

]
= (−3− λ)(−5− λ) + 2

= λ2 + 8λ+ 17.

Solving λ2 + 8λ+ 17 = 0 gives

λ =
−8±

√
64− 68

2
=
−8± 2i

2
= −4± i.

Take the eigenvalue λ = −4 − i. To find an associated eigenvector we
find the null space of A− (−4− i)I:

A+ (4 + i)I =

[
1 + i 2
−1 −1 + i

]
Recall that both rows of this matrix give the same information. I choose
to use the second row so that I can avoid fractions in my answer. the
information given is that

−x1 + (−1 + i)x2 = 0 or x1 = (−1 + i)x2.

We can choose an arbitrary value for x2 and I choose x2 = 1. This gives
the eigenvector

v1 =

[
−1 + i

1

]
which is a basis for the corresponding eigenspace.

Now we know from the theory that v1 (the conjugate of v1) is an eigen-
vector for the eigenvalue λ = −4 + i. So we can take

v2 = v1 =

[
−1− i

1

]
.

as a basis for the eigenspace corresponding to −4 + i.

Let us also find a factorisation A = PCP−1, with C of the form

C =

[
a −b
b a

]
and a, b ∈ R.
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Take the eigenvalue λ = −4− i. The matrix P is given by

P = [Re v1 Im v1] =

[
−1 1
1 0

]
.

C comes directly from the eigenvalue:

C =

[
−4 −1
1 −4

]
.

We can check the correctness of P and C by showing that AP = PC:

AP =

[
−3 2
−1 −5

] [
−1 1
1 0

]
=

[
5 −3
−4 −1

]
,

PC =

[
−1 1
1 0

] [
−4 −1
1 −4

]
=

[
5 −3
−4 −1

]
.
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7. Find the orthogonal projection of v onto the subspace W of R4 spanned
by u1,u2,u3.

v =


3
−2
4
−3

 ,u1 =


1
1
0
0

 ,u2 =


1
−1
−1
1

 ,u3 =


0
0
1
1

 .
Find the distance from v to W.

Solution

Since {u1,u2,u3} is an orthogonal basis for W = Span{u1,u2,u3}, the
projection v̂ is given by

v̂ =
v·u1

u1·u1
u1 +

v·u2

u2·u2
u2 +

v·u3

u3·u3
u3

=
1

2


1
1
0
0

+
−2

4


1
−1
−1
1

+
1

2


0
0
1
1



=


0
1
1
0


The distance from v to W is

‖v − v̂‖ =

∥∥∥∥∥∥∥∥


3
−2
4
−3

−


0
1
1
0


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


3
−3
3
−3


∥∥∥∥∥∥∥∥ =

√
32 + 32 + 32 + 32 = 6.
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8. Find all possible values of a, b in R for which the 2× 2 matrix

U =

[
a 2√

5

b 1√
5

]
is orthogonal.

Solution

Recall that an orthogonal matrix is a square matrix with orthonormal
columns. Thus we have to find all possible values of a, b in R for which
the two columns [

a
b

]
,

[
2√
5
1√
5

]
form an orthonormal set.

Note that the second column has length one since√(
2√
5

)2
+
(

1√
5

)2
=
√

4
5 + 1

5 = 1.

Requiring that the two columns are orthogonal to each other is the same

as requiring that their dot product is zero, that is

[
a

b

]
·

[
2√
5
1√
5

]
= 0. This

gives the linear equation

a
2√
5

+ b
1√
5

= 0

that is equivalent to
(1) 2a+ b = 0 .

Imposing the condition that

[
a

b

]
has length one gives the degree two

equation
(2) a2 + b2 = 1 .

From (1) we get
b = −2a .

Substituting this into (2) we get a2 + 4a2 = 1 that is

a = ± 1√
5
.
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Thus there are only two possibilities for the pair a, b

a =
1√
5
, b = − 2√

5
and a = − 1√

5
, b =

2√
5
.
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9. A dynamical system is described by the matrix equation xk+1 = Axk
where the matrix A is given by

A =

[
0.5 0.2
−0.5 1.2

]
.

The matrix A has eigenvalues 1 and 0.7.

(a) Find the eigenvectors of A.

(b) If x0 =

[
4
7

]
, find the long term behaviour of the dynamical system.

Solution

(a) E1 is the null space of A− I:

A− I =

[
−0.5 0.2
−0.5 0.2

]
→
[
1 −0.4
0 0

]

so that x1 = 0.4x2. This gives v1 =

[
0.4
1

]
as an eigenvector.

E0.7 is the null space of A− 0.7I:[
−0.2 0.2
−0.5 0.5

]
→
[
1 −1
0 0

]

so that x1 = x2. This gives v2 =

[
1
1

]
.

(b) The long term behaviour is given by

xk = λk1c1v1 + λk2c2v2

where λ1 = 1, λ2 = 0.7 and c1 and c2 are determined by x0 and
satisfy:

x0 = c1v1 + c2v2 ⇐⇒
[
4
7

]
= c1

[
0.4
1

]
+ c2

[
1
1

]
.

To find c1, c2 we row reduce the augmented matrix of the above
system:[

0.4 1 4
1 1 7

]
→
[

1 1 7
0.4 1 4

]
→
[

1 1 7
0 0.6 1.2

]
→
[

1 1 7
0 1 2

]
→
[

1 0 5
0 1 2

]
15



Thus c1 = 5, c2 = 2 and

xk = 1k5

[
0.4
1

]
+ (0.7)k2

[
1
1

]
→ 5

[
0.4
1

]
=

[
2
5

]
as k →∞.
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10. On any given day, a student is either healthy or ill. Of the students who
are healthy today, 90% will be healthy tomorrow. Of the students who
are ill today, 30% will be ill tomorrow.

(a) Construct the stochastic matrix for this situation.

(b) Suppose that 20% of the students are ill on Monday. What percent-
age of the students are likely to be ill on Wednesday?

(c) In the long run what fraction of the students are expected to be
healthy?

Solution.

(a) If we take the states as Healthy and Ill the transition matrix is given
by

From:

Healthy Ill To:

T =

[
0.9 0.7
0.1 0.3

]
Healthy

Ill

(b) From the information in the question x0 =

[
0.8
0.2

]
is the probability

vector describing the situation on Monday. To find the percentage
of students ill on Wednesday we need to find x2.

x2 = Tx1 = T 2x0 =

[
0.9 0.7
0.1 0.3

]2 [
0.8
0.2

]
=

[
0.88 0.84
0.12 0.16

] [
0.8
0.2

]
=

[
0.872
0.128

]
.

So the proportion of students expected to be ill on Wednesday is
12.8%. It is not actually necessary to calculate the proportion ex-
pected to be healthy (that is the first entry of x2), and in fact we
could just calculate the second row of T 2 since we only need that row
to calculate the second entry of x2, which is the proportion of students
which is expected to be ill on Wednesday.

(c) Since the stochastic matrix T is regular1 we know that for any ini-
1Recall that a stochastic matrix T is regular if some matrix power T r has only strictly positive entries.
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tial probability vector x0 the Markov chain xk = T kx0 converges to
the unique steady state vector of T (this means that the long term
behaviour is described by the unique steady state vector of T , inde-
pendently of the initial probability vector x0). Thus to answer this
question we need to find the steady state vector, and to do this we
find the null space of T − I:

T − I =

[
−0.1 0.7
0.1 −0.7

]
→
[
1 −7
0 0

]
This gives x1 = 7x2, and putting this into the equation x1 + x2 = 1
we get x2 = 1/8 and x1 = 7/8 so that the steady state vector is

x =

[
7/8
1/8

]
. So in the long run 7/8 of the students are expected to

be well.
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11. T : M2×2 →M2×2 is given by

T (A) = AB −BA

where B =

[
1 1
0 1

]
and A =

[
a b
c d

]
.

(a) Find the matrix of T with respect to the“standard” basis for M2×2:

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
(b) Find a basis for the kernel of T .

(c) Explain why T is not one to one.

(d) Find a basis for the range of T .

(e) Explain why T is not onto.

Solution

(a) First note that

T (A) = AB −BA =

[
a b

c d

] [
1 1
0 1

]
−
[
1 1
0 1

] [
a b

c d

]
=

[
a a+ b

c c+ d

]
−
[
a+ c b+ d

c d

]
=

[
−c a− d
0 c

]
From this

T

([
1 0
0 0

])
=

[
0 1
0 0

]
and has coordinate vector


0
1
0
0

 ,

T

([
0 1
0 0

])
=

[
0 0
0 0

]
and has coordinate vector


0
0
0
0

 ,
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T

([
0 0
1 0

])
=

[
−1 0
0 1

]
and has coordinate vector


−1
0
0
1

 ,

T

([
0 0
0 1

])
=

[
0 −1
0 0

]
and has coordinate vector


0
−1
0
0

 .
Hence the matrix of T is

TB =


0 0 −1 0
1 0 0 −1
0 0 0 0
0 0 1 0


(b) The kernel of T is the set of all matrices A for which T (A) = 0 (the

zero matrix). So for matrices in the kernel of T :[
−c a− d
0 c

]
=

[
0 0
0 0

]
This gives a = d and c = 0, while b is free. So matrices in ker(T ) are
of the form [

a b
0 a

]
= a

[
1 0
0 1

]
+ b

[
0 1
0 0

]
,

and a basis for ker(T ) is given by{[
1 0
0 1

]
,

[
0 1
0 0

]}
.

(c) T is not one to one as it has a non zero kernel.

(d) From our calculations the range of T consists of all matrices of the

form

[
−c a− d
0 c

]
. We can write

[
−c a− d
0 c

]
= a

[
0 1
0 0

]
+ c

[
−1 0

0 1

]
+ d

[
0 −1
0 0

]
.
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From this we can see that

{[
0 1
0 0

]
,

[
−1 0

0 1

]
,

[
0 −1
0 0

]}
span the

range of T . However they are not linearly independent and so they

don’t form a basis. A basis for the range of T is given by

{[
0 1
0 0

]
,

[
−1 0

0 1

]}
.

(e) A matrix such as

[
0 0
1 0

]
is not in the range of T . Hence T cannot

be onto.
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12. T : P2 → P2 is given by

T (p(x)) = p(3x+ 2).

(a) Find the matrix of T with respect to the standard basis for P2, B =
{1, x, x2}.

(b) If possible find a basis for P2 for which the matrix of T is a diagonal
matrix.

Solution

(a) To find the matrix of T we find the effect of T on the basis vectors
1, x, x2.

T (1) = 1, T (x) = 3x+ 2, T (x2) = (3x+ 2)2 = 4 + 12x+ 9x2.

we now find the coordinate vectors with respect to the standard
basis.:

[T (1)]B =

1
0
0

 , [T (x)]B =

2
3
0

 , [T (x2)]B =

 4
12
9

 .
The matrix of T with respect to B is given by

[T ]B =

1 2 4
0 3 12
0 0 9


(b) To answer the second part of the question we aim first to diagonalise

the matrix [T ]B. When we have done that we can translate the
information back to P2.

Since [T ]B is an upper triangular matrix we can read the eigenvalues
on the diagonal: 1, 3 and 9. Because these are all distinct, we know
that T is diagonalisable. We find the eigenspaces corresponding to
these eigenvalues.

E1 = Nul ([T ]B − I) = Nul

0 2 4
0 2 12
0 0 8

 = Nul

0 1 0
0 0 1
0 0 0


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This gives x2 = x3 = 0 and x1 is free. So an eigenvector correspond-

ing to λ = 1 is v1 =

1
0
0

.

E3 = Nul ([T ]B − 3I) = Nul

−2 2 4
0 0 12
0 0 6

 = Nul

1 −1 0
0 0 1
0 0 0


This gives x1 = x2 and x3 = 0, so an eigenvector for E3 is given by

v2 =

1
1
0

.

E9 = Nul ([T ]B − I) = Nul

−8 2 4
0 −6 12
0 0 0

 = Nul

1 0 −1
0 1 −2
0 0 0


This gives x1 = x3 and x2 = 2x3, o an eigenvector for E3 is given by

v3 =

1
2
1

.

So a basis in R3 for which [T ]B is diagonal is


1

0
0

 ,
1

1
0

 ,
1

2
1

, and

a basis C in P2 for which [T ]C is diagonal is C = {1, 1+x, 1+2x+x2}.
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13. Consider the vector spaceW given byW = Span {e2x, e2x cosx, e2x sinx}.
Let D : W → W be the differential operator defined by D(f(x)) = f ′(x)
for every f(x) ∈ W (where f ′(x) is the derivative of f(x)).

(a) Find the matrix of D with respect to B = {e2x, e2x cosx, e2x sinx}.
(b) Compute the derivative of f(x) = 3e2x− 3e2x cosx+ 5e2x sinx using

the matrix you have just constructed in part (a).

(c) Use the matrix in part (a) to find
∫

(2e2x cosx− 4e2x sinx) dx.

Solution

(a) We find the effect of D on the basis vectors:

D(e2x) = 2e2x, D(e2x cosx) = 2e2x cosx− e2x sinx,

D(e2x sinx) = 2e2x sinx+ e2x cosx.

We now find the coordinate vectors:

[D(e2x)]B =

2
0
0

 , [D(e2x cosx)]B =

 0
2
−1

 , [D(e2x sinx)]B =

0
1
2


Hence the matrix [D]B is given by

[D]B =

 2 0 0
0 2 1
0 −1 2

 .

(b) The coordinate vector for f(x) is given by [f(x)]B =

 3
−3
5

. We

calculate

[D]B[f(x)]B =

 2 0 0
0 2 1
0 −1 2

 3
−3
5

 =

 6
−1
13


This is the same as [D(f(x))]B the coordinate vector of the derivative
of f(x) and so it tells us that the derivative of f(x) is

f ′(x) = 6e2x − e2x cosx+ 13e2x sinx .
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(c) The coordinate vector of g(x) = 2e2x cosx− 4e2x sinx in the basis B
is

[g(x)]B =

 0
2
−4

 .

The inverse of [D]B is given by

[D]−1B =

 1
2 0 0
0 2

5 −
1
5

0 1
5

2
5


We have

[D]−1B [g(x)]B =

 1
2 0 0
0 2

5 −
1
5

0 1
5

2
5

 0
2
−4

 =

 0
8
5

−6
5


that is

[D]B

 0
8
5

−6
5

 = [g(x)]B .

The above identity tells us that

D

(
8

5
e2x cosx− 6

5
e2x sinx

)
= g(x) = 2e2x cosx− 4e2x sinx ,

so 8
5e

2x cosx− 6
5e

2x sinx is an antiderivative of 2e2x cosx− 4e2x sinx.
Thus we have∫

2e2x cosx− 4e2x sinx =
8

5
e2x cosx− 6

5
e2x sinx+ C

where C is an arbitrary constant (check this result by differentia-
tion!).
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